人教版初中数学第九章不等式与不等式组知识点

合集下载

人教版数学七年级下册第九章不等式与不等式组基础知识点讲解+典型例题讲解.doc

人教版数学七年级下册第九章不等式与不等式组基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于或等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于或等于”即“不小于”,表示左边的量不小于右边的量(3)x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画. 注意:在表示a 的点上画空心圆圈,表示不包括这一点. 要点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<). 要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会. (2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】类型一、不等式的概念1.用不等式表示: (1)x 与-3的和是负数;(2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式. 【答案与解析】解:(1)x -3<0;(2)28%(x+5)≤-6;(3)34m+≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x ≥0;若x 是非正数,则x ≤0;若x 大于y ,则有x -y >0;若x 小于y ,则有x -y <0等.举一反三: 【变式】(2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】B .类型二、不等式的解及解集2.对于不等式4x+7(x-2)>8不是它的解的是()A.5 B.4 C.3 D.2【思路点拨】根据不等式解的定义作答.【答案】D【解析】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.3.不等式x>1在数轴上表示正确的是()【思路点拨】根据不等式的解集在数轴上表示出来的方法画数轴即可.【答案】C【解析】解:∵不等式x>1∴在数轴上表示为:故选C.【总结升华】用数轴表示解集时,应注意两点:一是“边界点”,如果边界点包含于解集,则用实心圆点;二是“方向”,相对于边界而言,大于向右,小于向左,同时还应善于逆向思维,通过读数轴写出对应不等式的解集.举一反三:【变式】如图,在数轴上表示的解集对应的是( ).A.-2<x<4 B.-2<x≤4 C.-2≤x<4 D.-2≤x≤4【答案】B类型三、不等式的性质4.(2015•浙江模拟)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>【思路点拨】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案. 【答案】C . 【解析】解:A 、不等式的两边都减3,不等号的方向不变,故A 正确; B 、不等式的两边都加3,不等号方向不变,故B 正确; C 、不等式的两边都乘﹣3,不等号的方向改变,故C 错误; D 、不等式的两边都除以3,不等号的方向改变,故D 正确; 故选:C .【总结升华】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 举一反三:【变式】三角形中任意两边之差与第三边有怎样的关系? 【答案】解:如图,设c ,b ,a 为任意一个三角形的三条边,则:b ac ,a c b ,c b a >+>+>+移项可得:a b c ,c a b ,b c a ->->-> 即:三角形两边的差小于第三边.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】一元一次不等式的解法(基础)知识讲解【学习目标】1.理解一元一次不等式的概念; 2.会解一元一次不等式.【要点梳理】要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式.要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集. 要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变. 3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆点,无等号的是空心圆圈; (2)方向:大向右,小向左. 【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些? (1)3x+5=0 (2)2x+3>5 (3)384x < (4)1x≥2 (5)2x+y ≤8 【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数. 【答案与解析】解:(2)、(3)是一元一次不等式. 【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式2.(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来. 【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得2x+2﹣1≥3x +2, 移项,得2x ﹣3x≥2﹣2+1, 合并同类项,得﹣x≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向. 举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为 ( )【答案】C3.(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变. 【答案与解析】解:去分母得,4(2x ﹣1)≤3(3x+2)﹣12, 去括号得,8x ﹣4≤9x+6﹣12, 移项得,8x ﹣9x≤6﹣12+4, 合并同类项得,﹣x≤﹣2, 把x 的系数化为1得,x≥2. 在数轴上表示为:.【总结升华】去分母时,不要漏乘没有分母的项. 举一反三: 【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >. 【答案】 解:∵3511+-=x y ,14522--=x y , 若21y y >, 则有1452351-->+-x x即 6101<x ∴当6101<x 时,21y y >.4.关于x 的不等式2x -a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a 的方程,解方程即可求解. 【答案】-1【解析】由已知得:12a x -≤,由112a -=-,得1a =-. 【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________. 【答案】1a -<【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值. 【答案】 解:由2233x m xx ---=,得x =22m -, 因为x 为非负数,所以22m-≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实际问题与一元一次不等式(基础)知识讲解责编:杜少波【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意. 【典型例题】类型一、行程问题1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外(包括100m )的安全地区,导火索至少需要多长? 【思路点拨】设导火索要xcm 长,根据导火索燃烧的速度为0.8cm/s ,人跑开的速度是5m/s ,为了使点导火索的战士在爆破时能跑到离爆破点100m 的安全地区,可列不等式求解. 【答案与解析】解:设导火索要xcm 长,根据题意得:1000.85x ≥解得:答:导火索至少要16cm 长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m 的安全距离作为不等量关系列不等式求解. 类型二、工程问题2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方? 【思路点拨】假设以后几天平均每天完成x 土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计划至少提前两天完成任务,说明至多4天完成任务,用去一天,还剩4-1=3(天)则列不等式2403x≤ 解得x 即可知以后平均每天至少完成多少土方. 【答案与解析】解:设以后几天平均每天完成x 土方.由题意得:30060621x---≤ 解得: x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方. 【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三: 【变式】(2014春•常州期末)某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400,解得:x≥2153. ∵x 为正整数, ∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售? 【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥ 答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三: 【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 折. 【答案】六.类型四、方案选择4.(2015•庆阳)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【思路点拨】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【答案与解析】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12x≥-故原不等式组的解集为142x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:4376114376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x<2121;不等式(2)的解集是:x>20,所以,不等式组的解集是:20<x<2121,因为x是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】《不等式与一次不等式组》全章复习与巩固(基础)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】。

瑞昌市一中七年级数学下册第九章不等式与不等式组知识点总结素材新版新人教版

瑞昌市一中七年级数学下册第九章不等式与不等式组知识点总结素材新版新人教版

不等式与不等式组一.知识框架二、知识概念1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。

7.定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

浅谈因式分解多项式的因式分解是代数式中一部分重要内容,它与前一章整式和后一章分式联系极为密切.因式分解方法的理论依据是多项式乘法的逆变形,它是后一章分式的通分、约分的基础,进而直接影响分式的四则运算.本章的重点是因式分解的四种基本方法──提公因式法、运用公式法、分组分解法、十字相乘法,但这些方法并不是整式乘法的简单逆反,而是具有特定的规律和模式.因式分解的方法多,变化技巧性高,就本章学习的总体目标来看,灵活运用各种方法分解因式,是学习这部分内容的基本要求,也是难点.因此,在重视基本方法教学的同时,还应使学生掌握选择方法的技巧和思维及其运算过程中遵循的原则,以促进学生对因式分解知识的系统掌握和准确综合地运用各种方法解题的能力提高.1.关于方法选择的技巧因式分解的方法选择技巧,是指根据被分解多项式的形式特征,考虑选择特定的因式分解方法,并形成规律性的认识,掌握它,可以避免学生出现思维上的混乱和解题过程中走弯路.具体详见下表:2.关于思维及其运算的一些原则(1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式.如果忽视了这一点,就很容易造成解题的困难和分解结果不正确.如:把3x3+24分解因式,如果不提取公因式“3”,简单的题目反而觉得无从下手.又如,把4x2y2-4xy2+y2分解因式,若不提出公因式y2,分解结果(2xy-y)2是不正确的.(2)分解彻底的原则.即分解因式必须进行到每一个多项式因式都再不能分解为止.从教学的实践看,学生最容易“得意忘形”,半途而废,教学中要注意这方面的指导和强化训练.如x4+x2-20=(x2+5)(x2-4),(x2+2x)2-11(x2+2x)+24=(x2+2x-3)(x2+2x-8),这两式都没有分解彻底,结果是不正确的.(3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则.如-1-a3=-(1+a3)=-(1+a)(1-a+a2).同时,在运用分组分解法进行因式分解时,若组内首项系数为负,也应遵循此原则.如:5ax+7ay-5bx-7by=(5ax+7ay)-(5bx+7by)=…….(4)相同因式以幂的形式表达的原则.即分解结果中的相同因式,要表达成该因式幂的形式.如x3-x2y-xy2+y3=(x3-x2y)-(xy2-y3)=x2(x-y)-y2(x-y)=(x-y)(x2-y2)=(x-y)(x+y)(x-y)=(x-y)2(x+y)(5)因式内部化简的原则.即当分解后因式内部含有整式加减运算时,应去括号并合并同类项.如:9(a+b)2-4(a-b)2=[3(a+b)]2-[2(a-b)]2=[3(a+b)+2(a-b)][3(a+b)-2(a-b)]=(3a+3b+2a-2b)·(3a+3b-2a+2b)=(5a+b)(a+5b).因式分解的结果关于因式分解的结果,在表述上主要有三条:1.分解因式必须进行到每一个多项式因式都不能再分解为止。

人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

人教版七年级下册数学 第九章 不等式与不等式组  不等式  不等式的性质(第一课时)
< 不等式性质1
探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.

人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。

新人教七年级数学下册 第九章不等式与不等式组全章讲与练

新人教七年级数学下册 第九章不等式与不等式组全章讲与练

第九章不等式与不等式组第一节、知识梳理一、学习目标1.掌握不等式及其解(解集)的概念,理解不等式的意义.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式的解集.二、知识概要1.不等式:一般地,用不等号“>”、“<”表示不等关系的式子叫做不等式.2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解.3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集.4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式.5.不等式的性质:性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变.6.三角形中任意两边之差小于第三边.三、重点难点重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解.四、知识本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础.五、中考视点不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求X围等.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意义是:(1)“≠”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小.(2)“>”读作“大于”,表示其左边的量比右边的量大.(3)“<”读作“小于”,表示其左边的量比右边的量小.(4)“≥”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量.(5)“≤”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量.2. 如何恰当地列不等式表示不等关系?(1)找准题中不等关系的两个量,并用代数式表示.(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义.(3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来.根据下列关系列不等式:a的2倍与b的的和不大于2a+ b.“不大于”就是“小于或等于”.列不等式为:2a+b≤3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在X围内则用实心点表示,若边界点不在X围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画.在同一个数轴上表示下列两个不等式:x>-3;x≤2.第三节、错题剖析一、去括号时,错用乘法分配律【例1】解不等式3x+2(2-4x)<19.错解: 去括号,得3x+4-4x<19,解得x>-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3.二、去括号时,忽视括号前的负号【例2】解不等式5x-3(2x-1)>-6.错解: 去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.三、移项时,不改变符号【例3】解不等式4x-5<2x-9.错解: 移项,得4x+2x<-9-5,即6x<-14,所以诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.四、去分母时,忽视分数线的括号作用【例4】解不等式错解: 去分母,得6x-2x-5>14,解得诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,解得五、不等式两边同除以负数,不改变方向【例5】解不等式3x-6<1+7x.错解:移项,得3x-7x<1+6,即-4x<7,所以诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以x>【例6】 x2与a的和不是正数用不等式表示.错解及分析: x2+a<0. 对“不是正数”理解不清.x2与a的和是0或负数.正解: x2+a≤0.【例7】求不等式的非负整数解.错解及分析:整理得,3x≤16,所以故其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x≤16,所以故其非负整数解是0,1,2,3,4,5.【例8】解不等式3-5(x-2)-4(-1+5x)<0.错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0,即-21x<-17,所以【例9】解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6,即11x<-15,所以一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号.正解:移项,得7x-4x<-9+6,即3x<-3,所以x<-1.【例10】解不等式错解及分析:去分母,得3+2(2-3x)≤5(1+x).即11x≥2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得30+2(2-3x)≤5(1+x).即11x≥29,所以【例11】解不等式6x-6≤1+7x.错解及分析:移项,得6x-7x≤1+6.即-x≤7,所以x<-7.将不等式-x≤7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解.正解:移项,得6x-7x<1+6.即-x≤7,所以x≥-7.【例12】解关于x的不等式m(x-2)>x-2.错解: 化简,得(m-1)x>2(m-1),所以x>2.诊断: 错解默认为m-1>0,实际上m-1还可能小于或等于0.正解: 化简,得(m-1)x>2(m-1),①当m-1>0时,x>2;②当m-1<0时,x<2;③当m-1=0时,无解.【例13】解不等式(a-1)x>3.错解:系数化为1,得x>.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解:①当a-1>0时,x>;②当a=1时,0×x>3,不等式无解;③当a-1<0时,x<.【例14】不等式组的解集为 .错解:两个不等式相加,得 x-1<0,所以x<1.诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0<x<【例15】解不等式组错解:因为5x-3>4x+2,且4x+2>3x-2,所以 5x-3>3x-2.移项,得5x-3x>-2+3.解得 x>.诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在x>的条件下,任取一个x的值,看是否满足不等式组.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知x>不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.正解:由5x-3>4x+2,得x>5.由4x+2>3x-2,得x>-4.综合x>5和x>-4,得原不等式组的解集为x>5.【例16】解不等式组错解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组无解.【例17】解不等式错解:去分母,得3-4x-1>9x.移项,得-4x-9x>1-3合并,得-13x>-2系数化为1,得诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号.正解:去分母,得3-(4x-1)>9x去括号,得3-4x+1>9x.移项,得-4x-9x>-1-3合并,得-13x>-4系数化为1,得【例18】若不等式组的解集为x>2,则a的取值X围是().A. a<2B. a≤2C. a>2D. a≥2错解及分析:原不等式组可分为得a<2,故选A.当a=2时,原不等式组变为解集也为x>2.正解:应为a≤2 ,故选B.【例19】解不等式组错解:②-①,得不等式组的解集为x<-13.诊断:错解中把方程组的解法套用到不等式组中.正解:由不等式2x<7+x得到x<7.由不等式3x<x-6得到x<-3.所以原不等式组的解集为x<-3.第四节、思维点拨一、巧用乘法【例1】解不等式0.125x<3.【思考与分析】此不等式是一元一次不等式的一般形式,只需不等式两边同时除以0.125,就可以化系数为“1”,但是较繁.不如利用不等式的性质2两边同乘以8要比两边同除以0.125解得简捷.解:两边同乘以8,得x<24.二、巧去分母【例2】解不等式【思考与分析】常规方法是先去分母,但仔细观察就会发现,可先进行移项.解:移项,得合并同类项,得x≥-1.【例3】解不等式【思考与分析】常规方法是去分母,两边同乘以分母的最小公倍数.但我们会注意到“0.25×4=1,0.5×2=1”,则利用分数的性质,对左边第一项分子、分母同乘以4,第二项分子、分母同乘以2,这样就可以化去分母并且系数为整数.解:利用分数的性质(即左边第一项分子、分母同乘以4,第二项分子、分母同乘以2),得8x+4-2(x-2)≤2,去括号,得8x+4-2x+4≤2,移项,合并同类项,得6x≤-6两边同时除以6得x≤-1.三、根据已知条件取特殊值【例4】设a、b是不相等的任意正数,又x=,则x、y这两个数一定是() A.都不大于2B.都不小于2C.至少有一个大于2D.至少有一个小于2【思考与分析】不妨取a=1,b=3,得x=10,y=从而排除A、B,再取a=3,b=4,得,从而排除D,故选C.答案:C.【反思】用特殊值法解选择题时,如果所取的特殊值使部分选项取得相同的结果,则应另选特殊值再验,直至选出答案.四、根据数轴取特殊值【例5】不等式组的解集在数轴上表示出来是如下图中的()【思考与分析】本题的常规方法是先解不等式组,然后再对照各选项选出正确答案,由于这样做要解不等式组,比较麻烦.仔细观察各选项中的数轴,有两个特殊数2,-1,不妨先取x=2,代入不成立,故可排除A、B.再取x=0,代入不成立,又可排除C,从而选D,这样做不仅节省了时间,而且又减少了出错的机会﹒答案:D.【反思】用特殊值法解选择题时,要综合运用验证法,排除法等技巧,快速选出正确答案﹒比较两个数或两个代数式的大小,可以运用求差法:如果a-b>0,则a>b;如果a-b<0,则a<b.运用求差法比较大小的一般步骤是:(1)作差;(2)判断差的符号;(3)确定大小.【例6】设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少?【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件x>y,来判断这个差的符号,从而比较两个代数式的大小.解:由两式作差得-(8-10x)-[-(8-10y)]=-8+10x+8-10y=10x-10y.因为x>y,所以10x>10y,即10x-10y>0.所以-(8-10x)>-(8-10y).又由题意得-(8-10x)>0,即x>,所以x最小的正整数值为1.【例7】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一X全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80%收费.若两家旅行社的票价相同,则实际哪家收费较低呢?【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低.解:设这两家旅行社全票的价格为a元,依题意东方旅行社的收费为2a+70%a=,光明旅行社的收费为3a×80%=.因为-=>0,所以实际上光明旅行社的收费较低.【反思】在解题时我们为什么设这两家旅行社全票的价格为a元呢?因为如果不设的话,我们即使知道用求差法比较大小,也无从下手.五、巧去括号【例8】【思考与分析】观察题目中的括号及数字的特点可先考虑去中括号,再去小括号,这样会使运算简便.解:去中括号,得去分母,得 3x+60<28+8x,移项,合并同类项,得-5x<-32,【思考与分析】观察题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便.解:去小括号,得六、巧用“整体思想”【例9】解不等式:【思考与分析】观察题目中括号内外可知都有相同的项:2x-1,我们把2x-1视为整体,再去中括号和分母,则可使运算简捷.解: 3(2x-1)-9(2x-1)-9<5.合并同类项得-6×(2x-1)<14.解得反思:我们在解带有括号的一元一次不等式时,我们要善于观察题目的特点,巧去括号可使运算简便. 【例10】在欧洲足球锦标赛中,共有16支队伍参加比赛,争夺象征欧洲足球最高荣誉的“德劳内杯”.16支队伍被分成4个小组,进行单循环赛(即每个队需同其他三个队各赛一场),胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线?【思考与分析】根据题意,只有小组赛中的积分的前两名才能出线,我们可以分几种情况来讨论出线积分的多少.(1)若某一队三战全胜积9分,则同组的另一小队需保证小组第二才有出线的希望,在剩下的两场比赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分.(三场比赛,肯定有一场负)因此,在这种情况中,至少积6分才能确保出线;(2)若某一队三战两胜一平积7分,则小组第二至少要两胜积6分才能出线;(3)若某一队三战两胜一负积6分,则其他两个队也可能三战两胜一负积6分,这样三队同积6分,不能确保小组出线.由以上思考讨论可知,在小组赛中,积分可能出现三个队积分相同,为了确保出线,至少需积7分,才能保证以小组第二的身份出线.解:需7分.【小结】通过解题过程我们知道做这类题的时候要注意:在足球比赛中,一般按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球比赛的问题时,不能单纯的利用不等关系判断,还要注意到相互之间的胜负关系.第五节、竞赛数学【例1】满足的x的值中,绝对值不超过11的那些整数之和等于 .【思考与分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式.解:原不等式去分母,得3(2+x)≥2(2x-1),去括号,移项,合并同类项,得-x≥-8,即x≤8.满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11.这些整数的和为(-9)+(-10)+(-11)=-30.【例2】如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程的解,那么().【思考与分析】这道题把方程问题转化为解不等式问题,利用了转化的数学思想.由于第一个方程的解大于第二个方程的解,只要先分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案.解:关于x的方程3(x+4)=2a+5的解为关于x的方程的解为由题意得,解得.因此选D.【例3】如果,2+c>2,那么().A. a-c>a+cB. c-a>c+aC. ac>-acD. 3a>2a【思考与分析】已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便可以找到正确的答案.解: 由所以a<0.由2+c>2,得c>0,则有-c<c.两边都加上a,得a-c<a+c,排除A;由a<0,c>0,得ac<0,-ac>0,从而ac<-ac,排除C;由a<0,两边都加上2a,得3a<2a,排除D.答案应该选B,事实上,由a<0,得-a>0,从而-a>a,两边同时加上c,可得c-a>c+a.【例4】四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 .【思考与分析】由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出.解:设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2.由<19,解得7<m<9.由于m为整数,所以m=8,则四个连续整数为7,8,9,10,因此最大数与最小数的平方的差为102-72=51.从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,绝对值都是表示两个数的绝对值,即一个数与它相反数的绝对值是一样的.由于这个性质,含有绝对值号的不等式的求解过程出现了一些新特点.一个实数a的绝对值记作∣a∣,指的是由a所惟一确定的非负实数:含绝对值的不等式的性质:(1)∣a∣≥∣b∣b≤|a|或b≥-|a|,∣a∣≤∣b∣∣b∣≤a≤∣b∣;(2)∣a∣-∣b∣≤∣a+b∣≤∣∣a∣+∣b∣;(3)∣a∣-∣b∣≤∣a-b∣≤∣a∣+∣b∣.由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.【例5】解不等式|x-5|-|2x+3|<1.【分析】关键是去掉绝对值符号前后的变号.分三个区间讨论:解:(1)当当x≤时,原不等式化为-(x-5)-[-(2x+3)]<1,解得x<-7,结合x≤,故x<-7是原不等式的解;(2)当<x≤5时,原不等式化为-(x-5)-(2x+3)<1,解得是原不等式的解;(3)当x>5时,原不等式化为:x-5-(2x+3)<1,解得x>-9,结合x>5,故x>5是原不等式的解.综合(1),(2),(3)可知,是原不等式的解.第六节、本章训练基础训练题1.不等式x+3<6的非负整数解为().A. 1,2B. 1,2,3C. 1,2,0D. 1,2,3,02.已知三个连续奇数的和不超过27且大于10,这样的数组共有().A. 1个B. 2个C. 3个D. 4个3.的值不小于-2,则a的取值X围是().+2x的值不大于8-的值,那么x的正整数解是 .5.小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还可以买多少根火腿肠?6.小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5厘米,这0.5厘米是他估计的,并不准确,若设他所测量的书的长为x厘米,那么x应该满足的不等式是什么?答案1. C2. B3. C4. 1,2,35.解:设还可以买x根火腿肠.由题意我们可列不等式5×3+2x≤26,解得因为x必须为正整数,所以x=1,2,3,4,5.答:小明还可以买火腿肠的数目不超过5根.6.解:17<x<18.提高训练题2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值X围.3.小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数不少于5件,路上交通费为10元,小强准备钱时有以下几种选择:准备400元,准备500元,准备510元,准备610元.请你说明哪种方案可行?4.某商城以单价260元购进一批DVD机,出售时标价398元,由于销售不好,商场准备降价出售,但要保证利润不低于10%.小明说:“可降价100元.”小英说:“可降价150元.”小华说:“降价不能超过112元.”你同意他们谁的说法?5. 巧解下列不等式:(1) 0.375x-2≤0.5x(2)(4)6. 解下列不等式:(1) 9-2(x-2)≥6(2) 12-3x<8-2x7. 已知答案2.解:由题意得我们可列不等式≥85,解得x≥87.3.解:设小明准备了x元钱.我们由题意可列不等式≥5.解得x≥510.所以准备510元或准备610元都可以.4.解:设降价x元.5. (1)x≥-16(提示:不等式两边同乘8);我们可以由题意列不等式398-x-260≥260×10%.解得x≤112.所以小明和小华的说法是正确的.强化训练题1. 若实数a>1,则实数M=a,N=的大小关系是().A. P>N>M B. M>N>PC. N>P>M D. M>P>N2. 若0<a<1,则下列四个不等式中正确的是().3. a、b、c在数轴上的对应点的位置如图所示,下列式子正确的有().① b+c>0;② a+b>a+c;③ bc>ac;④ ab>ac.A.1个B.2个 C.3个 D.4个.4.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?5.已知前年物价涨幅(即前年物价比上一年,也就是大前年物价增加的百分比)为20%,去年物价涨幅为15%,预计今年物价涨幅降低5个百分点,为了使明年物价比大前年物价涨幅不高出55%,明年物价涨幅必须比今年物价涨幅至少再降低x个百分点(x为整数)则x=().A. 6B. 7C. 8D. 96.某商场计划投入一笔资金,采购紧销商品.经调查发现,如月初出售,可获利15%,并可用本和利再投资其他商品,则月末又可获利10%;如等到月末出售可获利30%,但需要支付仓储费用700元.请问根据商场资金多少,如何购销获利较多?7.小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知道这两种灯的照明效果和使用寿命都是一样的.已知小王家所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。

人教版数学七年级下册第九章—不等式与不等式组

人教版数学七年级下册第九章—不等式与不等式组

第九章—不等式与不等式组一、不等式(一)不等式概念及其性质1.概念:用符号“>”(“≥”)或“<”(“≤”)表示大小关系的式子叫做不等式,用“≠”表示不等关系的式子也是不等式。

2.常见的不等号有:“>”、“≥”、“<”、“≤”和“≠”五种。

3.常见的关键词及对应的不等符号:”连接用“最多不高于不超过不大于小于或等于≤⎪⎪⎪⎭⎪⎪⎪⎬⎫”连接用“至少不少于不低于不小于大于或等于≥⎪⎪⎪⎭⎪⎪⎪⎬⎫ 4.常见的符号表示:(1)a 是正数表示为a >0;a 是负数表示为a <0;(2)a 是非负数表示为a ≥0;a 是非正数表示为a ≤0;(3)a 、b 同号表示为ab >0;a 、b 异号表示为ab <0;例题例 1.在下列各式中:①03>-x ;②034>+y x ;③4=x ;④22b ab a ++;⑤7=+y x ;⑥21>-;⑦23+≤-n m ,是不等式的有( )A.1个B.2个C.3个D.4个例2.有下列式子:①01<-;②132>-y x ;③112<-x ;④1+=x y ;⑤0≠x ;⑥12+x 。

其中是不等式的有( )A.2个B.3个C.4个D.5个例3.某种品牌粥,外包装标明:净含量为300±10g ,表明了这粥的净含量x (单位:g )的范围是( )A. 340320<<xB. 340320<≤xC.340320≤<xD.340320≤≤x例4.用不等号“>”、“<”、“≥”或“≤”填空:12+a 0。

例5.用适当的不等式表示下列关系:(1)a 的3倍与b 的51的和不大于3; (2)2x 的非负数;(3)x 的相反数与1的差不小于2;(4)x 与17的和比x 的5倍小。

例6.用不等式表示下列语句中的数量关系:(1)x 与1的和是正数;(2)y 的2倍与1的和大于3;(3)铅球的质量1m 比篮球的质量2m 大;(4)小丽的体重是a kg ,小花的体重是b kg ,她们的体重之和不超过100kg 。

人教版 数学 七年级 下册 第九章 不等式与不等式组 知识点

人教版 数学 七年级 下册 第九章 不等式与不等式组 知识点

第九章不等式与不等式组一、知识结构图二、知识定义一、不等式1.不等式及其解集1)不等式:用不等号(包括:>、<、≠)表示大小关系的式子。

2)不等式的解:使不等式成立的未知数的值,叫不等式的解。

3)不等式的解集:使不等式成立的未知数的取值范围,叫不等式的解的集合,简称解集。

2.不等式的基本性质:性质 1:如果a>b,b>c,那么a>c(不等式的传递性).性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。

如果a>b,那么a+c>b+c(不等式的可加性).性质3:不等式的两边同乘(除以)同一个正数,不等号的方向不变。

不等式的两边同乘(除以)同一个负数,不等号的方向改变。

如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则)性质 4:如果a>b,c>d,那么a+c>b+d.(不等式的加法法则)性质5:如果a>b>0,c>d>0,那么ac>bd.(可乘性)性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0<n<1时也成立.(乘方法则)二、一元一次不等式1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式。

2.解一元一次不等式的一般方法:可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出以两条不等式组成的不等式组为例,①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。

若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。

此乃“相交取中”④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。

人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式

人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式
A.58 B.59 C.60 D.61 4.(舞钢市期末)小张购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢 笔5元,费用不超过100元钱,设小张买了x支钢笔,则x应满足的不等式是 _5_x_+__2_(_3_0_-__x_)≤_1_0_0__.
5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
1.不等式:用符号“>”“<”表示大小关系的式子,叫做不等式。

2.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

3.解不等式:求不等式的解集的过程,叫做解不等式。

例1.用不等式表示“7与m 的4倍的和是正数“就是 .
【答案】740m +>.
例2.“x 与y 的和大于1”用不等式表示为 .
【答案】x+y >1
例3.用不等式表示x 与5的差不小于4: .
【答案】45≥-x .
例4.把不等式x ≥1-在数轴上表示出来,正确的是( )
【答案】C 9.1.2 不等式的基本性质
1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

例1.如果a >b ,那么下列结论一定正确的是( )
A .a ﹣3<b ﹣3
B .3﹣a <3﹣b
C .ac 2>bc 2
D .a 2>b 2
解:∵a >b ,∴﹣a <﹣b ,∴3﹣a <3﹣b ;
例2.如果a <b ,那么下列不等式成立的是( )
A .-3a >-3b
B .a -3>b -3 C. D .a -b >0 解:根据不等式的基本性质1可得,选项B 、D 错误;根据不等式的基本性质12可得,选项
C 错误;根据不等式的基本性质3可得,选项A 正确.故答案选A.
例3.下列不等式变形正确的是( )
1133
a b >-1 0 1 -1 0 1 -1 0 1
A
-1 0 1 B C D D
A.由a>b得ac>bc B.由a>b得﹣2a>﹣2b
C.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣2
【答案】C
【解析】
解:A:因为c的正负不确定,所以由a>b得ac>bc不正确,据此判断即可.
B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.
D:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.9.2 一元一次不等式
1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2.解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项
(4)合并同类项(5)将x项的系数化为1
例1
2
解:去分母,得2x﹣4<x﹣1
移项,合并同类项,得x<3.
在数轴上表示解集为:
例2.解不等式,并求它的非负整数解.
解:2x-2<x+1
2x-x<1+2
x<3
不等式的非负整数解为0,1,2.
例3
32
解:去分母,得:()()622131x x -+≥-
去括号,得:64233x x --≥-
移项,合并同类项得:1x -≥-
系数化成1得:x≤1.
解集在数轴上表示出来为:
例4.解列不等式
解:去分母得:14x -7(3x -8)+14≥4(10-x )
去括号,得:14x -21x+56+14≥40-4x
移项,得:14x -21x+4x≥40-56-14
合并同类项,得:-3x≥-30
解得:x≤10.
9.3 一元一次不等式组
1、一元一次不等式组的概念:
几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法
(1)分别求出不等式组中各个不等式的解集
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

例1
由①解得x <4,
由②解得x≥3,所以不等式组的解集为43<≤x .
例2.解不等式组:262(1),
23
.4x x x x +>
-⎧⎪⎨-≤⎪⎩
解:解不等式1得,x >-1 ;解不等式2x >-1 .
例3.(1)解不等式:2(x+1)﹣1≥3x+2,并把解集表示在数轴上.
(2
解:(1)2(x+1)﹣1≥3x+2,
2x+2-1≥3x+2,
2x-3x≥2-2+1,
-x≥1
x≤-1,
(2)解①得x≥-4
解②得x ∴-4≤x
整数解为-4,-3,-2,-1,0,1,2。

相关文档
最新文档