常见动植物染色体数

合集下载

动植物有丝分裂过程图

动植物有丝分裂过程图

植物细胞有丝分裂过程动物细胞有丝分裂过程染色体复制前染色体复制后前期中期后期末期遗传物质存在形式及变化染色质染色体染色体染色体各时期特点1.染色质丝螺旋缠绕、缩短变粗成为染色体,散乱分布于纺锤体中。

2.植物细胞:两极发出纺锤丝,形成纺锤体;动物细胞:中心体发出星射线,形成纺锤体 。

3.核膜逐渐解体,核仁逐渐消失。

1.染色体着丝点整齐排列在细胞中央的赤道板上。

2.染色体形态稳定,数目清晰,便于观察。

1.染色体着丝点分裂,姐妹染色单体分离成为两条子染色体。

(染色体数加倍)2.在纺锤丝/星射线牵拉下,分开的两组染色体移向细胞两极。

记忆口诀膜仁消失现两体形定数晰赤道齐点裂数增均两极两消两现重开始着丝点数染色体数染色单体数核DNA 分子数染色体数:染色单体数:核DNA 数有丝分裂特点有丝分裂意义 动、植物细胞有丝分裂(设细胞中染色体数为2N )1.将亲代细胞的 (实质为 )经过复制后,精确的 到两个子细胞中。

2.保持了细胞亲代和子代之间 的稳定性。

子细胞染色质1.染色体解螺旋,变成染色质丝。

2.纺锤体逐渐消失。

3.核膜、核仁重建。

4.植物细胞:在赤道板(平面)处形成细胞板(结构),其扩展形成细胞壁(结构),一个细胞分裂成两个新细胞;动物细胞:细胞中央细胞膜向内凹陷,缢裂成两个新细胞。

一个细胞周期中,染色体复制 次,细胞分裂 次,一个细胞分裂成为 个子细胞(体细胞)。

1.完成DNA 分子的复制和有关蛋白质的合成(复制后染色体数不变,DNA 含量加倍)。

2.核膜、核仁可见。

3.细胞适度生长。

注:动物和某些低等植物细胞有中心体复制,高等植物细胞无。

D 复蛋合细胞长分裂间期(在前,用时长)分裂期(在后,用时短)分裂时期细胞壁核膜核仁染色质(虚拟平面)赤道板1个着丝点1条染色体2条染色单体2个DNA 分子1个着丝点1条染色体2条染色单体2个DNA 分子1个着丝点1条染色体0条染色单体1个DNA 分子着丝点姐妹染色单体1个着丝点1条染色体2条染色单体2个DNA 分子2个着丝点2条染色体0条染色单体2个DNA 分子细胞壁细胞板1个着丝点1条染色体0条染色单体1个DNA 分子(虚拟平面)赤道板纺锤丝染色体星射丝中心体细胞膜染色体散中分罗平三中生物组 黄伟 制。

动植物中的染色体数目之最

动植物中的染色体数目之最

科名
拉丁学名 主要产地
禾 本 3.2B(2(!
?./:.;#07 1-3,#6./.3
科"
! P-(cF" PB'J2+'
地中区亚及高加索
禾 本 中亚及高加索 3.2B(2(!
I#(2-3#+ G#-G-3,>-#(#+(+
科"
! O+2/8F" PJ10).c
地区等地
莎 中美至南美洲 O*&(02B(2(! J*5(6*.,:.3+ >-(0#,L1), 草科"
于澳大利亚的蚂蚁#雌性个体拥有两条染色体#而雄性
个体是单倍体#因此只有一条染色体&>'% 杰克跳蚁是
世界上已知的染色体数目最少的动物%
>F#!植物!在植物中染色体最少的有 $ 种!表 >"#其
染色体数目都为 #) m=#全部属于被子植物!都为非国
产植物#故未提供中文名" &#' %
表 !"* 种已知染色体数目 &45( 的被子植物
!!达尔文的巨著.物种起源/奠定了生物进化论的基 础#将人类社会从神创论带进了现代的科学生物史观% 但现在仍有一些人对达尔文的思想和生物进化理论有误 解% 因此#有必要对这些常见的误解作出必要的指正% !"达尔文的 物种起源 不等同于全部的生物进化 理论
达尔文是第一个用严谨的科学态度系统地提出生 物进化论的人#是进化论的奠基者% 但不应将进化论 等同于.物种起源/% 因为在达尔文之前就已经有不 少人提出了生物进化的思想#而且在达尔文之后仍不 断有新的生物进化假说产生% >F>!达尔文不是最早提出生物进化思想的人!在进 化论产生之前#创世说统治着人们的思想% 创世说认 为世界是一下子被创造出来的#而且一旦被创造出来 就永远不变了#不仅是陆地$海洋#连各种生物也都是 永恒不变的% 到了 >$ H>D 世纪#随着文艺复兴的兴起 和宗教势力的减弱#一些哲学家和博物学家提出了具 有进化论色彩的思想% 在达尔文发表.物种起源/之前# 至少有三个人比较系统地阐述过生物进化的观点% 他 们是乔治(布丰$埃拉姆斯(达尔文!达尔文的爷爷"和 让 巴布提斯(拉马克&>'% 他们是进化论的先驱者#其 中拉马克的用进废退学说影响最大% 但他们的理论思 想哲学成分多于科学的成分#缺乏实验数据的支撑%

减数分裂中的染色体行为

减数分裂中的染色体行为
减数分裂中的染色体行为
染色体和染色质是同一物质在不同时期的不 同表现,他们之间的本质相同,存在形态不同。
①染色体结构:着丝粒、长臂、短臂
②染色体类型
端着丝粒染色体 近端着丝粒染色体 中间着丝粒染色体
3、染色体的数目、形态、大小和着丝粒的位置
人类在体正细常胞情染色况体下图,解每一种生物的细胞核内,染色体的形 态、大小和着丝粒的位置等都是相对恒定的,它们是人们 识别染色体的重要标志。
6、某一生物体的体细胞中含有6条染色体,3对同源染色体, 那么下列细胞中,任何时期都不可能含6条染色体的是
A.精原细胞
B.初级精母细胞
C.次级精母细胞
D.精子细胞
场所
卵巢
卵细胞的形成过程
卵原细胞 (1个)
减 数 分 裂
卵细胞 (1个)
受精作用
受精的概念:精子与卵细胞结合形成受精卵的过程
卵细胞n +精子n
c
d efg
h
分裂时期
含 c de
量a b
fg
分裂时期
二、有丝分裂和减数分裂的比较
区别
有丝分裂
减数分裂
形成细胞类型
体细胞
有性生殖细胞
染色体复制次数 染色体复制一次, 细胞分裂次数 细胞分裂一次
染色体复制一次, 细胞连续分裂两次
形成子细胞数目 染色体数目变化
有无同源染色体 的行为
2个 亲子细胞染色体数目相等
3、第二次分裂就是一次有丝分裂,结束时染 色体不再减半而DNA再减半,结果染色体和 DNA数目都是精原细胞的一半。
4、形成的精细胞需经过变形才形成精子。
容易出错的地方
1、原始生殖细胞:精原细胞和卵原细胞——不 是真正的生殖细胞(染色体数目和体细胞一样)

2021年高考生物一轮复习知识点专题27:染色体变异与育种综合【含答案】

2021年高考生物一轮复习知识点专题27:染色体变异与育种综合【含答案】

2021年高考生物一轮复习知识点专题染色体变异与育种综合一、基础知识必备(一)染色体变异1、染色体结构的变异在自然条件或人为因素的影响下,染色体结构的变异主要有以下4种类型,具体分析见表: 类型 遗传效应实例 示意图缺失缺失片段越大,往往对个体影响越大。

轻则影响个体生活力,重则引起个体死亡 猫叫综合征重复通常引起的遗传效应比缺失小,重复部位太大会影响个体生活力果蝇棒状眼倒位形成的配子大多异常,从而影响个体的生育 普通果蝇3号染 色体上某些基因 易位产生部分异常配子,使配子的育性降低或产生有遗传病的后代某种夜来香的染色 体经常发生易位2、染色体数目的变异(1)细胞内个别染色体的增加或减少。

(2)细胞内染色体数目以染色体组的形式成倍地增加或减少。

3.染色体组(1)概念:一般地说,细胞中的一组非同源染色体,在形态和功能上各不相同,携带着控制生物生长发育的全部遗传信息,这样的一组染色体,称为一个染色体组。

(2)理解①从本质上看,组成一个染色体组的所有染色体,互为非同源染色体,在一个染色体组中无同源染色体存在; ②从形式上看,一个染色体组中的所有染色体的形态、大小各不相同,可通过观察各染色体的形状、大小来判断是否为一个染色体组;③从功能上看,一个染色体组携带着一种生物生长发育的全部遗传信息;④从物种类型看,每种生物一个染色体组的染色体数目、大小、形态都是一定的,不同种生物染色体组中染色体的数目、大小、形态不同。

4、单倍体、二倍体与多倍体的比较项目单倍体二倍体多倍体概念体细胞中含有本物种配子染色体数的个体由受精卵发育而来,体细胞中含有两个染色体组的个体由受精卵发育而来,体细胞中含有三个或三个以上染色体组的个体实例蜜蜂的雄蜂等人、果蝇、玉米等香蕉、马铃薯等发育起点配子受精卵受精卵形成原因自然成因单性生殖正常的有性生殖外界环境条件的剧变人工诱导花药离体培养用秋水仙素处理二倍体的单倍体幼苗用秋水仙素处理萌发的种子或幼苗5、低温诱导植物染色体数目的变化6、育种(1)多倍体育种和单倍体育种①三倍体无子西瓜的培育过程两次传粉:第一次传粉是杂交得到三倍体种子,第二次传粉是为了刺激子房发育。

遗传和变异

遗传和变异

现在你能回答下列问题了吧?
• 1、父母都是双眼皮,能生出单眼皮的子女么?
• 2、为什么根据血型,就能判断出子女是否是 亲生的?
本节课目标:
• 1.能说出基因通过生殖细胞在亲子代之间传 递遗传信息。 • 2.知道基因是包含遗传信息的DNA片段。
基因控制了性状。 让我们一起来探索基因的奥秘吧!
基因在哪里?
遗传有什么规律么?
• 1、父母都是双眼皮,能生出单眼皮的子女么?
• 2、为什么根据血型,就能判断出子女是否是 亲生的?
孟德尔——现代遗传学之父
• 八年耕耘源于对科学的痴迷,
• 一畦畦豌豆蕴藏遗传的秘密。
• 实验设计开辟了研究的新路,
• 数学统计揭示出遗传的规律。
豌豆是自花传粉的植物,且闭花受粉。
给子一代的。
精子 父
23条
卵细胞 母
23条
46条
新 个 体
23对
在生物的细胞核中,有一种易被碱性染料染上 颜色的物质,叫染色体。
常见动植物体细胞染色体数目表
家蝇: 8 蟾蜍: 22 青娃: 26 猫: 38 虎: 38 狮: 38 蚯蚓: 36 大熊猫: 42 家兔: 44 金丝猴: 44 黑猩猩: 48 鸡: 78 牡丹: 豌豆: 萝卜: 桃: 西瓜: 水稻: 冬瓜: 茶: 荔枝: 花生: 小麦: 人参 10 14 16 16 22 24 24 30 30 40 42 44
转基因抗虫棉
• 1993年,中国农业科学院生 物技术研究所培育出转基因抗 虫棉,使我国成为继美国之后 的第二个拥有抗虫棉自主知识 产权的国家 。
转基因动物
转基因食品
转基因药品
• 反对转基因食品的人士,所用理由主要有 三种:1)转基因食品可能对人体 健康有害,例含有意想不到的有毒物质或 新型过敏源。2)自身能制造杀虫毒素 的转基因作物,可能毒害并非害虫的其它 生物。3)转基因作物可能与野生的亲 缘作物杂交,造成“基因污染”。

第三篇遗传的染色体学说

第三篇遗传的染色体学说

2. 2. 2 真核类的有丝分裂
在有丝分裂过程中染色体的变迁是这样的:从 间期的S期前期中期,每个染色体具有两 根染色单体(即具两条完整的DNA双链);从后 期末期下一个细胞周期的G1期,在这些 阶段中,所谓的染色体实质上只有一根染色单 体(即只有一条DNA双链)。
2.3 染色体在减数分裂中的行为
图2—27 减数分裂过程示 意图
1 细线期 2 偶线期 3 粗线期 4 双线期 5 终变期 6 中期I 7 后期I 8 末期I 9 前期II 10 中期II 11 后期II 12 末期II
(1) 前期I:
第一次减数分裂的前期特别长,包括细线期、 偶线期、粗线期、双线期、浓缩期。
(1) 前期I:
中期开始时,核膜崩解,核质(nucleoplasm) 与胞质混和。纺锤体的细丝——纺锤丝 (spindle fibers)与染色体的着丝粒区域连接。 染色体向赤道面移动,着丝粒区域排列在赤道 板上。这时最为容易计算染色体的数目。
(3) 后期(anaphase):
每一染色体的着丝粒已分裂为二,相互离开。 着丝粒离开后,即被纺锤丝拉向两极,同时并 列的染色单体也跟着分开,分别向两极移动。 这时染色体又是单条了,也可叫做子染色体。
图 染色体复制后含有两条纵向并列的染色单体
2. 2 染色体在有丝分裂中的行为
像细菌、蓝藻等原核类生物,体细胞和生殖细 胞不分,细胞的分裂就是个体的增殖。而高等 生物是通过单个细胞即合子(zygote)的一分为 二、二分为四的细胞分裂发育而成的具有亿万 个细胞组成的个体,譬如说人就是通过单个细 胞即受精卵的细胞分裂发育而成的具有1014个 细胞组成的。
(1) 前期I:
粗线期:到了粗线期的最后,亦可看到每一染 色体的双重性,即每一染色体含有两条染色单 体(姐妹染色单体),因此,双价体就含有4条 染色单体了,每一双价体中4条染色单体相互 绞扭在一起。

染色体变异课件高一下学期生物人教版必修2(1)

染色体变异课件高一下学期生物人教版必修2(1)

多 倍体 育种
染色 体变

秋水仙素处理萌 发的种子或幼苗
果实大,营养丰 富
发育延 迟,结 实率低
三倍体 无子西

基因 工程 育种
基因 重组
DNA重组技术 将目的基因导入 受体细胞,培育
新品种
定向的地改造生 物的遗传性状, 克服远缘杂交不
亲和的障碍
技术复 杂
产胰岛 素的大 肠杆菌 、抗虫

归纳总结:
➢操作最简便的育种方法——杂交育种 ➢最快速的育种方法——单倍体育种 ➢能产生新基因的育种方法——诱变育种 ➢能得到营养更丰富个体的育种方法——多倍体育种 ➢能定向改造生物遗传性状的育种方法——基因工程
3个;2条
2个;4条
1个;4条
4个;3条
4个;2条
1个;4条
2个;2条
二 倍 体 体细胞中含有2个染色体组的个体。
• 在自然界中,几乎全部动物和过半数的高等植物都是二倍体,记作2N。


果蝇体细胞
2N=8
野生马铃薯
2N=24
人类
2N=46
玉米
2N=20
二倍体与多倍体
二倍体: 体细胞中含有两个染色体组的个体。 三倍体: 体细胞中含有三个染色体组的个体。 四倍体: 体细胞中含有四个染色体组的个体。
减数分裂
受精作用 卵细胞
受精卵
n=16
2n=32
蜂王 2n=32
雄蜂 n=16
蜂王(雌性) 工蜂(雌性)
单倍体
体细胞中的染色体数目与本物种配子染色体数目相同的个体。
成因: 由配子(如卵细胞、花粉等)直接发育而成。 特点: 枝叶茎杆弱小,一般高度不育。
1.一倍体(体细胞中含一个染色体组的个体)一定是单倍体。 √ 2.单倍体的体细胞中只含一个染色体组。 × 3.基因型为AAabbb的个体一定为三倍体。 ×

基因相关名词解释

基因相关名词解释

名词解释一、生物学名称解释1. 什么是高通量测序技术?高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。

2. 什么是Sanger法测序(一代测序)?Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。

直到掺入一种链终止核苷酸为止。

每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。

由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。

终止点由反应中相应的双脱氧而定。

每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。

它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。

3. 什么是SNP、SNV(单核苷酸位点变异)?单核苷酸多态性(single nucleotide polymorphism,SNP)和单核苷酸位点变异(single nucleotide variants, SNV)。

个体间基因组DNA序列同一位置单个核苷酸变异(替代、插入或缺失)所引起的多态性。

不同物种、个体基因组DNA序列同一位置上的单个核苷酸存在差别的现象。

有这种差别的基因座、DNA序列等可作为基因组作图的标志。

人基因组上平均约每1000个核苷酸即可能出现1个单核苷酸多态性的变化,其中有些单核苷酸多态性可能与疾病有关,但可能大多数与疾病无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档