关于淋雨数学建模

合集下载

数学建模实验雨中漫步1学习

数学建模实验雨中漫步1学习

数学实验作业雨中漫步系部:数学系专业:s10数学教育学号:103103011013姓名: 张鹏飞实验目的:1.生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少2. 运用matlab软件实验内容: 给定的降雨条件下,分别建立相应的数学模型, 分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水而上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收到得雨的体积, 可表示为单位时间单位面积上淋雨的多少与接收雨的而积和淋雨时间的乘积。

1,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

2,雨迎而吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶而积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量W与行走速度v之间的函数关系。

分析表明当行走速度为%•、时,淋雨量最少。

3,雨从背而吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。

列出函数关系式分析并求解。

实验准备:mat lab软件绘图,从网上查找各种资料旷一长方体的长单位:米b■—长方体的宽单位:米6-一长方体的厚度单位:米Q—-淋雨量单位:升卩-一人行走的速度单位:米每秒D路程单位:米/- 一降雨强度单位:厘米每小时P- 一雨滴的密度单位:“---雨滴下落的速度单位:米每秒0-一雨迎面吹来时与人体的夹角a与从后面吹来与人体的夹角实验步骤:在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

淋雨问题数学建模

淋雨问题数学建模

s1 bc, s2 ab
淋雨时间:
雨速垂直分量:
分别计算其淋雨量如下:
d t v
u cos
雨速水平分量:
u sin
顶部淋雨量: 迎面淋雨量:
Q1 s1tw cos bc
d w cos v
v d u sin v Q2 s2tw ab w u v u
所以总的淋雨量为:
符号说明
三、模型的建立
人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v前行,此时降雨淋 遍全身
淋雨的面积
雨中行走的时间 降雨强度
S 2wh 2dh wd (米2 )
D t (秒) v
I (厘米/时) 0.01I (米/时) (0.01/ 3600 ) I (m / s )
s3 bc, s4 ab
d 淋雨时间: t v
雨速垂直分量:
,分别计算其淋雨量如下:
u cos
方向与v相同,故相对雨速
雨速水平分量:u sin 故相对雨速v= u sin v
cos 顶部淋雨量: Q3 s3tw cos bcdw v
v abdw | u sin v | 背面的淋雨量: Q4 s4tw u uv
a b
(3)
由(1)式知总淋雨量
Q stw (2ab 2ac bc)
d w v
易知 v越大,Q值越小,故此时跑得越快,所淋到的 v vm时, Q 最小; 雨量越少。即:当 对(2)式关于v求导可得 :
Q bdw cu cos au sin 0 2 v u v
时,Q最小
2 v u sin
四、结果分析

人在雨中走淋雨模型

人在雨中走淋雨模型

人在雨中行走的淋雨量数学模型院系:数学与统计学院班级:数学与应用数学1班姓名:学号:摘要一直以来,下雨对我来说,是件很烦恼的的事情。

不管下雨有多大,不管有没有打伞,总是会让自己淋得全身是雨,所以研究人在雨中行走的淋雨量对我这样的人有很大的必要。

本题给定路人在地点AB之间为直线行走。

要求建立路人淋雨量与雨速、雨向、行走速度之间的关系。

假设题中所涉及的降雨量为指天空降落到地面上的直接降雨量(未经流失、蒸发、渗透在地面上(假设是水平地面)集聚的水层深度。

)。

淋雨量,指下雨时路人在行走时全身所淋的全部雨的量(即淋雨的路人淋雨的体积,为人表面的面积×淋雨时间×单位面积的淋雨量。

)。

雨速为天空中降雨的速度。

雨向随风而定。

行走速度即行人的步速。

对于问题,我们设人淋雨面积为模型人前、后、左、右、头顶面积之和。

当有风时,人的身体就不会全部淋雨,那么此时淋雨面积就要根据风向即雨向来定,要根据具体情况来确定淋雨体积。

关键词:模型、淋雨量、降雨量、雨速、雨向、降雨角度、行人行走速度、分析、联系实际。

问题重述与分析:问题:下雨时,路人从A地点直线行走到达B地点。

(1)建立路人淋雨量与雨速、雨向、行走速度的关系;(2)并用计算机模拟方法对建立的关系证实。

分析:假设雨向与行人行走方向成夹角为α,①当无风时,α=90°,雨自上而下垂直向下。

则雨均匀淋遍全身。

②当风迎面吹来,即此时α<90°,此时淋在行人身上的雨即为降雨的竖直分量。

③当风从背面吹来,即此时α>90°,此时淋在行人身上的雨也为降雨的竖直分量。

当有风时还要考虑降雨速度与行人速度的相对速度。

问题假设:假设行人为标准长方体形状。

假设行人在雨中行走时,以速度ν从地点A匀速向地点B走去,不管雨速、雨向如何都不变化。

雨向一旦固定,就不会在改变,即α恒定。

雨的密度相同,雨滴大小、形状相同,雨滴为标准球形。

假设行人淋雨的量与雨速成正比。

数学建模 淋雨模型

数学建模 淋雨模型

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设四、(1)、将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;五、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=(㎡)V= (cm3)= (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v 1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。

数学建模_淋雨模型

数学建模_淋雨模型

数学建模_淋雨模型
淋雨模型是一种经典的数学建模方法,它被广泛应用于城市防汛预警、水利工程设计
以及自然灾害预测等领域。

本文将介绍淋雨模型的原理、应用及其局限性。

1.原理
淋雨模型基于雨滴的落点和间隔时间服从泊松分布的假设,描述雨水的分布情况。


松分布是一种用于描述事件随机分布的概率分布。

在淋雨模型中,每一滴雨都是一个事件,落在地面上所需的时间间隔服从泊松分布,且每个点落雨的概率是相等的。

2.应用
淋雨模型在城市防汛预警中的应用是比较典型的。

城市防汛工程需要根据历史降雨数
据和城市地形结合使用淋雨模型进行预测,以确定发生洪灾的可能性和预警级别,提高城
市的抗洪能力。

此外,淋雨模型还可以应用于水利工程的设计和规划中。

例如,对于大型水电站工程,需要根据周边降雨情况预测水位变化,选择合适的水位高度和水流量,以确保安全运行。

3.局限性
淋雨模型基于一些简化的假设,例如,假设雨点的大小、形状、速度和方向都是相同的,且雨滴的散布范围是均匀的。

这些假设在某些情况下可能是不合理的,导致模型的精
度有所降低。

此外,淋雨模型并不能准确地预测特殊的天气变化,如大风暴、暴雪等极端天气。

因此,在应用淋雨模型时需要注意其局限性,并将其结合其他的模型方法以提高预测精度。

总之,淋雨模型是一种简单、实用的数学模型,在城市防汛预警、水利工程设计和规
划等领域有着广泛的应用,但其局限性也需要被充分考虑。

在实际应用中,我们需要结合
具体的情况选择合适的模型,提高预测精度和决策效果。

下雨时淋雨量模型

下雨时淋雨量模型

淋雨量模型
每当下雨而人们又忘记带雨伞不得以要淋雨时,大家脑海中总会思考起这样一个问题:淋雨时走得越快淋雨少,还是走得越慢淋雨少呢?
有人认为走得快淋雨少,因为走得快用时少,从正上方降落到头上的雨滴就少;也有人认为走得慢淋雨少,因为走得快人正前方淋到的雨就多,而且正前方的淋雨面积肯定比正上方的大。

那么在固定行程时到底怎样才能淋雨最少呢?现在我们建立一个数学模型来研究一下这个问题。

设出参数:
人的前进速度:V人
雨滴下落的速度:V雨(2-9m/s)
风的速度:V风(矢量,迎风则合速度为相加,顺风为相减)
人的前进方向与风向的夹角:α
将人体设定为一个长方体:
厚度为a,宽度为b,高为h(0<a<b<h<2.5m)
人的行走距离:s
单位体积包含的雨量为n(kg/m³)(当地气象预报平均降雨量为k(mm/h),则n=k/v雨/3600)
单位均为国际单位
则淋雨量M分为三面:正面,侧面,顶面
M正=nbh*(V人+V风*cosα)*s/V人
M侧=nah*V风sinα*s/V人
M顶=nab*V雨*s/V人
总淋雨量M=ns*bh+ns*(bh*V风*cosα+ah*V风sinα+ab*V 雨)/V人
从公式可以看出总的淋雨量去除常数项部分后,和人的前进速度
成反比例关系;逆风时的速度为加,逆风的淋雨量要比顺风的淋雨量大。

当风速为0时,公式变为:
M=ns*(bh+ab*V雨/V人)
则淋雨量只和人的速度及降雨速度相关。

带入一些数据我们可以算一下平时都淋了多少雨。

数学建模淋雨问题论文正稿

数学建模淋雨问题论文正稿

淋雨问题论文摘要本文在给定的降雨条件下,分别建立相应的数学模型,分析人在雨中奔跑时淋雨的多少与奔跑速度、降雨的方向以及雨线的方向与跑步的方向是否在同一平面等因素的关系,得出结论:若雨迎面落下,则以最大速度跑完全程淋雨量最少;如果雨从背面吹来,分两种情况: (雨从背面吹来时与人体夹角为α)当tan 2/15α<时,跑得越快越好;当tan 2/15α>时,跑步速度,则以降雨速度的水平分量奔跑时淋雨量最少。

若雨线方向与跑步方向不在同一平面,则可将雨速方向分解为与人跑速度同向的速度和与人跑速度方向垂直的速度. 同向速度即平面共面,可看成模型二、三的情况,垂直速度可看成模型一的情况。

关键词淋雨量,雨速大小与方向,跑步速度。

正文1.问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量就越少。

将人体简化成一个长方体,搞a=1.5m (颈部以下),宽b=0.5m ,厚c=0.2m 。

设跑步距离d=1000m ,跑步最大速度5/m v m s =,雨速u=4m/s ,降雨量w=2cm/h,记得跑步速度为v ,按以下步骤进行讨论:(1)不考虑雨的方向,设降雨淋遍全身,以最大的速度跑步,估计跑完全程的总淋雨量。

(2)雨从迎面吹来,雨线与跑步方向在同一平面,且与人体的夹角为x ,如图1,建立总淋雨量与速度v 以及参数a 、b 、c 、d 、u 、w 、θ之间关系,问速度v 多大,总淋雨量最少,计算0θ=,30θ=时的总淋雨量(3)雨从背面吹来,雨线方向与跑步方向在同一平面,且与人体的夹角为α,如图2,建立总淋雨量与速度v 以及参数a 、d 、c 、d 、u 、w 、α之间的关系,问速度v 多大,总淋雨量最少,计算30α=时的总淋雨量。

(4)以总淋雨量为纵轴,速度v 为横轴,对(3)进行作图(考虑α的影响),并解释结果的实际意义。

(5)若雨线方向与跑步方向不在同一平面,模型会有什么变化。

淋雨量数学模型

淋雨量数学模型

论文题目:雨中行走淋雨量剖析雨中行走淋雨量剖析纲要本文在 定的降雨条件下, 分 成立相 的数学模型, 剖析人体在雨中奔跑 淋雨多少与奔跑速度、 降雨方向等要素的关系。

此中文中所波及到的降雨量是指从天空下降到地面上的雨水, 未 蒸 、 浸透、流失而在水面上 聚的水 深度,它能够直 地表示降雨的多少。

淋雨量,是指人在雨中行走 浑身所接收到得雨的体 ,可表示 位 位面 上淋雨的多少与接收雨的面 和淋雨 的乘 。

利用 MATLAB 件 各个 行了求解。

一, 降雨淋遍浑身不考 雨的方向, 化假 得人淋雨面 前后左右及 面 之和。

人以最大速度奔跑 1000m ,用 MATLAB 求解可得淋雨量近似 0.0024 m 3 。

二, 雨迎面吹来, 雨 方向与跑步方向在同一平面, 人淋雨面 前面和 面 之和。

因各个方向上降雨速度重量不一样, 故分 算 和前面的淋雨量后相加即 的淋雨量。

据此可列出 淋雨量 W 与跑步速度 v 之 的函数关系。

剖析表示当跑步速度vmax,淋雨量最少。

并 算出当雨与人体的θ =0 ,淋雨量近似33角 m ;当 θ ° ,淋雨量近似0.0016 m 。

=30三, 雨从反面吹来, 雨 与跑步方向在同一平面内,人淋雨量与人和雨相 速度相关。

列出函数关系式剖析并求解,可知当人速度 v=2 m s 淋雨量最少, α=30° 的 淋雨量近似 m 3 。

四,列出淋雨量 W 和跑步速度 v 之 的函数关系式,利用 MATLAB 画出α分 0°, 10°,⋯ .90 °的曲 。

五,雨 与人跑步方向不在同一平面内, 考 人的淋雨面 前后左右以及 。

分 列式表示, 的淋雨量即 三者之和。

关淋雨量;降雨的大小;降雨的方向( );行程的 近;行走的速度;一、问题重述生活中我们经常会碰到下雨却没有遮雨工具的时辰,我们在那时会有好多项选择择,此中之一就是淋雨,常常好多人会在雨中快走或奔跑以使自己身体淋雨量最小化,但常常好多人会感觉到淋雨量其实不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增添,淋雨量和速度等相关参数的关系怎样,让我们假定一数学模型模拟计算真切状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淋雨数学建模
摘要:本文通过对人在雨中直线行走时雨垂直降落、从前吹来、从后吹来这三
种情况的分析讨论,得到了在不同情况下淋雨总量与人的行走速度的数学模型。

并发现,当雨垂直落下和迎面吹来时,跑的速度越快淋雨越少;而当雨从背面吹
来时,当人跑的速度大于等于雨速的水平分量的大小且此时夹角α满足tan c
a
α<
时,跑得越快淋雨越少,除此之外的其它情况下有当αsin u v =时,淋雨量最小。

关键词:淋雨 直线行走
一 问题重述
人在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。

试建立数学模型讨论是否跑得越快,淋雨量越少,并用MATLAB 编程实现。

假设跑步距离d=100米,跑步最大速度为m v =5 m/s ,雨速u=4m/s ,降雨量为w=2cm/h 。

(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量。

(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,问跑步速度v 为多大?淋雨量最少。

二 问题的分析
人在雨中行走时可能出现以下三种情形:
情形一:雨垂直下落,人以速度v 前行,此时降雨淋遍全身(如图1所示)
图 1
情形二:雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为θ,此
时后背淋不到雨(如图2所示)
图2
情形三:雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨(如图3所示)
图 3
我们知道当人在雨中前行的时候,人和雨相对地面都是运动的,故知人与雨是相对运动的。

为此我们选择人作为参考系,再考虑雨的相对速度及其与人体方向(即与人体夹角θ、α)对总淋雨量的影响。

三合理的假设
3.1 将人体看成一个长方体;
3.2 雨速为常数且方向不变;
3.3 降雨量为一定值;
3.4 考虑雨的方向与人体前进的方向在同一平面内;
3.5 符号的假定:
a: 身高(颈部以下) b: 身宽 c: 身厚
v: 跑步最大速度d: 跑步距离 v: 跑步速度
m
w: 降雨量 u: 雨速 Q: 总淋雨量
θ: 雨迎面吹来与人的夹角α: 雨背面吹来与人的夹角
s:有效淋雨面积v:以人为参考系时的相对雨速
四模型的建立
我们先考虑如下情形,现有一块土地面积为s,雨垂直降落,雨速及方向不变,且降雨量为一常数w ,则有时间t内该土地的淋雨量为Q stw
=。

若雨速发生变化,则降雨量也会相对发生改变,设雨速从u变为u u
+∆,则降雨量相对变
化为
u u w u +∆,从而可求得此时的淋雨量为 u u
Q stw
u
+∆=。

若雨速不变,降雨的方向发生改变,设其与原方向的夹角为θ,那么此时的淋雨量为
cos Q stw θ=。

类似我们可以求得在问题分析中出现的三种情况下人体的总淋雨
量如下:
4.1当雨垂直降落时
有效淋雨面积:22s ab ac bc =++ 淋雨时间:d
t v
=
总淋雨量(22)d
Q stw ab ac bc w v
==++ (1) 4.2 当雨迎面吹来时
由假设3.4我们知道,当雨迎面吹来时,只有顶部和人体的迎面部分为有效淋雨面积,记顶部面积为1s ,迎面部分面积为2s ,则12,s bc s ab ==,分别计算其淋雨量如下:
淋雨时间:d
t v
=
雨速垂直分量:θcos u
雨速水平分量:θsin u ,且方向与v 相反,故相对雨速v =v u +θsin 顶部淋雨量:11cos cos d
Q s tw bc w v
θθ== 迎面淋雨量:22sin v d u v Q s tw ab w u v u
θ+== 所以总的淋雨量为:
12cos (sin )cos (sin )
bcduw abdw u v bdw cu a u v Q Q Q uv u v
θθθθ⋅+⋅+++=+=
= (2)
4.3当雨从背面吹来时
同理,当雨从背面吹来时,只有顶部和人体的背面部分为有效淋雨面积,记顶部面积为3s ,背面部分面积为4s ,则34,s bc s ab ==,分别计算其淋雨量如下:
淋雨时间:d t v
=
雨速垂直分量:αcos u
雨速水平分量:sin u α,方向与v 相同,故相对雨速v =sin u v α- 顶部淋雨量:33cos cos Q s tw bcdw v
α
α== 背面的淋雨量: 44|sin |v abdw u v Q s tw u uv
α-== 总淋雨量为:
()()
34cos (sin )(cos sin ),sin cos (sin )(cos sin ),sin Q Q Q bdw cu a u v bdw u c a av v u a u v u v
bdw cu a v u bdw u c a av v u b u
v u v αααααααααα=+=
+-+-⎧=<⎪⎪⎨
+--+⎪=≥⎪⎩ (3) 五 模型的求解
运用数学分析中求函数最值的知识,对于以上所建的模型我们求解得到不同情况下人的淋雨量Q 与行走速度v 的具体关系如下: 5.1当雨垂直降落时
由(1)式知总淋雨量(22)d
Q stw ab ac bc w v ==++,易知 v 越大,Q 值越
小,故此时跑得越快,所淋到的雨量越少。

即:当m v v =时,Q 最小; 5.2当雨迎面吹来时
对(2)式关于v 求导可得:
2cos sin 0Q bdw cu au v u v
θθ
∂+=-<∂,故Q关于v 是单调递减函数,故此种情况下,当m v v =时,Q 最小; 5.3当雨从背面吹来时
对(3)式,分以下两种情况讨论如下:
1︒ sin v u α≤
此时对(a )式关于v 求导可得
2
cos sin 0Q bdw cu au v u v αα∂+=-<∂ ,可知v 越大,淋雨量Q 越小,又因为sin v u α≤,故知当sin v u α=时,Q 最小; 2︒ sin v u α≥
当0sin cos >-ααa c ,对(b )关于v 求导
2(cos sin )
0Q bdw u c a v u v
αα∂-=-<∂,故Q关于v 是单调递减函数,同样可得,当m v v =时,Q 最小;
当0sin cos ≤-ααa c ,对(b )关于v 求导
2
(cos sin )
0Q bdw u c a v u v αα∂-=->∂,故Q关于v 是单调递增函数,又αsin u v ≥,故αsin u v =时,Q 最小。

六 结果分析
由上面的求解过程我们可看出,当雨垂直落下和迎面吹来时,跑的速度越快淋雨越少;而当雨从背面吹来时,当人跑的速度大于等于雨速的水平分量的大小
且此时夹角α满足tan c
a
α<时,跑得越快淋雨越少,除此之外的其它情况下有当
αsin u v =时,淋雨量最小。

七 模型的检验
现给出数据如下:
1.5,0.5,0.2,1000,5,4,2m a m b m c m d m v m s u m s w cm h ======= 7.1 当雨垂直降落时 min (22)0.002L m
d
Q ab ac bc w v =++≈ 7.2 当雨迎面吹来时 0θ=:cos0(sin 0)v 0.00116L m m
m m cu a u v cu a bdw bdw Q u v u v +++=
=≈
30θ=︒:cos30(sin 30)
0.00155m m
cu a u v bdw Q L u v ︒+︒+=

7.3 当雨从背面吹来时 30α=︒时,tan c
a
α>,故sin 2v u m s α==时,淋雨最少。

此时:0.00101Q L ≈ 八 优缺点分析
优点:在模型中我们考虑了雨从不同方向吹来,结合了风向等因素,考虑了三种情况下人的总淋雨量,并以人为参照物优化了模型。

缺点:此模型只是将人与雨的方向在同一平面内考虑的,如果在不同的平面内,则雨的方向应该在三维空间中考虑。

参考文献:
[1]姜启源,谢金星等 《数学模型》(M) 第三版 高等教育出版社 2003年。

相关文档
最新文档