电桥测电阻实验报告
直流电桥测电阻实验报告

直流电桥测电阻实验报告直流电桥测电阻实验报告一、实验目的(1)了解单电桥测量电阻的原理,利用此原理测量电阻以及铜丝电阻的温度系数。
(2)通过处理实验所得数据,学习作图法与直线拟合法。
(3)利用电阻与温度关系,构造非平衡互易桥组装数字温度计,并学习其应用分析^p 设计方法。
二、实验原理(1)惠斯通电桥测量电阻(1-1)电桥原理:当桥路检流计中无电流通过时,表示电桥已经达到平衡,此时有 R_/R2 = R/R1,即 R_ = (R2/R1)_R。
其中将(R2/R1)记为比率臂 C,则被测电阻可表示为R_=C_R。
(1-2)实际单电桥电路在实际操作中,通过调节开关 c 位置,改变比率臂 C;通过调节 R 中的滑动变阻器,改变 R。
调节二者至桥路检流计中无电流通过,已获得被测电阻阻值。
(2)双电桥测低电阻(2-1)当单电桥测量电阻阻值较低时,由于侧臂引线和接点处存在电阻,约为 10^-2~10^-4Ω量级,故当被测电阻很小时,会产生较大误差。
故对单电桥电路进行改进,被测电阻与测量盘均使用四段接法:,同时增设两个臂 R1"和 R2"。
(2-2)电路分析^p :由电路图知:① I3_R_ + I2_R2’ = I1_R2② I3_R + I2_R1’ = I1_R1③ I2_(R2’+R1’) = (I3=I2)_r 综合上式可知:" 1" 212" 2 " 1"_121RRRRRr R Rr RRRR_ 利用电桥结构设计,可满足" 1" 212RRRR,同时减小 r,可是 R_ 仍满足 R_ = (R2/R1)_R,即R_=C_R。
(3)铜丝的电阻温度特性及数字温度计设计(3-1)铜丝的电阻温度特性∵一般金属电阻均有:Rt = R0(1+αR_t),且纯铜αR 变化小∴αR = (Rt -R0)/(R0_t) (3-2)数字温度计设计(3-2-1)非平衡电桥将检流计 G 换为对其两端电压的测量,满足:Rt RRtR RREt2 1U 。
实验十八直流电桥测电阻实验报告

Rx 的变化量 δRx 。电桥灵敏阈 δRx 反映了电桥平衡判断中可能包含的误差,故
∆n 0.2 S= =
∆Rx δRx
Rx
Rx
又有
δRx
=
0.2∆Rx ∆n
=
0.2R1∆R0 ∆nR2
由(18.3)和(18.6)可得到 Rx 的不确定度
1
( ) σ Rx
⎡ =⎢
⎢⎣
δRx
2
+
⎛ ⎜⎜ ⎝
R0 R2
(1)桥臂电阻的误差。
Rx 的测量误差可用下列不确定度公式估计:
1
σ Rx Rx
=
⎢⎢⎣⎡⎜⎜⎝⎛
σ R1 R1
2
⎞ ⎟⎟ ⎠
+
⎜⎜⎛ ⎝
σ R2 R2
2
⎞ ⎟⎟ ⎠
+
⎜⎜⎛ ⎝
σ R0 R0
2
⎞
⎤
2
⎟⎟ ⎠
⎥ ⎥⎦
(18.3)
式中σ R1 ,σ R2 ,σ R0 分别是 R1, R2 , R0 的不确定度。为消除 R1 / R2 的比值误差,可交换 R1, R2 的位置再测,取两次结果的 Rx1, Rx2 的平均值为 Rx ,有
三、实验原理
(一) 铂电阻温度特性
在 0 ~ 100� C 范围内可以近似为
RT = R0 (1+ A1T )
(19.1)
RT , R0 , A1,T 分别表示温度 T 时的阻值、0 摄氏度时的阻值、正温系数和温度。
图 19-1 非平衡电桥电路原理图
(二)用非平衡电桥测量铂电阻温度系数
如图 19-1 所示,I 为恒流电源; R1, R2 为固定电阻, Rp 为可调电阻,用作平衡电
电桥法测电阻实验报告

电桥法测电阻实验报告
一、实验目的
通过电桥法测量不同电阻的阻值,并了解电桥的基本原理和使用方法。
二、实验器材
电桥、标准电阻、待测电阻、电源、导线等。
三、实验原理
电桥是一种测量电阻、电容和电感的仪器,利用电桥平衡原理,即在电桥四个电阻中,只要有三个电阻相等,就可以使电桥平衡。
当电桥平衡时,电桥上的电流为零,可以通过测量电桥中的电压得到待测电阻的阻值。
四、实验步骤
1.将电桥接上电源,调节电压使电流流过电桥;
2.将标准电阻和待测电阻接入电桥两端,调节电桥电位器,使电桥平衡;
3.记录电桥平衡时标准电阻的阻值;
4.更换待测电阻,重复步骤2和3,记录电桥平衡时待测电阻的阻值。
五、实验结果
标准电阻的阻值为10Ω,待测电阻1的阻值为20Ω,待测电阻2的阻值为30Ω。
六、实验分析
通过电桥法测量两个不同电阻的阻值,可以发现电桥的优点是准确度高、灵敏度高、测量范围广,适用于测量各种电阻值。
但在使用时需要注意,不同电桥的灵敏度和测量范围不同,需要选择合适的电桥进行实验。
七、实验小结
通过本次实验,了解了电桥的基本原理和使用方法,掌握了电桥法测量电阻的技能。
在实验中还发现了电桥的优点和使用注意事项,对今后的实验有很大的帮助。
双电桥测低值电阻实验报告

双电桥测低值电阻实验报告这次咱们要聊的可是个技术活——双电桥测低值电阻实验。
别看它名字复杂,实际上没你想的那么高深,反而挺有意思的。
这不,咱们实验室里经常做这种事,测电阻是基础,但低值电阻测起来却有点小挑战,毕竟电流和电压的变化不像大电阻那样一目了然,需要更精细的仪器和更细致的操作。
试想一下,想测出一个很小的电阻,哪能随便拿个万用表就能搞定呢?得动点脑筋。
哦,对了,这个实验的核心工具是“双电桥”,听着就高大上是不是?其实它的工作原理和普通的电桥类似,但要更精细些,用来对比测量值,从而得到超准确的电阻值。
一开始,咱们要把实验设备搭好。
首先是准备好标准电阻,这可是关系到实验结果的关键,别把它弄错了。
然后就是两个电桥:一个是已知电阻的电桥,另一个就是我们用来测量的低值电阻电桥。
通过调节电桥的平衡点,你会发现,调来调去,好像找不到正确的平衡点,心里一急就想:这东西到底怎么回事?这时候可别慌,保持冷静。
实际上,只要电桥中的电压差为零,说明你找到了平衡点,测量结果才是准确的。
这是个耐心活,像咱们常说的“功夫下在细节上”,你得一点一点调,直到电桥的指针稳稳地指在零的位置。
实验中最重要的就是要保证设备的稳定。
你想,电阻值那么小,稍微有点波动,测出来的结果就不准了。
这个时候,连呼吸都得小心点,不然电流都可能受影响,测试的准确性可就大打折扣了。
所以啊,细心真的是第一位的。
你可以慢慢调电桥的旋钮,仔细观察那些变化,等到所有读数都稳定后,才能记录下来。
这时候的心情,别提多激动了!你已经快要接近真相了,数字终于不再跳跃,数据也开始“老实”了,简直像侦探破案一样,顿时觉得自己就像是电学界的福尔摩斯。
不过,有时候实验结果可能会出现偏差,这可不是你操作不好,而是因为环境因素也会有影响。
比如温度、湿度,甚至是你手指头的温暖,都会微妙地影响到电路中的电流和电压。
就像做饭一样,火候得掌握好,手里那个勺子也不能随便乱搅,不然烧出的菜就不对味了。
电桥测电阻实验报告

实验目的1、掌握惠斯通电桥测量电阻的原理及操作方法,理解单臂电桥测电阻的“三端”法接线的意义;2、掌握开尔文电桥测量电阻的原理及操作方法;3、熟悉综合性电桥仪的使用方法及电桥比率和比率电阻的选择原则。
实验原理电阻是电路的基本元件之一,电阻的测量是基本的电学测量。
用伏安法测量电阻,虽然原理简单,但有系统误差。
在需要精确测量阻值时,必须用惠斯通电桥,惠斯通电桥适宜于测量中值电阻(1~106Ω)。
惠斯通电桥的原理如图1所示。
标准电阻R 0、R 1、R 2和待测电阻R X 连成四边形,每一条边称为电桥的一个臂。
在对角A 和C 之间接电源E ,在对角B 和D 之间接检流计G 。
因此电桥由4个臂、电源和检流计三部分组成。
当开关K E 和K G 接通后,各条支路中均有电流通过,检流计支路起了沟通ABC 和ADC 两条支路的作用,好象一座“桥”一样,故称为“电桥”。
适当调节R 0、R 1和R 2的大小,可以使桥上没有电流通过,即通过检流计的电流I G = 0,这时,B 、D 两点的电势相等。
电桥的这种状态称为平衡状。
图6-l 惠斯通电桥原理图 态。
这时A 、B 之间的电势差等于A 、D 之间的电势差,B 、C 之间的电势差等于D 、C 之间的电势差。
设ABC 支路和ADC 支路中的电流分别为I 1和I 2,由欧姆定律得I 1 R X = I 2 R 1 I 1 R 0 = I 2 R 2两式相除,得102X R RR R = (1)(1)式称为电桥的平衡条件。
由(1)式得102X R R R R =(2) 即待测电阻R X 等于R 1 / R 2与R 0的乘积。
通常将R 1 / R 2称为比率臂,将R 0称为比较臂。
2.双电桥测低电阻的原理图1单电桥测几欧姆的低电阻时,由于引线电阻和接触电阻(约10-2~10-4Ω),已经不可忽略,致使测量值误差较大。
改进办法是将其中的低电阻桥臂改为四端接法,并增接一对高电阻(如图2)。
实验报告电桥测电阻实验报告

实验题目: 惠斯通电桥测电阻实验目的:1.了解电桥测电阻的原理和特点。
2.学会用自组电桥和箱式电桥测电阻的方法。
3.测出若干个未知电阻的阻值。
实验仪器实验原理:1.桥式电路的基本结构。
电桥的构成包括四个桥臂(比例臂R 2和R 3,比较臂R 4,待测臂R x ),“桥”——平衡指示器(检流计)G 和工作电源E 。
在自组电桥线路中还联接有电桥灵敏度调节器R G (滑线变阻器)。
2.电桥平衡的条件。
惠斯通电桥(如图1所示)由四个“桥臂”电阻(R 2、R 3、R 4、和R x )、一个“桥”(b 、d 间所接的灵敏电流计)和一个电源E 组成。
b 、d 间接有灵敏电流计G 。
当b 、d 两点电位相等时,灵敏电流计G 中无电流流过,指针不偏转,此时电桥平衡。
所以,电桥平衡的条件是:b 、d 两点电位相等。
此时有U ab =U ad ,U bc =U dc,由于平衡时0=g I ,所以b 、d 间相当于断路,故有I 4=I 3 I x =I 2所以 44R I R I x x = 2233R I R I =可得x R R R R 324= 或 432R R R R x =一般把K R R =32称为“倍率”或“比率”,于是 R x =KR 4要使电桥平衡,一般固定比率K ,调节R 4使电桥达到平衡。
3.自组电桥不等臂误差的消除。
实验中自组电桥的比例臂(R 2和R 3)电阻并非标准电阻,存在较大误差。
当取K=1时,实际上R 2与R 3不完全相等,存在较大的不等臂误差,为消除该系统误差,实验可采用交换测量法进行。
先按原线路进行测量得到一个R 4值,然后将R 2与R 3的位置互相交换(也可将R x 与R 4的位置交换),按同样方法再测一次得到一个R ’4值,两次测量,电桥平衡后分别R 2R x B C有:432R R R R x ⋅='423R R R R x ⋅= 联立两式得: '44R R R x ⋅=由上式可知:交换测量后得到的测量值与比例臂阻值无关。
直流平衡电桥测电阻实验报告记录

直流平衡电桥测电阻实验报告记录实验报告记录:直流平衡电桥测电阻实验一、实验目的1.学习使用直流平衡电桥测量电阻的方法。
2.掌握电桥平衡的原理及调节方法。
3.了解直流电桥在精密测量中的应用。
二、实验原理直流平衡电桥是一种高精度的电阻测量方法,常用于测量小电阻或高精度的电阻。
其原理基于电桥平衡时,待测电阻与标准电阻的比值等于电桥两臂的电阻比值。
通过调节电桥的电阻值,可以使电桥达到平衡状态,从而准确测量待测电阻的阻值。
三、实验步骤1.准备实验器材:直流平衡电桥、电源、电阻器、导线等。
2.将电源与电桥连接,电桥的输入端接电源,输出端接地。
3.将待测电阻放置在电桥的两个桥臂之间。
4.调整电桥的电阻值,使电桥达到平衡状态。
此时,电桥输出的电压为零。
5.读取电桥上待测电阻的值,并与标准电阻进行比较。
6.记录实验数据,分析误差来源。
7.整理实验器材,结束实验。
四、实验结果与分析1.实验数据记录:通过实验数据可以看出,使用直流平衡电桥测量电阻具有较高的精度,误差较小。
实验中采用了高精度的电阻器和电桥,同时对实验环境进行了严格的控制,避免了温度、湿度等因素对测量结果的影响。
此外,通过调节电桥的电阻值,可以获得更高的测量精度。
五、结论与建议1.结论:本实验通过使用直流平衡电桥测量电阻的方法,验证了电桥平衡的原理及调节方法。
实验结果表明,直流平衡电桥是一种高精度的电阻测量方法,适用于小电阻或高精度的电阻测量。
该方法具有操作简便、精度高、稳定性好等优点。
2.建议:在今后的实验中,可以进一步研究不同类型和阻值的电阻对测量结果的影响,以便更好地掌握直流平衡电桥测电阻的方法。
同时,对于更精密的测量需求,可以尝试采用更先进的电桥技术和设备,以提高测量精度和稳定性。
此外,在实际应用中,需要注意保护电桥设备,避免因误操作或环境因素导致损坏。
六、参考文献(此处列出参考文献)。
自组电桥测电阻实验报告

自组电桥测电阻实验报告实验目的:通过搭建电桥并调节其电阻值的方式测量电阻。
实验原理:电桥是一种常用的电路。
它通常由四个电阻或电容、两个交流电源和一个指针或数字显示器组成。
当电桥中存在下列条件时,电桥电路将平衡:1. 电桥四个分支中存在两个相等的电阻或电容;2. 将某一电容或电阻的值加大或减小直到电桥平衡。
此时可以使用以下公式计算出所需测量电阻的值:R = R1 ×R3 ÷R2其中,R1、R2、R3分别为电桥四个分支中的电阻值。
实验材料与设备:1. 制作电桥所需的四个电阻(任意值)和导线;2. 直流电源;3. 恒流源;4. 恒压源;5. 数字万用表。
实验步骤:1. 将四个电阻和导线组成电桥,并将每个电阻的电阻值记录下来。
2. 将直流电源和恒流源连接到电桥上,并将电源的电压和电流值记录下来。
3. 以R2电阻为基准,调节R1和R3来达到电桥平衡,记录下R1、R2和R3的电阻值。
4. 根据上述公式,计算所需测量电阻的值。
5. 将恒压源连接到测量电阻上,并将电流值记录下来。
6. 将数字万用表连接到测量电阻上,并将电压值记录下来。
7. 根据欧姆定律,计算得到测量电阻的真实值。
实验结果:在实验中,我们使用了四个电阻值为10Ω的电阻,直流电源输出电压和电流分别为10V和1A,恒流源的电流值为1A,恒压源的电压值为10V。
通过调节电桥四个分支中的电阻,得到R1=12Ω,R2=10Ω,R3=8Ω,按照公式计算得到所需测量电阻的值为R=9.6Ω。
将恒压源连接到测量电阻上,测得电流值为0.96A,在数字万用表上测得电压值为9.6V。
根据欧姆定律,计算得到测量电阻的真实值为R=10Ω。
实验结论:通过搭建电桥并调节其电阻值的方式测量电阻,得到的测量值与实际值比较接近,说明该方法是可行的。
同时,实验中熟练掌握了电桥的使用方法和欧姆定律的应用,提高了对电路基础知识的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的
1、掌握惠斯通电桥测量电阻的原理及操作方法,理解单臂电桥测电阻的“三端”法接线的意义;
2、掌握开尔文电桥测量电阻的原理及操作方法;
3、熟悉综合性电桥仪的使用方法及电桥比率和比率电阻的选择原则。
实验原理
电阻是电路的基本元件之一,电阻的测量是基本的电学测量。
用伏安法测量电阻,虽然原理简单,但有系统误差。
在需要精确测量阻值时,必须用惠斯通电桥,惠斯通电桥适
宜于测量中值电阻(1~106
Ω)。
惠斯通电桥的原理如图1所示。
标准电阻R 0、R 1、R 2和待测电阻R X 连成四边形,每一条边称为电桥的一个臂。
在对角A 和C 之间接电源E ,在对角B 和D 之间接检流计G 。
因此电桥由4个臂、电源和检流计三部分组成。
当开关K E 和K G 接通后,各条支路中均有电流通过,检流计支路起了
沟通ABC 和ADC 两条支路的作用,好象一座“桥”一样,故称为“电桥”。
适当调节R 0、R 1和R 2的大小,可以使桥上没有电流通过,即通过检流计的电流I G = 0,这时,B 、D 两点的电势相等。
电桥的这种状态称为平衡状。
图6-l 惠斯通电桥原理图 态。
这时A 、B 之间的电
势差等于A 、D 之间的电势差,B 、C 之间的电势差等于D 、C 之间的电势差。
设ABC 支路和ADC 支路中的电流分别为I 1和I 2,由欧姆定律得
I 1 R X = I 2 R 1 I 1 R 0 = I 2 R 2
两式相除,得
102
X R R
R R = (1)
(1)式称为电桥的平衡条件。
由(1)式得
1
02
X R R R R =
(2) 即待测电阻R X 等于R 1 / R 2与R 0的乘积。
通常将R 1 / R 2称为比率臂,将R 0称为比较臂。
2.双电桥测低电阻的原理
图1
单电桥测几欧姆的低电阻时,由于引线电阻和接触电阻(约10-2~10-4Ω),已经不可忽略,致使测量值误差较大。
改进办法是将其中的低电阻桥臂改为四端接法,并增接一对高电阻(如图2)。
改用四线接法后的等效电路为图3。
r 1,r 2串联在电源回路中,其影响可忽略。
r 3,r 4接高电阻,其影响也可忽略。
实际的电路如图2。
由电路方程解得 )'
'
('''121221112x R R R R r R R rR R R R R -+++=
使r 尽量小,并将两对比率臂做成联动机构,尽量
使 12
'1
'
2R R R R = 则 CR R R R R X
==1
2。
数据表格:
1、单电桥测电阻数据记录
测量对象 单电阻1 单电阻2 并联电阻 串联电阻 倍率C
1.00 1.00 1.00 1.00 3/R Ω 75.79 73.83 37.89 149.37 /x R Ω
75.79 73.83 37.89 149.37 Δ
0.1 0.1 0.02 0.1 Δn
3
3
1
1
实验步骤:
1、 按照实验电路图接好电路,选取比率为1.00;
2、 连接待测电阻;
图2
G
1 I 1
2 1
I 2
P 2
P ' 2 P ' 1
P 1
r R
1
C 2 2
C ' 1
' I 3 I 2
I 3
I 3
R X
E
R 2 R R ' R '
3、然后调节电阻,使检流计指零,记录实验数据;
4、然后改变接入电阻,依次为单个,并联,串联,记录数据;
5、整理好实验仪器;
6、数据处理;
数据处理:
1、测量四种方法的接入电阻的仪器误差:
仪器误差的计算公式为:
单电阻1:Δ仪=1*(0.05%*75.59+0.2%*75.59)=0.189;
单电阻2:Δ仪=1*(0.05%*73.83+0.2%*73.83)=0.184;
串联电阻:Δ仪=1*(0.05%*37.89+0.2%*37.89)=0.095;
并联电阻:Δ仪=1*(0.05%*149.37+0.2%*149.37)=0.448;
2、计算出相对不确定度:
合成不确定度的计算公式为:
相对不确定度计算公式为:
则各电阻相对不确定度为:
单电阻1:
单电阻2:
串联电阻:;
并联电阻:
测量结果为:
R
=R±U
实
所以得到下表:
测量值单电阻1 单电阻2 串联电阻并联电阻
误差分析:
1、电桥灵敏度与检流计灵敏度成正比,检流计灵敏度越高电桥的灵敏度
也越高。
2、电桥的灵敏度与电源电压E成正比,为了提高电桥灵敏度可适当提高
电源电压。
3、电桥灵敏度随着四个桥臂上的电阻值的增大而减小。
随着的增大而减
小。
臂上的电阻值选得过大,将大大降低其灵敏度,臂上的电阻值相差
太大,也会降低其灵敏度。
4、还有一些也会造成实验误差,比如:电源电压不太稳定;导线电阻不能
完全忽略;检流计没有调好零点;检流计灵敏度不够高。