【课程设计计算书】A2O生化池单元

合集下载

A2O工艺生化池设计计算

A2O工艺生化池设计计算

A 2/O 工艺生化池设计一、设计最大流量Q max=73500m 3/d=3062.5 m 3/h=0.850 m 3/s二、 进出水水质要求表1 进出水水质指标及处理程度三、 设计参数计算①. BOD 5污泥负荷N=0.14kgBOD 5/(kgMLSS ·d)②.回流污泥浓度X R =10 000mg/L③.污泥回流比R=50%④.混合液悬浮固体浓度(污泥浓度)L mg X R R X R /3.3333100005.015.01=⨯+=+=⑤. TN 去除率%5.51%1009.30159.30%1000e 0=⨯-=⨯-=TN TN TN TN η⑥. 内回流倍数%2.1061062.0515.01515.01==-=-=ηη R 四、A 2/O 曝气池计算①. 反应池容积330425264.425253333.30.1407273500NX S Q m m V ≈=⨯⨯=∙=②. 反应水力总停留时间h h d t 1492.1358.07350042526Q V ≈====③. 各段水力停留时间和容积厌氧:缺氧:好氧=1:1:4厌氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V =⨯=;缺氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V =⨯=;好氧池停留时间h t 34.91464=⨯= ,池容36.283504252664m V=⨯=。

④. 校核氮磷负荷好氧段TN 负荷为:()d kgMLSS kgTN N ⋅=⨯⨯=∙∙/024.06.8350233339.3073500V X T Q 30厌氧段TP 负荷为:()d kgMLSS kgTN P ⋅=⨯⨯=∙∙/017.07.708733334.573500V X T Q 10① 剩余污泥量:X ∆,(kg/d)s X P P X +=∆式中:()v X V K S S Q Y P d e X ⨯⨯⨯--⨯⨯=0%50)(⨯⨯-=Q TSS TSS P e s取污泥增值系数Y=0.5,污泥自身氧化率05.0=d K ,代入公式得:()75.03.342526.005.001.03.0735005.0⨯⨯⨯--⨯⨯=X P=5395kg/d()d kg P S /5.10657%50735001.03.0=⨯⨯-=则:d kg P P X s X /5.160525.106575395=+=+=∆湿污泥量:设污泥含水率P=99.2% 则剩余污泥量为:h m d kg P W Q s /6.83/6.20061000)992.01(5.16052%100)1(3==⨯-=⨯-=⑤. 反应池主要尺寸反应池总容积:V=425263m设反应池2组,单组池容积:V 单 =3212632m V= 有效水深5m ,则:S 单=V 单/5=4252.62m取超高为1.0m ,则反应池总高m H 0.60.10.5=+=生化池廊道设置:设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。

A2O设计计算

A2O设计计算

A 2/O 反应池设计计算本工程设置两座A 2/O 反应池,分两期建设。

其单池平均流量:33324000=12000/500/0.139/139/2Q m d m h m s L s ====单池7.1 设计要点1. 脱氮时,污水中的五日生化需氧量与总凯氏氮之比宜大于4;2. 除磷时,污水中的五日生化需氧量与总磷之比宜大于17;3. 同时脱氮除磷时,宜同时满足前两款的要求;4. 好氧区(池)剩余总碱度宜大于70mg/L (以CaCO 3计),当进水碱度不能满足上述要求时,应采取增加碱度的措施;5. 在满足曝气池设计流量时,生化反应的需氧量以外,还应使混合液含有一定的剩余DO 值,一般按2mg/L 计;6. 使混合液始终保持混合状态,不知产生沉淀,一般应该使池中平均流速在0.25m/s 左右;7. 设施的充氧能力应该便于调节,与适应需氧变化发的灵活性7.2 设计计算1. 判断是否可采用A 2/O 法52054.5645B O D TKN ==>4 520537.275.5BOD TP ==>17 符合设计要求,故可采用A 2/O 法2. 已知条件设计流量 33324000/1000/,Q =0.139/s Q m d m h m ==单池(不考虑变化系数);设计进水水质:5205/L BOD mg =,450/COD mg L =,280/SS mg L =, 340/L N H Nm g -=, 60/TN mg L =, 5.5/TP mg L =; 设计出水水质:520/BOD mg L ≤, 60/COD mg L ≤,20/SS mg L ≤, 35/NH N mg L -≤,20/L TN mg ≤,1/L TP mg ≤3. 设计计算A. 有关设计参数1. BOD 5污泥负荷N s =0.1~0.2kg/(kgMLSS ·d), 本工程取 N s =0.13kg/(kgMLSS ·d);2. 混合液中悬浮物固体平均浓度 X=3000mg/L ;3. 污泥回流比 R=20%~100%,本工程取R=52%;4. 回流污泥浓度X R , mg/L110.52=30008770m g /0.52R R X X L R ++=⨯=; 5. TN 去除率 006020100%100%66.7%60e TN TN TN TN η--=⨯=⨯=混合液回流比 66.7%100%100%200%1166.7%TN i TN R ηη=⨯=⨯=-- 6. 回流污泥量 Q R , 30.522400012480/R Q RQ m d ==⨯= 循环混合液量Q c ,3c i =200%2400048000m /d Q R Q =⨯= B. 反应池计算1. 厌氧池计算24p p t Q V =式中V p ——厌氧池容积,m 3; t p ——厌氧池水力停留时间(h ),宜为1~2小时;本工程取t p =1.5h Q ——设计污水流量,m 3/d ; 则 31.52400015002424p p t Q V m ⨯===单座厌氧池容积p 31500==75022V V m =有效水深取5.0m,设池宽10m ,则池长 75015m 510L ==⨯2. 缺氧池计算(20)()(20)0e 0.001()0.12= 1.08(1000k te vde T de T dev tQ N N X Vn k Xk k Q S S X yY ---=-=)式中V n ——缺氧池容积,m 3;Q ——生物反应池的设计流量,m 3/d ;X ——生物反应池内混合液悬浮固体平均浓度,gMLSS/L ; N k ——生物反应池进水总凯氏氮浓度,mg/L ; N te ——生物反应池出水总氮浓度,mg/L ;v X ——排出生物反应池系统的微生物量,kgMLVSS/d ;k de ——脱氮速率,(kgNO 3-N)/(kgMLSS*d);宜根据试验资料确定。

A2O工艺标准规范标准设计计算

A2O工艺标准规范标准设计计算

A 2/O 工艺生化池设计一、设计最大流量Q max=73500m 3/d=3062.5 m 3/h=0.850 m 3/s二、 进出水水质要求表1 进出水水质指标及处理程度三、 设计参数计算①. BOD 5污泥负荷N=0.14kgBOD 5/(kgMLSS ·d)②. 回流污泥浓度X R =10 000mg/L③. 污泥回流比R=50%④. 混合液悬浮固体浓度(污泥浓度)L mg X R R X R /3.3333100005.015.01=⨯+=+=⑤. TN 去除率%5.51%1009.30159.30%1000e 0=⨯-=⨯-=TN TN TN TN η⑥. 内回流倍数%2.1061062.0515.01515.01==-=-=ηηR四、A 2/O 曝气池计算①. 反应池容积330425264.425253333.30.1407273500NX S Q m m V ≈=⨯⨯=•=②. 反应水力总停留时间h h d t 1492.1358.07350042526Q V ≈====③. 各段水力停留时间和容积厌氧:缺氧:好氧=1:1:4厌氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V =⨯=;缺氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V =⨯=;好氧池停留时间h t 34.91464=⨯= ,池容36.283504252664m V =⨯=。

④. 校核氮磷负荷好氧段TN 负荷为:()d kgMLSS kgTN N ⋅=⨯⨯=••/024.06.8350233339.3073500V X T Q 30厌氧段TP 负荷为:()d kgMLSS kgTN P ⋅=⨯⨯=••/017.07.708733334.573500V X T Q 10① 剩余污泥量:X ∆,(kg/d)s X P P X +=∆式中:()v X V K S S Q Y P d e X ⨯⨯⨯--⨯⨯=0%50)(⨯⨯-=Q TSS TSS P e s取污泥增值系数Y=0.5,污泥自身氧化率05.0=d K ,代入公式得:()75.03.342526.005.001.03.0735005.0⨯⨯⨯--⨯⨯=X P=5395kg/d()d kg P S /5.10657%50735001.03.0=⨯⨯-=则:d kg P P X s X /5.160525.106575395=+=+=∆湿污泥量:设污泥含水率P=99.2% 则剩余污泥量为:h m d kg P W Q s /6.83/6.20061000)992.01(5.16052%100)1(3==⨯-=⨯-=⑤. 反应池主要尺寸反应池总容积:V=425263m设反应池2组,单组池容积:V 单 =3212632m V= 有效水深5m ,则:S 单=V 单/5=4252.62m取超高为1.0m ,则反应池总高m H 0.60.10.5=+= 生化池廊道设置:设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。

计算书2—A2O生化池

计算书2—A2O生化池

一、 工艺O A /2 设计参数1. 设计最大流量Q max=1,5000m 3/d=625 m 3/h=0.174 m 3/s2. 进出水水质要求3. 设计参数计算 ①. BOD 5污泥负荷N=0.13kgBOD 5/(kgMLSS ·d)②. 回流污泥浓度X R =9 000mg/L③. 污泥回流比R=50%④. 混合液悬浮固体浓度(污泥浓度)L mg X R R X R /300090005.015.01=⨯+=+=⑤. 设MLVSS/MLSS=0.75 ⑥. 挥发性活性污泥浓度L mg X X V /2250300075.075.0=⨯==⑦. NH3-N 去除率%7.66%100301030%100121=⨯-=⨯-=S S S e ⑧. 内回流倍数0.2667.01667.01=-=-=e e R 内,即200% 4. A2/O 曝气池计算①. 总有效容积30256430000.1310010000NX S Q m V =平⨯⨯==②. 反应水力总停留时间h d t 15.626.0100002564Q V ====③. 各段水力停留时间和容积厌氧:缺氧:好氧=1:1:4厌氧池停留时间h t 025.115.661=厌⨯=,池容33.427256461m V =厌⨯=;缺氧池停留时间h t 025.115.661=缺⨯=,池容33.427256461m V =缺⨯=;好氧池停留时间h t 1.415.664=好⨯=,池容33.1709256464m V =好⨯=。

④. 反应池有效深度H=3m取超高为1.0m ,则反应池总高m H 0.40.10.3==+ ⑤. 反应池有效面积285532564m H V S ===⑥. 生化池廊道设置设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。

廊道宽4.5m 。

则每条廊道长度为m bn S L 7.3165.4855=⨯==,取32m ⑦. 尺寸校核1.75.432==b L ,5.135.4==D b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求5. 反应池进、出水系统计算 ① 进水管进水通过DN500的管道送入厌氧—缺氧—好氧池首端的进水渠道。

计算书2—A2O生化池 (2)

计算书2—A2O生化池 (2)

一、 工艺O A /2 设计参数1. 设计最大流量Q max=1,5000m 3/d=625 m 3/h=0.174 m 3/s2. 进出水水质要求3. 设计参数计算 ①. BOD 5污泥负荷N=0.13kgBOD 5/(kgMLSS ·d)②. 回流污泥浓度X R =9 000mg/L③. 污泥回流比R=50%④. 混合液悬浮固体浓度(污泥浓度) ⑤. 设MLVSS/MLSS=0.75 ⑥. 挥发性活性污泥浓度 ⑦. NH3-N 去除率 ⑧. 内回流倍数0.2667.01667.01=-=-=e e R 内,即200% 4. A2/O 曝气池计算 ①. 总有效容积②. 反应水力总停留时间 ③. 各段水力停留时间和容积厌氧:缺氧:好氧=1:1:4厌氧池停留时间h t 025.115.661=厌⨯=,池容33.427256461m V =厌⨯=; 缺氧池停留时间h t 025.115.661=缺⨯=,池容33.427256461m V =缺⨯=;好氧池停留时间h t 1.415.664=好⨯=,池容33.1709256464m V =好⨯=。

④. 反应池有效深度H=3m取超高为1.0m ,则反应池总高m H 0.40.10.3==+ ⑤. 反应池有效面积 ⑥. 生化池廊道设置设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。

廊道宽4.5m 。

则每条廊道长度为m bn S L 7.3165.4855=⨯==,取32m ⑦. 尺寸校核1.75.432==b L ,5.135.4==D b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求 5. 反应池进、出水系统计算 ① 进水管进水通过DN500的管道送入厌氧—缺氧—好氧池首端的进水渠道。

反应池进水管设计流量s m Q /17.0864001500031== 管道流速s m v /9.0'=管道过水断面面积2119.090.0/17.0/m v Q A === 管径m Ad 49.019.044=ππ⨯==取进水管管径DN500mm 校核管道流速s m AQ v /87.0)25.0(17.021===π,附合 ② 进水井污水进入进水井后,水流从厌氧段进入 设进水井宽为1m ,水深0.8m井内最大水流速度 反应池进水孔尺寸: 取孔口流速s m v /4.0= 孔口过水断面积孔口尺寸取0.3×0.3m ,则孔口数 ③ 出水堰。

A2O生物池计算书(1500t)(最新整理)

A2O生物池计算书(1500t)(最新整理)

A2O生物池计算书(1500t)(最新整理)X X设计院计算书工程名称:XXX污水处理工程——A2/O生物池工程代号:2013-M011-03专业:工艺计算:校对:审核:2016年5月20日生物池工艺计算(一)1、设计进出水水质表1进水水质BOD5 (mg/l)COD (mg/l)SS (mg/l)NH3-N (mg/l)TN(mg/l)TP (mg/l)1202402202435 3.0表2 出水水质BOD5 (mg/l)COD (mg/l)SS (mg/l)NH3-N (mg/l)TN (mg/l)TP (mg/l)≤20≤60≤20≤8 (watertemp > 12oC)≤15 (watertemp ≤ 12oC)≤20≤12、基础资料:近期规模:0.30×104m3/d,远期:0.60×104m3/d。

考虑XXX污水处理厂进水规模,生化池近期设一组两格,单格流量:0.15×104m3/d ,K z=1.84设计水温15℃。

XXX污水处理厂出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B标准。

3、基本参数设定:混合液污泥浓度:MLSS=3500mg/L。

溶解氧浓度C=2.0mg/L。

4、A 2/O 生物池理论计算4.1 好氧池计算4.1.1 硝化菌比生长率0.098(1515)0.098(1515)80.470.470.4480.48a N a N e e dK N m ×-′-=′=′=++K N ——硝化作用中氮的半速率常数,15℃时取0.4N a ——反应池中氨氮浓度,mg/L 4.1.2 设计污泥龄112.5 5.5850.448d m F F dq q m =×=×=′=θd ——反应池设计泥龄值(d )F——安全系数,取1.5~3.0,本设计取2.54.1.3 污泥净产率系数(1515)(1515)0.9(10.90.080.6 1.0722200.85(0.60.6)11200.08 1.0725.5851.303h h t i h ih tdb Y f XY f Y S b f y q --×××=×-+×+×′′′=′-+′+′=Y——污泥产率系数;ψ——反应池进水中悬浮固体中不可水解/ 降解的悬浮固体的比例,通过测定求得,无测定条件时,取0.6;X i ——反应池进水中悬浮固体浓度(mg/L );f——污泥产率修正系数,通过实验确定,无实验条件时取0.8~0.9,本设计取0.85b h ——异氧菌内源衰减系数(d -1),取0.08;Y h ——异氧菌产率系数(kgSS/kgBOD 5),取0.6;f t ——温度修正系数,取1.072(t-15);S i ,S e ——反应池进水、出水五日生化需氧量(BOD 5)浓度(mg/L)。

A2O生化池计算书(以6万吨每天城市污水厂为例)

A2O生化池计算书(以6万吨每天城市污水厂为例)
剩余污泥量 W=24QY(S0-Se)/1000
生化池氨氮浓度 氮的半速率常数
安全系数
容积
出水总氮浓度 出水总凯氏氮浓度
停留时间 生化池总停留时间
流量 污泥产率系数
反应池设计污泥龄 θc=VX/W
反应池容积(包括 缺氧池和好氧池)
曝气池氧转移效率
污水需氧量(kgO2/d) O2=0.001aQ(Si-Se)+b[0.001Q(Nki-
标准需氧量(kgO2/d) SOR=O2*Cs(20℃)/(α*(Csb(25℃)*β
*ρ-C)*1.024T-20)
污水修正系数一 污水修正系数二 海拔修正系数
20℃水中溶解氧饱和浓度
25℃水中溶解氧饱和浓度
25℃曝气池中平均溶解氧浓度 Csb=Cs(Pb/2.026/10^5+Ot/42)
曝气头出口处绝对压力 氧的百分比
A2/0生化池计算书(以6万吨污水厂为例)
处理规模
60000
设计进水水质(mg/L)
设计出水水质(mg/L)
2500.00
COD 800 COD 60
构筑物
计算项目
参数
厌氧池 缺氧池
好氧池 生化池 剩余污泥池
厌氧池容积计算(m3): Va1=Ta1•Q/24
设计流量 停留时间பைடு நூலகம்
脱氮速率(反硝化速率) kde(T)=Kde(20)*1.08(t-20)
30 NH3-N
5 单位 m3/d
h kgN/(KgMLSS·D)
oC mg/L mg/L kgMLSS/KgBOD
Kg/m3 h
mg/L
m3
h m2/h
m3
TN 40 TN 15

A2O计算书

A2O计算书
=
0.48
d
=
11.5
h
2.4.2 好 氧 池 水 力 停留时间选定 t=
16.43
h
2.4.3 好 氧 池 容 积 Va = Q * t / 24 =
2.5 排 泥 量 计 算 △污泥有机
部 分 产 量 W1 = Yobs * ( So - Se ) * Q / 1000 =
△污泥内源 衰 减 残 留 物 量 W2 = fP * Kd * tc * W1 =
△ 活性污泥挥发 性组分中活性部分所占 比例 f = W1 / (W1+W2+W4) =
2.6 污 泥 中 MLVSS 比 例 fvss'= ( W1/fvss ) / W =
2.7 污 泥 中 MLSS X = MLVSS / fvss =
实际污泥负荷 实际污泥龄校核 tc' = 2.8 污 泥 体 积
0.55
mgNH4N/(mgMLVSS*d )
0.30
mg / l
0.15
mgBOD/(mgMLVSS*d )
0.68
d
88.74%
=
16.43 h
0.41
mgVSS / mgBOD5
△ 硝化细 菌在微生物中的
硝化的氨 氮 量 Nd=TN00.122*Yobs*(So'-Se)Ne-0.016*Kd*tc*(So'Se)*Yobs =
设计有效水深 H1=
4115.0 457.2
0 457.2
4
115 0.5
6 8950.9
90.4 2083.3
21.0
45540
3.5
m2
m
m
m
取L3=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录设计总说明 (1)设计任务书 (2)一.设计任务 (2)二.任务目的 (2)三.任务要求 (2)四.设计基础资料 (2)(一)水质 (2)(二)水量 (3)(三)设计需要使用的有关法规、标准、设计规范和资料 (3)第一章A2/O工艺介绍................................... 错误!未定义书签。

41.基本原理 (4)2.工艺特点 (5)3.注意事项 (5)第二章A2/O工艺生化池设计 (6)1.设计最大流量 (6)2.进出水水质要求 (6)3.设计参数计算 (6)4.A2/O工艺曝气池计算 (7)5.反应池进、出水系统计算 (8)6.反应池回流系统计算 (10)7.厌氧缺氧池设备选择 (11)第三章 A2/O工艺需氧量设计 (13)1.需氧量计算 (13)2.供气量 (13)3.所需空气压力 (14)4.风机类型 (15)5.曝气器数量计算 (15)6.空气管路计算 (16)第四章 A2/O工艺生化池单元设备一览 (17)第五章参考文献 (18)第六章致谢 (19)附1 水污染课程设计感想 (20)附2 A2/O工艺生化池图纸 (22)设计总说明随着经济快速发展和城市化程度越来越高,中心城区和小城镇建设步伐不断加快,城市生活污水对城区及附近河流的污染也越来越严重。

为了改善人民的生活环境,各地政府大力投入资金,力图改变现今水体的水质。

本设计为污水处理厂生化池单元,要求运用A2/O工艺进行设计,对生化池的工艺尺寸进行设计计算,最后完成设计计算说明书和设计图。

污水处理水量为10000t/d。

污水水质:COD Cr250mg/L,BOD5100mg/L,NH3-N30mg/L,SS120mg/L,磷酸盐(以P 计)5mg/L。

出水水质达到广东省地方标准《水污染物排放限值(DB44/26-2001)》最高允许排放浓度一级标准,污水经二级处理后应符合以下具体要求:COD Cr≤40mg/L,BOD5≤20mg/L,NH3-N≤10mg/L,SS≤20mg/L,磷酸盐(以P计)≤0.5mg/L。

其对应的去除率为COD Cr≥84%,BOD5≥80%,NH3-N≥67%,SS≥87%,磷酸盐(以P计)≥90%。

A2/O是流程最简单,应用最广泛的脱氮除磷工艺。

A2/O脱氮除磷工艺中,污水首先进入厌氧池,兼性厌氧发酵菌将污水中有机物氮化。

回流污泥带入的聚磷菌将体内贮存的聚磷分解释放出磷。

缺氧区中反硝化菌就利用混合液回流带入的硝酸盐以及进水中的有机物进行反硝化脱氮。

好氧区中聚磷菌生动吸收环境中的溶解磷,以聚磷的形式在体内贮积。

污水经厌氧、缺氧区有机物分别被聚磷菌和反硝化菌利用后浓度已经很低,有利于自养的硝化菌的生长繁殖。

关键词:城镇生活污水,A2/O工艺,脱氮除磷设计任务书一.设计任务为某城市生活污水处理厂完成A2/O工艺的设计,处理水量为10000m3/d二.任务目的(1)温习和巩固所学知识、原理;(2)掌握A2/O生化池单元的设计计算;(3)对所设计得A2/O生化池单元进行CAD制图。

三.任务要求(1)独立思考,独立完成;(2)完成主要处理构筑物的设计布置;(3)工艺选择、设备选型、技术参数、性能、详细说明;(4)提交的成品:设计说明书、工艺流程图、高程图、厂区平面布置图。

四.设计基础资料(一)水质排放标准:(GB8978-1996)一级标准本项目污水处理的特点为:●污水以有机污染为主,BOD/COD =0.4,可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标;●出水要考虑脱氮除磷的要求;(二)水量总设计规模为Q =1,0000m3/d(三)设计需要使用的有关法规、标准、设计规范和资料需要参考的设计指南、规范和设计手册:1.《水污染控制工程》2.《污水处理厂工艺设计手册》3.《给水排水设计手册》第五册,城镇排水4.《给水排水设计手册》第十一册,常用设备5.广东省地方标准水污染物排放限值(DB44/26-2001)6.《总图制图标准》( GB/T50103-2001)7.《建筑制图标准》(GB/T50104-2001)8.《给水排水制图标准》(GB/T50106-2001)第一章A2/O工艺介绍1.基本原理厌氧—缺氧—好氧(Anaerobic-Anoxic-Oxic,简称A/A/O或A2/O)工艺由厌氧池、缺氧池、好氧池串联而成,是A1/O与A2/O流程的组合。

是20世纪70年代由美国专家在厌氧—好氧除磷工艺的基础上开发出来的,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。

该工艺在厌氧—好氧除磷工艺中加入缺氧池,将好氧池流出的一部分混合液流至缺氧池的前端,以达到反硝化脱氮的目的。

在首段厌氧池主要是进行磷的释放,使污水中的磷的浓度升高,溶解性的有机物被细胞吸收而使污水中的BOD浓度下降;另外部分的NH3-N因细胞的合成而去除,使污水中的NH3-N浓度下降。

在缺氧池中,反硝化细菌利用污水中的有机物作碳源,将回流混合液中带入的大量NO3-N浓度显著下降,但随着硝化过程使NO3-N浓度增加,而磷随着聚磷菌的过量摄取,也以较快的速度下降。

在好氧池中,有机物被微生物生化降解,而继续下降,有机氮被氨化继而被硝化,使NH3--N浓度显著下降,但随着硝化过程使NO3--N浓度增加,P随着聚磷菌的过量摄取,也比较快的速度下降。

图1 厌氧—缺氧—好氧(A2/O)生物脱氮除磷工艺流程图2.工艺特点●厌氧、缺氧、好氧三种不同的环境条件和不同种类的微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能;●工艺简单,水力停留时间较短,总的水力停留时间也少于同类其他工艺;●丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀;●污泥中磷含量高,一般为2.5%以上;●脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中挟带溶解氧DO和硝酸态氧的影响。

3.注意事项该法需要注意的问题是,进入沉淀池的混合液通常需要保持一定的溶解氧浓度,以防止沉淀池中反硝化和污泥厌氧释磷,但这会导致回流污泥和回流混合液中存在一定的溶解氧,回流污泥中存在的硝酸盐对厌氧释磷过程也存在一定影响,同时,系统所排放的剩余污泥中,仅有一部分污泥是经历了完整的厌氧和好氧的过程,影响了污泥的充分吸磷。

系统污泥泥龄因为兼顾硝化菌的生长而不可能太短,导致除磷效果难于进一步提高。

第二章 A 2/O 工艺生化池设计1. 设计最大流量Q max=1,5000m 3/d=625 m 3/h=0.174 m 3/s2. 进出水水质要求表1 进出水水质指标及处理程度3. 设计参数计算①. BOD 5污泥负荷N=0.13kgBOD 5/(kgMLSS ·d)②. 回流污泥浓度X R =9 000mg/L③. 污泥回流比R=50%④. 混合液悬浮固体浓度(污泥浓度)L mg X R R X R /300090005.015.01=⨯+=+= ⑤. 设MLVSS/MLSS=0.75⑥. 挥发性活性污泥浓度L mg X X V /2250300075.075.0=⨯==⑦. NH3-N 去除率%7.66%100301030%100121=⨯-=⨯-=S S S e ⑧. 内回流倍数0.2667.01667.01=-=-=e e R 内,即200%4. A 2/O 曝气池计算①. 总有效容积30256430000.1310010000NX S Q m V =平⨯⨯== ②. 反应水力总停留时间h d t 15.626.0100002564Q V ==== ③. 各段水力停留时间和容积厌氧:缺氧:好氧=1:1:4 厌氧池停留时间h t 025.115.661=厌⨯=,池容33.427256461m V =厌⨯=; 缺氧池停留时间h t 025.115.661=缺⨯=,池容33.427256461m V =缺⨯=; 好氧池停留时间h t 1.415.664=好⨯=,池容33.1709256464m V =好⨯=。

④. 反应池有效深度H=3m取超高为1.0m ,则反应池总高m H 0.40.10.3==+⑤. 反应池有效面积285532564m H V S === ⑥. 生化池廊道设置设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。

廊道宽4.5m 。

则每条廊道长度为m bn S L 7.3165.4855=⨯==,取32m ⑦. 尺寸校核1.75.432==b L ,5.135.4==D b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求5. 反应池进、出水系统计算① 进水管进水通过DN500的管道送入厌氧—缺氧—好氧池首端的进水渠道。

反应池进水管设计流量s m Q /17.0864001500031==管道流速s m v /9.0'=管道过水断面面积2119.090.0/17.0/m v Q A === 管径m A d 49.019.044=ππ⨯==取进水管管径DN500mm 校核管道流速s m A Q v /87.0)25.0(17.021===π,附合② 进水井污水进入进水井后,水流从厌氧段进入设进水井宽为1m ,水深0.8m井内最大水流速度s m bh Q v /21.08.0117.01=⨯==反应池进水孔尺寸:取孔口流速s m v /4.0=孔口过水断面积21425.04.017.0m v Q A ===孔口尺寸取0.3×0.3m ,则孔口数53.03.0425.0=⨯==f An③ 出水堰。

按矩形堰流量公式:s m Q R R Q /595.017.0)25.01()1(33=⨯++=++=内堰上水头m ggm b Q H 16.0)25.445.0595.0()2(32323=⨯⨯==式中 m b 5.4=——堰宽,m=0.45——流量系数,H ——堰上水头高,m④ 出水井s m Q R R Q /595.017.0)25.01()1(33=⨯++=++=内设流速s m v /8.0=,则过水断面积2374.08.0595.0m v Q A ===出水井平面尺寸取为:1.0 m×1.0m⑤ 出水管。

反应池出水管设计流量s m Q Q /595.0334== 设管道流速s m v /8.0= 管道过水断面积2574.08.0595.0m v Q A ===管径m Ad 97.074.044=ππ⨯==取出水管管径DN1000mm 校核管道流速s m AQ v /76.0)21(595.025===π,附合⑥ 剩余污泥量降解BOD 所产生的污泥量d kg YQ W /48010)20100(100006.0S 3r 1=⨯-⨯⨯==-平内源呼吸分解泥量d kg W /14.346102250256406.0V X K 3v d 2=⨯⨯⨯==-不可生物降解及惰性悬浮物(NVSS )d kg Q L W r /650%501000010)20150(%5033=⨯⨯⨯-=⨯=-平剩余污泥量d kg W W W W /86.78365014.346480321=+-=++=6. 反应池回流系统计算① .污泥回流污泥回流比为50%,从二沉池回流过来的污泥通过1根DN200mm 的回流管道分别进入首端的厌氧段。

相关文档
最新文档