遥感影像预处理的正确步骤
测绘技术中遥感影像制图数据处理方法与技巧

测绘技术中遥感影像制图数据处理方法与技巧在现代测绘技术中,遥感影像制图数据处理是一项重要的技术工作。
通过遥感影像,我们可以获取到大面积、高精度的地理空间信息,为城市规划、土地利用、环境监测等领域提供了重要支撑。
然而,由于遥感影像数据本身的复杂性和庞大性,如何高效地处理这些数据成为了测绘技术中的难点之一。
本文将介绍几种常用的遥感影像制图数据处理方法和技巧,帮助读者更好地应对这一挑战。
一、影像预处理遥感影像采集后,常常存在噪声、辐射校正、大气校正等问题,需要进行预处理以提高数据质量。
通常的预处理工作包括:影像去噪、几何校正、辐射校正、大气校正等。
1. 影像去噪影像去噪是提高数据质量的重要一环。
我们可以采用滤波算法(如均值滤波、中值滤波、高斯滤波等)来去除影像中的噪声。
其中,中值滤波常用于去除椒盐噪声,而高斯滤波则适用于高斯噪声的去除。
2. 几何校正几何校正是将采集的影像与地面坐标系进行对应,消除由于航线摆动或者传感器畸变引起的影响。
这一步骤通常包括像控点的选取、图像配准、几何变换等。
常用的几何校正方法有最小二乘匹配、数据库匹配和光束法平差等。
3. 辐射校正辐射校正是将影像数字值转化为反射率值,以消除不同时刻、不同传感器等因素引起的辐射量差异。
这一步骤通常包括定标系数的计算、辐射度计算等。
常用的辐射校正方法有直方图匹配法、特征点法和直线递推法等。
4. 大气校正大气校正是消除大气因素对遥感影像的影响,提高影像的可解译性。
这一步骤涉及大气传输模型的选择和参数估计等。
常用的大气校正方法有6S模型、FLAASH模型和QUAC模型等。
二、影像分类与提取影像分类是将遥感影像中的像元划分为不同的类别,并提取出感兴趣的特征。
影像分类可以帮助我们了解地物分布、进行地物量化分析等。
1. 基于像元的分类基于像元的分类是根据单个像元的光谱信息进行分类。
常用的方法包括最大似然分类、最小距离分类、支持向量机等。
这些方法通过计算像元与样本之间的距离或者相似度,将其划分为不同的类别。
遥感影像处理技术方案

遥感影像处理技术方案一、引言遥感技术已广泛应用于农业、环境监测、城市规划、交通管理等领域。
遥感影像处理是遥感技术应用的重要环节,通过对遥感影像的预处理、增强、特征提取等操作,实现目标识别、分类、定位等功能。
本文将详细论述遥感影像处理的流程与方法,为相关应用领域提供技术支持和参考。
二、遥感影像预处理遥感影像预处理是后续处理的基础,主要包括辐射定标、大气校正、几何校正等步骤。
1.辐射定标辐射定标是通过对传感器测量到的辐射强度进行标定,将原始影像转换为绝对辐射值。
辐射定标系数是关键参数,可通过传感器制造商提供的校准文件获取。
通过辐射定标,可消除传感器非线性响应的影响,提高影像的准确性。
2.大气校正大气校正主要是消除大气散射、吸收等因素对遥感影像的影响,还原地物真实反射强度。
常见的校正方法有经验模型法、物理模型法等。
经验模型法基于已知的地物反射率,根据实际天气情况进行校正;物理模型法根据大气散射原理,建立大气层与地面反射的数学模型,对影像进行校正。
3.几何校正几何校正主要是消除遥感影像的几何变形,包括平移、旋转、缩放等。
几何校正需要选取一定数量的地面控制点,通过校正公式对整个影像进行校正。
常用的方法有直接线性变换、多项式变换等。
几何校正可提高影像的定位精度,为后续的目标识别、分类等操作提供准确的基础数据。
三、遥感影像增强遥感影像增强旨在提高影像的对比度、清晰度等,以便更好地识别和提取目标信息。
常见的增强方法包括对比度增强、空间滤波、频率域滤波等。
1.对比度增强对比度增强通过拉伸像素强度分布范围,提高影像的对比度。
常见的对比度增强方法有直方图均衡化、反锐化掩膜等。
直方图均衡化通过对像素强度分布进行均衡化处理,提高影像的对比度;反锐化掩膜通过增强高频信息,提高影像的细节表现。
2.空间滤波空间滤波通过在空间域对影像进行平滑或锐化处理,去除噪声或增强边缘信息。
常见的空间滤波方法有均值滤波、中值滤波、高斯滤波等。
遥感影像预处理实验

实验二遥感影像预处理实验目的:1、掌握图像对地形图或图像对图像校正的方法和步骤;2、掌握影像裁剪的方法和步骤。
实验材料:1、分辨率为10米的SPOT图像(参考图像,带地图投影)和相应地区的TM图像(待校正)。
2、分辨率为2.5米的SPOT图像(待校正),以及分辨率为0.61米的QUICKBIRD图像(参考图像)。
实验步骤:一、图像对地形图的校正(一)打开遥感图像和地形图打开Envi4.3软件,打开Spot图像和TM图像,其中TM图像自动打开,也可选择RGB Color,选择R、G、B分别赋予红、蓝、绿三个波段,即可显示一幅由红、蓝、绿三个波段合成的真彩色图像,而Spot图像选择Gray Scale, Display #1->New display->Load Band,即可显示该地区的黑白Spot图像;(二)选择地面控制点选点的原则:①选择两遥感影像上都有的统一地物,即选择同名地物点;②均匀分布:一般先在图像的四角和对角线交点处选择控制点,然后逐渐加密,保证均匀分布,并且选择的点应布满全局;③特征明显:尽可能选在固定的地物交叉点上,无精确定位的标志情况下,利用半固定的地形地物交叉点(山顶、河流交叉处)。
④足够数量:选点数应至少为(n+1)(n+2)/2,其中n为选择多项式的次数,一般控制点数应大于最低数很多(有时6倍)。
若n为1时,尽管计算结果为3,但还要至少选择4个控制点;因为重采样时选用Cubic Convolution(三次卷积法),参数为3,所以一般选择3次多项式,即6个控制点,12个系数,再建立数学模型,进行重采样,重新匹配。
控制点数量每景宜在25~35个左右,山区或丘陵区适当增加。
(三)图像对地形图校正(四)对校正后遥感影像的评价虽然经过细心的校正,但在扫描过程中仍然有误差。
1、打开校正后的遥感影像及相应的参考图像,在校正后遥感影像上点击鼠标右键,选择Link Displays,Display #1选择no,Display #2,#3,选择yes,点击ok;2、此时在校正后的遥感影像中,用鼠标左键点击任意位置就可出现遥感影像与参考图像的转换显示,即可评价出对遥感影像校正的优劣。
《遥感图像预处理》课件

本课件将介绍遥感图像预处理的定义、步骤、常见方法以及应用领域。同时, 我们将探讨遥感图像预处理的优点、挑战以及未来发展趋势。
遥感图像预处理的定义
遥感图像预处理涉及对获取的遥感图像进行校正、增强和去噪等操作,以提高图像质量和可用性。
遥感图像预处理的步骤
1 图像获取
通过卫星或无人机等手段获得遥感图像。
准确性要求
遥感图像预处理要求高精度的 校正和处理结果,对算法的准 确性有很高要求。
遥感图像预处理的未来发展趋势
1
AI技术应用
人工智能技术的发展将为遥感图像预处
多源数据整合
2
理提供更高效、精确的处理方法。
将多源遥感数据进行整合和融合,提升
信息获取的质量和多样性。
3
自动化处理
自动化算法的应用将进一步提高遥感图 像预处理的效率和可靠性。
2 几何校正
对图像进行几何校正,消除地物形变和畸变。
3 辐射校正
对图像进行辐射校正,将不同波段的图像转 换为表观反射率。
4 增强和去噪
对图像进行增强和去噪处理,以提高视觉效 果和数据质量。
遥感图像预处理的常见方法
直方图均衡化
通过重新分配像素值,增强图 像对比度。
滤波处理
利用滤波器去除图像中的噪声。
遥感图像预处理的优点
1 高效性
遥感图像预处理可以大幅提高图像处理的效率和速度。
2 信息获取
遥感图像预处理可以获取大范围、多时相的地表信息。
3 非侵入性
通过遥感图像预处理,可以获取地表信息而无需实地调查。
遥感图像预处理的挑战
复杂性
遥感图像预处理面临多波段、 高分辨率等复杂图像数据处理。
使用测绘技术进行无人机遥感影像处理的关键步骤

使用测绘技术进行无人机遥感影像处理的关键步骤无人机遥感影像处理是指利用无人机获取的遥感影像进行图像处理、地物提取等操作。
测绘技术在无人机遥感影像处理中发挥着重要的作用,通过测绘技术的应用可以提高图像的精度和准确性。
本文将介绍使用测绘技术进行无人机遥感影像处理的关键步骤。
1. 数据获取使用无人机进行遥感影像处理的第一步是获取数据。
无人机可以携带多种传感器,如光学相机、红外相机、激光雷达等。
根据任务需求选择合适的传感器,并通过无人机对目标区域进行航线飞行,进行数据采集。
数据获取要考虑飞行高度、重叠度以及航线规划等因素,以保证获取到的影像数据具有足够的分辨率和详细度。
2. 数据预处理获取到的遥感影像数据可能存在一些噪声和畸变,需要进行预处理。
测绘技术可以用来校正图像畸变以及去除噪声。
图像畸变通常由无人机摄像头的镜头畸变引起,通过测绘技术可以进行摄像头标定,进而进行图像畸变矫正,提高图像的几何精度。
噪声主要包括光照不均匀、运动模糊等,可以通过测绘技术进行去噪处理,提高图像的质量。
3. 影像配准影像配准是将不同影像之间进行对准,使得它们在同一坐标系下进行分析和比较。
测绘技术可以通过特征点匹配和几何变换等方法实现影像配准。
在无人机遥感影像处理中,常常需要将多个角度或时间拍摄的影像进行配准,以得到更全面、准确的信息。
影像配准可以提高监测、分析和识别的准确性。
4. 地物提取地物提取是无人机遥感影像处理的核心任务之一,通过测绘技术可以实现对地物的自动或半自动提取。
地物提取包括建筑物、道路、水体、植被等多种类型的地物。
测绘技术可以利用图像分割、特征提取等方法,对遥感影像进行分析和处理,从而实现地物的准确提取。
地物提取的结果可以用于城市规划、资源管理、环境监测等方面。
5. 三维重建利用测绘技术进行无人机遥感影像处理还可以实现三维重建。
通过多张影像的拼接和三维坐标的计算,可以恢复出场景的三维模型。
三维重建可以应用于建筑物、地形、桥梁、森林等不同场景的三维模型构建。
遥感卫星影像预处理的方法步骤

遥感卫星影像预处理的方法步骤1技术路线DOM 技术流程图数据查询数据获取数据预处理质量检查整理提交原始数据正射校正平面控制高程数据辐射校正辐射定标大气校正配准融合整体镶嵌范围裁切高景一号MUX 影像大气校正植被指数多样性选择NDVI/EVI/NDWI/...光谱特征影像集随机森林分类研究区作物分类结果精度评价训练样本验证样本影像预处理辐射定标影像融合纹理特征多样性选择Mean/Entropy/ASM/...GLCM 计算高景一号Pan 影像灰度级量化...纹理特征影像集影像集验证样本集训练样本集实地调查高分解译样本筛选样本数据影像数据分类土地利用分类技术流程遥感图像水体粗提取先验阈值区间ROI 区域图像分割阈值水陆二值图边界膨胀直方图统计图像分割最小连通区去除水体掩膜图像水体分布提取技术流程模块开发数据处理数据获取水面实测光谱数据光学遥感数据实测水质参数数据水体固有光学量数据光谱特征分析固有光学特性分析基于水面实测光谱的水质参数反演算法基于光学遥感数据的水质参数反演策略最优反演算法精度评价水质参数反演软件模块开发反演算法水体光学分类大气校正水体提取水质参数反演技术路线图建筑物提取提取技术路线图2影像正射校正方案2.1正射校正原理遥感影像获取的过程中会受到各种不定因素的影响,如:传感器的成像方式、地形起伏、地球曲率、大气折射等,导致图像本身的几何位置、形状、尺寸等与其对应的地物不一致,发生变形。
通过一定的数学模型来改正和消除遥感影像产生的变形的过程称为几何校正。
通常情况下,对影像进行粗略几何校正时,需要利用卫星等提供的一些轨道、姿态参数以及与地面系统相关的处理参数来进行校正。
当精度要求较高时需对影像进行几何精校正,即利用地面控制点及畸变模型对原始影像进行校正。
经过粗校正之后接收到的全色影像数据中的大部分地物已经实现了重叠,只有个别仍存在偏差。
此时,需要利用DEM 数据对全色影像做正射校正,生成全色影像的正射影像图。
遥感影像处理步骤

一.预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。
(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。
它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。
一般可以用带通或者槽形滤波的方法来消除。
消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
(2)除坏线和条带去除遥感图像中的坏线。
遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。
一般采用傅里叶变换和低通滤波进行消除或减弱。
2.薄云处理由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。
3.阴影处理由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
二.几何纠正通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。
特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。
1.图像配准为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。
(1)影像对栅格图像的配准将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。
(2)影像对矢量图形的配准将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。
2.几何粗纠正这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.3.几何精纠正为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。
遥感影像预处理的正确步骤

遥感影像预处理的正确步骤一、影像获取遥感影像预处理的第一步是获取原始影像数据。
通过卫星、飞机或其他遥感平台获取的影像数据,可以获得不同波段的光谱信息。
二、影像校正影像校正是为了消除由于影像获取过程中产生的各种误差,提高影像质量。
主要包括几何校正和辐射校正两个方面。
几何校正是通过对影像进行几何变换,将其与真实地物的位置和形状相对应。
这样可以消除由于视角、高程等因素引起的形变,使影像与实际地物一一对应。
辐射校正是为了消除由于大气、地表反射等因素引起的辐射差异。
通过对不同波段的辐射通量进行标定和校正,可以得到准确的辐射值。
三、影像配准影像配准是将不同时间、不同传感器或不同分辨率的影像对齐到同一坐标系统中。
通过对影像进行几何变换,使其在空间上一一对应。
这样可以实现影像的叠加和比较。
四、影像增强影像增强是为了提高影像的可视性和解译能力。
通过应用不同的滤波器、变换或增强算法,可以突出地物的特征,减少噪声和干扰,使影像更清晰、更易于分析。
五、影像分类影像分类是将影像像元划分为不同的地物类别。
根据不同的目标和需求,可以使用不同的分类方法,如基于像素的分类、基于对象的分类等。
六、影像融合影像融合是将多源、多尺度或多波段的影像融合成一幅综合影像。
通过融合可以充分利用各种影像的优势,提高地物提取和解译的精度。
七、影像制图影像制图是将处理后的影像转换为地图或图像产品。
通过对影像进行地理参考、投影变换和符号化处理,可以生成各种专题地图和影像产品。
八、影像分析影像分析是对处理后的影像进行定量和定性分析。
通过应用不同的遥感算法和模型,可以提取地物信息、监测变化和预测趋势。
九、结果验证结果验证是对影像分析结果进行验证和评估。
通过与实地调查数据进行比对,可以评估分析结果的准确性和可靠性。
总结:遥感影像预处理是遥感应用的重要环节,它涉及到影像获取、校正、配准、增强、分类、融合、制图、分析和结果验证等多个步骤。
每个步骤都有其独特的作用和意义,对于提高影像质量和分析精度具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感影像预处理的正确步骤
遥感影像预处理是遥感技术中的重要环节,它对于后续的遥感影像分析和应用具有至关重要的作用。
正确的预处理能够提高遥感影像的质量和准确度,为后续的数据分析提供有力支持。
下面将介绍遥感影像预处理的正确步骤。
一、获取遥感影像数据
遥感影像数据可以通过卫星、飞机等遥感平台获取。
在获取数据时,需要确保数据的准确性和完整性,并且注意选择合适的数据源和分辨率。
二、辐射校正
遥感影像数据在获取过程中受到了大气、地表反射等因素的影响,需要对数据进行辐射校正。
辐射校正可以消除大气散射和吸收引起的影响,使得遥感影像能够更准确地反映地物的真实特征。
三、几何校正
遥感影像在获取过程中存在着不可避免的几何畸变,需要进行几何校正。
几何校正可以将遥感影像的像素位置与地理位置进行对应,使得影像能够与地理信息数据相匹配。
四、影像拼接
如果获取到的遥感影像数据较大,需要进行影像拼接。
影像拼接可以将多个影像拼接成一个完整的影像,提供更广阔的地理范围和更
丰富的信息。
五、影像增强
影像增强是为了提高遥感影像的视觉效果和信息提取能力。
常见的影像增强方法包括直方图均衡化、滤波等。
六、去噪处理
遥感影像数据中常常包含各种噪声,需要进行去噪处理。
去噪处理可以提高影像的清晰度和信息质量。
七、影像切割
根据具体的需求,可以对遥感影像进行切割,提取感兴趣的区域或目标。
影像切割可以减少后续处理的数据量,提高处理效率。
八、数据格式转换
根据不同的应用需求,遥感影像的数据格式可能需要进行转换。
数据格式转换可以使得遥感影像能够被不同的软件和平台所识别和使用。
九、数据融合
多源遥感影像数据可以通过数据融合的方法进行融合,提供更综合、全面的信息。
常见的数据融合方法包括像素级融合、特征级融合等。
遥感影像预处理的正确步骤包括获取遥感影像数据、辐射校正、几何校正、影像拼接、影像增强、去噪处理、影像切割、数据格式转
换和数据融合。
这些步骤可以保证遥感影像的质量和准确度,为后续的数据分析和应用提供有力支持。