数学建模淋雨量模型
淋雨问题数学建模

s1 bc, s2 ab
淋雨时间:
雨速垂直分量:
分别计算其淋雨量如下:
d t v
u cos
雨速水平分量:
u sin
顶部淋雨量: 迎面淋雨量:
Q1 s1tw cos bc
d w cos v
v d u sin v Q2 s2tw ab w u v u
所以总的淋雨量为:
符号说明
三、模型的建立
人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v前行,此时降雨淋 遍全身
淋雨的面积
雨中行走的时间 降雨强度
S 2wh 2dh wd (米2 )
D t (秒) v
I (厘米/时) 0.01I (米/时) (0.01/ 3600 ) I (m / s )
s3 bc, s4 ab
d 淋雨时间: t v
雨速垂直分量:
,分别计算其淋雨量如下:
u cos
方向与v相同,故相对雨速
雨速水平分量:u sin 故相对雨速v= u sin v
cos 顶部淋雨量: Q3 s3tw cos bcdw v
v abdw | u sin v | 背面的淋雨量: Q4 s4tw u uv
a b
(3)
由(1)式知总淋雨量
Q stw (2ab 2ac bc)
d w v
易知 v越大,Q值越小,故此时跑得越快,所淋到的 v vm时, Q 最小; 雨量越少。即:当 对(2)式关于v求导可得 :
Q bdw cu cos au sin 0 2 v u v
时,Q最小
2 v u sin
四、结果分析
数学建模_淋雨模型

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。
计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。
可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;四、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=2.2(㎡)V=0.00244446 (cm³)=2.44446 (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v s i n u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。
数学建模_淋雨模型

专业及班级土木10班学号20136452姓名杨昌友淋雨量模型一摘要:本文主要研究人在雨中行走的淋雨量问题。
在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。
得出结论:若雨迎面落下,则以最大的速度跑完全程淋雨量最少;若雨从背后落下,则以降雨速度的水平分量时奔跑时淋雨量最少。
关键词:淋雨量雨速大小雨速方向跑步速度路程远近二、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。
计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,模型会有什么变化三、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。
可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v四模型假设(1)、将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;五、符号淋雨量V降雨量ω人体淋雨面积S淋浴时间t跑步距离d跑步速度v人高a人宽b人厚c六、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S =(㎡)V = (cm ³)= (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。
数学建模 淋雨模型

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。
计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。
可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设四、(1)、将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;五、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=(㎡)V= (cm3)= (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v 1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。
数学建模_淋雨模型之欧阳治创编

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度vm=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。
计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。
可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.设跑步距离d=1000m,跑步最大速度vm=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;四、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s)将相关数据代入模型中,可解得:S=2.2(㎡)V=0.00244446 (cm³)=2.44446 (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ.,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:则前部单位时间单位面积淋雨量为:又因为前部的淋雨面积为:b a ⋅,时间为: d/v 于是前部淋雨量V2为 :即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :代入数据求得:由V(v)函数可知:总淋雨量(V)与人跑步的速度(v)以及雨线与人的夹角(θ)两者有关。
数学建模_淋雨模型

数学建模_淋雨模型
淋雨模型是一种经典的数学建模方法,它被广泛应用于城市防汛预警、水利工程设计
以及自然灾害预测等领域。
本文将介绍淋雨模型的原理、应用及其局限性。
1.原理
淋雨模型基于雨滴的落点和间隔时间服从泊松分布的假设,描述雨水的分布情况。
泊
松分布是一种用于描述事件随机分布的概率分布。
在淋雨模型中,每一滴雨都是一个事件,落在地面上所需的时间间隔服从泊松分布,且每个点落雨的概率是相等的。
2.应用
淋雨模型在城市防汛预警中的应用是比较典型的。
城市防汛工程需要根据历史降雨数
据和城市地形结合使用淋雨模型进行预测,以确定发生洪灾的可能性和预警级别,提高城
市的抗洪能力。
此外,淋雨模型还可以应用于水利工程的设计和规划中。
例如,对于大型水电站工程,需要根据周边降雨情况预测水位变化,选择合适的水位高度和水流量,以确保安全运行。
3.局限性
淋雨模型基于一些简化的假设,例如,假设雨点的大小、形状、速度和方向都是相同的,且雨滴的散布范围是均匀的。
这些假设在某些情况下可能是不合理的,导致模型的精
度有所降低。
此外,淋雨模型并不能准确地预测特殊的天气变化,如大风暴、暴雪等极端天气。
因此,在应用淋雨模型时需要注意其局限性,并将其结合其他的模型方法以提高预测精度。
总之,淋雨模型是一种简单、实用的数学模型,在城市防汛预警、水利工程设计和规
划等领域有着广泛的应用,但其局限性也需要被充分考虑。
在实际应用中,我们需要结合
具体的情况选择合适的模型,提高预测精度和决策效果。
《数学模型》淋雨模型

V V1 V2 b c d cos / v a b d u sin v /u v
代入数据求得:
(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方 向只有向下的分量, 且与v无关,所以顶部单位时间单位 面积淋雨量为 cos ,顶部面积为 b c ,淋雨时间 为 d / v ,于是顶部淋雨量为: V1 b c d cos / v ② 由①②可算得总淋雨量 :
模型 建立 求解
情形1建立及求解: 设不考虑雨的方向,降雨淋遍全身,则淋雨面积: S=2ab+2ac+bc 雨中奔跑所用时间为:t=d/v 总降雨量 V=ω×S×d/v ω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得: S=2.2(㎡) V=0.00244446 (cm³ )=2.44446 (L)
cos 7.5sin 1.875 v V 1800 v
由V(v)函数可知:总淋雨量(V)与人跑步的速度 (v)以及雨线与人的夹角()两者有关。
对函数V(v)求导,得:
V
cos 7.5 sin
1800 v2
V<0, 所以V为v的减函数,V随v增大而减小。 显然: 因此,速度v=vm=5m/s ,总淋雨量最小。 (Ⅰ)当θ=0,代入数据,解得: V=0.0011527778(m³ )≈1.153(L) (Ⅱ)当θ=30°,代入数据,解得: V=0.0014025(m³)≈1.403(L)
Hale Waihona Puke V1 b c cos d / v b c d cos/v
(2)、后部淋雨量:人相对于雨的水平速度为:
u sin v ,v u sin v u sin ,v u sin
数学建模-淋雨模型汇编

淋雨量模型摘要步入雨季,降雨天气逐渐开始在人们的日常生活中频繁出现起来,与此同时,突如其来的雨水也常常带给无准备的人们淋成落汤鸡的窘境。
面对骤雨,大多数人在通常情况下会选择快速奔跑以希求淋雨最少。
然而这样真的能淋雨最少吗?以此日常情景为背景提出了四个问题,本文运用儿何知识、物理知识等方法成功解决了这四个问题,得到了在不同的降雨条件下人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。
并针对不同降雨条件给出了淋雨量最少的方法。
针对问题一,条件给出:不考虑雨的方向,降雨淋遍全身;确定淋雨量为人体表面积与单位面积降雨量及淋雨时间之积针对问题二,根据已知条件(雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为0 ),对雨线的速度分别沿水平.竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。
并对函数求导分析最小淋雨量对应速度。
针对问题三,在雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为Q的条件下,对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。
并对函数分析最小淋雨量对应速度。
以总淋雨量为纵轴,速度v为横轴,对函数用Excel 作图(考虑。
的影响),并解释结果的实际意义。
针对问题四,综合考虑前三种情况的共同作用,并基于前三种模型进行修正。
最后,对所建立的模型和求解方法的方法的优缺点给出了客观的评价,并指出误差所在。
关键字:淋雨量雨速大小雨速方向跑步速度路程远近一、问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=1.5m (颈部以下),宽b=0.5m,片c=0.2m, 设跑步的距离d= 1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量3 =2cm/h,及跑步速度为v,按以下步骤进行讨论]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为0,如图1 •建立总淋雨量与速度V及参数a, b, c, d, u, 3, 0之间的关系,问速度v多大,总淋雨里最少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模淋雨量模型文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]
重庆大学本科学生论文
数学模型的淋雨量模型
学生:谭昕宇、杨龙顺
学号:
指导教师:黄光辉
专业:通信工程专业
重庆大学通信工程学院
二O一七年十月
摘要
本文针对淋雨量最小问题,采用matlab仿真等方法,得到不同风向下淋雨量与跑步速度的关系。
针对问题一,可以得到淋雨量最小是2.44L
针对问题二,通过matlab仿真可以得到迎面淋雨时跑步速度最大,淋雨量最小。
且淋雨量大小与跑步方向和雨线夹角有关。
针对问题三,通过matlab仿真可以知道背面淋雨时,跑步方向和雨线夹角不太小时,当跑步速度与雨速在同一方向分量相等时淋雨量最小,此时只有顶面淋雨。
在本文的最后,对模型的优缺点进行分析,并提出一些改进。
关键字:淋雨量最小,跑步速度,雨线与跑步方向夹角,matlab
目录
一、问题描述
要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。
讨论淋雨量与人体跑步速度的关系。
二、问题分析
这是一个简单优化问题,根据雨速大小和方向、人速度大小进行合理分析,使得人淋雨量最小。
淋雨面积与雨的方向有关,淋雨时间与跑步速度与雨速相对速度大小有关,所以在不同情况下有不同的最优解。
三、模型假设
1.人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚
c=0.2m;
2.雨速u是常数(4m/s),在跑步过程中降雨量w是常数(2cm/h);
=5m/s;
3.在整个过程中人跑步速度v是常数,且有最大速度V
max
4.雨线的方向是确定的;
5.跑步距离一定d=1000m.
四、符号说明
五、模型的建立与求解
根据题意,按以下步骤进行讨论:
5.1 不考虑雨的方向,设雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。
淋雨面积s=2ab+2ac+ab=2.2m2,跑完时间t=d/v=200 s,降雨量
w=2cm/h=1/1.8X105m/s,
淋雨量 Q=swt=2.44X10-3 m3。
5.2 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,建立总淋雨量与速度v的关系,求解总淋雨量最少的最优解,并计算θ=0,θ=30。
的总淋雨量。
(1)淋雨量分为正面和顶面两部分,正面面积s
1
=ab=0.75m2,正面单位面积单位时间的淋雨量为w(usinθ+v)/u,淋雨时间t=d/v
淋雨量Q1=s1dw(usinθ+v)/uv;
顶面面积S
2
=bc=0.1m2,顶面单位面积单位时间的淋雨量为wcosθ,淋雨时间t=d/v,
淋雨量Q2=s2dwcosθ
v
总淋雨量
Q=Q1+Q2=dd
d
×(
d1(ddddθ+d)
d
+d2cos d)
(2)模型求解得Q=1
1.8×(3dddd
4d
+3
16
+
0.1cos d
d
)············0≤v≤5
很明显当v=5 m/s时Q最小。
用matlab仿真得到:
当θ=0时,
Q
MIN
=1.1526L
当θ=30。
时,
Q
MIN
=1.5535L
5.3 雨从背面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为а,建立总淋雨量与速度v的关系,求解总淋雨量最少的最优解,并计算а=30。
的总淋雨量。
(1)淋雨量分为顶面和背面淋雨,顶面淋雨量为Q2=s2dwcosа
v
背面淋雨可以看做是追击问题,分为同位置雨滴追得上人体和人体追上前面上的雨滴两种情况。
淋雨量分别为
Q1=d1dd(ddddа−d)
dd
··········usinа≥v
Q1=d1dd(d−ddddа)
dd
··········usinа≤v
总淋雨量为
Q=Q1+Q2=dd
d
×(
d1(ddddа−d)
d
+d2dddа)···usinа
≥v
Q=Q1+Q2=dd
d
×(
d1(d−ddddа)
d
+d2dddа)···usinа
≤v (2)模型求解
Q=1
1.8×(3dddа
4d
−3
16
+0.1cosа
d
)············0≤v≤
4sinа
Q=1
1.8×(−3dddа
4d
+3
16
+0.1cosа
d
)············4sinа≤
v≤5
分析单调性可知,Q在0≤v≤4sinа时单调递减
当0.1cosа<0.75sinа时,Q在4sinа≤v≤5上单调递增,v=4sinа时Q最小
当0.1cosа>0.75sinа时,Q在4sinа≤v≤5上单调递减,v=5时Q最小
当а=30.时,满足0.1cosа<0.75sinа
当v=2时。
Q
MIN
=0.2365L
当а=90。
时
满足v=5时Q最小。
(4)解释上图结果的实际意义。
雨从背面吹来,只要а满足0.1cosа<0.75sinа,当v=4sinа时Q最小,这时人体背面不淋雨,只有顶面淋雨,超过此值,迎面淋雨增加。
当а过小时,主要是顶面淋雨,这就与淋雨时间有很大关系,跑得越快,淋雨时间越短,淋雨量越小。
(5)若雨线与跑步方向不在同一平面,模型会有什麽变化?
模型会增加一角,没有其他变化。
六、模型评价
6.1 模型优点
上述讨论,考虑了各种淋雨情况,比较全面的分析了因风向不同导致雨线方向不同的淋雨情况,可以在现实情况下应用。
6.2 模型缺点
主要将跑步速度常量化,忽略了人的体质问题,还有雨速方向是时刻变化的,可以建立函数表示,而不是简单固定不变。
6.3 模型改进
可以将人跑步看成匀加速、匀速、匀减速过程;雨速方向与跑步方向夹角在一定范围内变化。
七、参考文献
数学模型(第四版)姜启源、谢金星、叶俊编,高等教育出版社2013。