圆锥曲线小结论
高中数学圆锥曲线结论(最完美版本)

圆锥曲线二级推论
5. 若 P0 (x0, y0 ) 在双曲线
x2 a2
y2 b2
1(a>0,b>0)上,则过
P0 的双曲线的切线方程是
x0 x a2
y0 y b2
1.
6. 若 P0 (x0, y0 ) 在双曲线 x2 y2 1(a>0,b>0)外 ,则过
a2 b2
Po 作双曲线的两条切线切点为
P1、P2,则切点弦 P1P2 的直线方程 是 x0 x y0 y 1.
a2 b2
7. 双曲线 x2 y2 1(a>0,b>o)的
a2 b2
左右焦点分别为 F1,F 2,点 P 为 双曲线上任意一点 F1PF2 ,则 双曲线的焦点角形的面积为
SF1PF2
b2co t 2
.
8.
双曲线
x2 a2
y2 b2
1(a>0,b>o)的
焦半径公式:( F1(c, 0) , F2 (c, 0) 当 M (x0, y0 ) 在右支上时, | MF1 | ex0 a ,| MF2 | ex0 a .
当 M (x0, y0 ) 在左支上时, | MF1 | ex0 a ,| MF2 | ex0 a
MF⊥NF.
11. AB 是双曲线
x2 a2
y2 b2
1(a>0,b>0)的不平行
于对称轴的弦,M (x0 , y0 ) 为 AB 的
中点,则 KOM
K AB
b2 x0 a2 y0
,即
K AB
b2 x0 a2 y0
。
12. 若 P0 (x0, y0 ) 在双曲线 x2 y2 1(a>0,b>0)内,则被
圆锥曲线常用结论

圆锥曲线常用结论1.圆锥曲线的定义:(1)定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。
若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
抛物线定义中,定点和定直线是焦点和准线,要注意定点不在定直线上,否则轨迹为过定点且和定直线垂直的直线.(2)抛物线定义给出了抛物线上的点到焦点距离与此点到准线距离间的关系,要善于运用定义对它们进行相互转化。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
圆锥曲线点差法拓展的几个小结论,快速解题

点差法拓展的常考结论点差法拓展的结论有四个,但是推导的方法都是高度一致的。
如下结论1:如下图,直线l 为任意直线,与椭圆22221x y a b+=有两个交点A 、B ,M 为线段AB的中点,则有结论22OM ABb k k a=-推导:根据点差法,设()11,A x y 和()22,B x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭则2212121222121212OM ABy y y y y y k k x x x x x x +--==+-- 又因为2211221x y a b +=和2222221x y a b +=,二者做差可得22221212220x x y y a b--+= 整理得2221222212y y b x x a-=--,即22OM AB b k k a =- 结论2:如下图,直线l 过原点,交椭圆22221x y a b+=于A 、B 两点,C 为椭圆上任意一点,则有结论22CA CBb k k a=-推导:因为直线过原点,所以必有点A 和点B 关于原点对称,因为可设()11,A x y 和()11,B x y --,设()22,C x y则2221212122212121CA CBy y y y y y k k x x x x x x -+-==-+- 剩下的就跟结论1的推导一模一样的,如下又因为2211221x y a b +=和2222221x y a b +=,二者做差可得22221212220x x y y a b--+= 整理得2221222212y y b x x a-=--,即22CA CB b k k a =- 结论3:如下图,l 为任意直线,交双曲线22221x y a b-=于A 、B 两点,M 为AB 的中点,则有结论22OM ABb k k a=推导:与结论1的过程一样。
根据点差法,设()11,A x y 和()22,B x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭则2212121222121212OM ABy y y y y y k k x x x x x x +--==+-- 又因为2211221x y a b -=和2222221x y a b -=,二者做差可得22221212220x x y y a b---= 整理得2221222212y y b x x a-=-,即22OM AB b k k a = 结论4:如下图,直线l 过原点,交双曲线22221x y a b-=于A 、B 两点,点C 为双曲线上任意一点,则有结论22CA CBb k k a=推导:推导与结论2一样。
圆锥曲线的经典结论

当 M (x0, y0 ) 在左支上时, | MF1 | ex0 a , | MF2 | ex0 a (同上)
9. 设过双曲线焦点 F 作直线与双曲线相交 P 、Q 两点, A 为双曲线长轴上一个顶点, 连结 AP 和 AQ 分别交相应于焦点 F 的双曲线准线于 M 、 N 两点,则 MF NF .(同上)
1( a
0, b
0 )的左右焦点分别为
F , F2 ,点 P 为双曲线上任意一点:
F1PF2
,则双曲线的焦点角形的面积为
S F1PF2
b2co t .(同上) 2
x2 y2 8. 双曲线 a2 b 2 1 ( a 0, b 0 )的焦半径公式:
F1 ( c , 0 ) , F2 (c,0)
当 M (x0, y0 ) 在右支上时, | MF1 | ex0 a , | MF2 | ex0 a .
a2c2k 2 a2b2
xP xQ
, xP xQ
M
2 a 2k 2c
2b2 ck
2abkN
, yP yQ
, yP yQ
,
M
M
M
第 2 页,共 18 页
xP yQ xQ y P
2a 2b 2k , xP yQ
M
xQ ቤተ መጻሕፍቲ ባይዱP
再根据上一条性质可得结论。
2 abckN ,则 x
M
2a2b2k 2a2bkN
M 2abckN
M 2 ab2 ck
a
M
M
a2
,
c
11. (点差法)
kOM k AB 即 K AB
AB 是椭圆
x2 a2
b2 a2 ,
b 2x0 a2 y0
高中数学圆锥曲线常用98条结论

高中数学圆锥曲线常用98条结论1.椭圆的离心率小于1,且焦点在中心到长轴的垂线上。
2. 长轴和短轴的长度分别为2a和2b,则椭圆的标准方程为(x/a)+(y/b)=1。
3. 椭圆的焦距为c=√(a-b)。
4. 椭圆的面积为πab。
5. 椭圆的周长近似为2π√((a+b)/2)。
6. 椭圆的离心率为e=c/a。
7. 双曲线的离心率大于1,且焦点在中心到长轴的垂线上。
8. 长轴和短轴的长度分别为2a和2b,则双曲线的标准方程为(x/a)-(y/b)=1。
9. 双曲线的焦距为c=√(a+b)。
10. 双曲线的面积为πab。
11. 双曲线的渐近线方程为y=±(b/a)x。
12. 双曲线的离心率为e=c/a。
13. 抛物线的离心率等于1,且焦点在抛物线的顶点上。
14. 抛物线的标准方程为y=4ax。
15. 抛物线的焦距等于a。
16. 抛物线的面积为2/3×a×(4a/3)。
17. 抛物线的顶点坐标为(0,0)。
18. 抛物线的准线方程为y=-a。
19. 圆的标准方程为(x-a)+(y-b)=r。
20. 圆的直径为圆心的两倍半径。
21. 圆的周长为2πr。
22. 圆的面积为πr。
23. 直线与圆相交,切点到圆心的距离垂直于直线。
24. 切线方程为y-y=k(x-x),其中k为切线斜率。
25. 直线与圆相切,切点坐标为(x,y),则切线方程为(y-y)=k(x-x),其中k为直线斜率。
26. 椭圆的切线方程为(ay/b)+(x/a)=1。
27. 双曲线的切线方程为(ay/b)-(x/a)=1。
28. 抛物线的切线方程为y=2ax。
29. 椭圆的法线方程为(by/a)+(x/a)=1。
30. 双曲线的法线方程为(by/a)-(x/a)=1。
31. 抛物线的法线方程为y=-x/(2a)。
32. 椭圆的两条直径的交点在椭圆的中心点上。
33. 椭圆的两条直径的长度之和为2a。
34. 椭圆的两条直径的中垂线交于椭圆的中心点。
小学数学有关圆锥曲线的经典结论

一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a xb K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
圆锥曲线常用的二级结论

圆锥曲线常用的二级结论有:1.离心率定义式:$e = \frac{\sqrt{a^2 - b^2}}{a}$,其中$a$ 为长半轴,$b$ 为短半轴。
2.曲率公式:$\kappa = \frac{|\text{二阶导数}|}{(1 + y'^2)^{\frac{3}{2}}}$,其中$\kappa$ 为曲率,$y'$ 为导数。
3.两点之间的弦长公式:$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1,y_1)$ 和$(x_2, y_2)$ 为两点的坐标。
4.圆锥曲线的极坐标方程:$r = \frac{p}{1 + e\cos\theta}$,其中$r$ 为点到焦点的距离,$\theta$ 为点的极角,$p$ 为直线到焦点的距离,$e$ 为离心率。
5.焦点公式:$F = \sqrt{a^2 - b^2}$,其中$a$ 为长半轴,$b$ 为短半轴,$F$ 为焦点到中心的距离。
6.弦的中点公式:$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$,其中$(x_1, y_1)$ 和$(x_2, y_2)$ 为弦两个端点的坐标。
7.椭圆的标准方程:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。
8.双曲线的标准方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。
9.抛物线的标准方程:$y = ax^2$,其中$a$ 为常数。
10.焦半径公式:$r_f = \frac{p}{e}$,其中$p$ 为直线到焦点的距离,$e$ 为离心率,$r_f$ 为以焦点为圆心,$p$ 为半径的圆的半径长度。
圆锥曲线常用的二级结论包括但不限于以下内容:1.设直线$l$ 与圆锥曲线$C$ 相交于两点$P,Q$,则$P,Q$ 间的线段垂直于轴线。
圆锥曲线常用的二级结论和椭圆与双曲线对偶结论

圆锥曲线常用的二级结论:
1.零点定理:设F1,F2为椭圆E的两个焦点,P为椭圆上一点,则PF1 + PF2 = 2a(a
为椭圆长轴的一半);对于双曲线,PF1 - PF2 = 2a,其中a为双曲线的长轴的一半。
2.切线定理:设点P(x0,y0)在曲线C上,则C在点P处的切线方程为F_x(x0,y0)
x + F_y(x0,y0)y = F(x0,y0),其中F(x,y)为曲线C的方程,F_x和F_y为它的偏导数。
3.法线定理:设点P(x0,y0)在曲线C上,则C在点P处的法线方程为F_y(x0,y0)
x - F_x(x0,y0)y = F_y(x0,y0)x0 - F_x(x0,y0)y0。
4.离心率计算公式:设椭圆E的长轴为a,短轴为b,则椭圆的离心率为e = √(a² - b²)
/ a。
5.弦长定理:对于椭圆E,设以焦点F1,F2为端点的弦所对应的直角顶点为P,则弦PF1
+ PF2的长度等于椭圆长轴的长度;对于双曲线,弦PF1 - PF2的长度等于双曲线长轴的长度。
椭圆与双曲线的对偶结论:
1.椭圆E的对称中心为它所包围的正方形的中心,长、短半轴分别为正方形的对角线之
一和另外一边。
2.椭圆的纵轴端点为它所包围正方形的中心连通它上下角的一条直线,椭圆的焦点在这
条直线上。
3.双曲线的渐近线为对应椭圆的渐近线的转置。
4.对于椭圆E的焦点F和双曲线H的焦距f,有e² = 1 + f² / b²。
把椭圆的参数a,b
换成双曲线的参数a,b,即可得到双曲线的离心率计算公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆问题小结论:
(1)与椭圆22
221x y a b +=共焦点的椭圆的方程可设为()2222
21,0x y b a b λλλ+=+>++ (2)与椭圆22
221x y a b +=有相同的离心率的椭圆可设为()2222,0x y a b λλ+=>
或()22
22,0x y b a
λλ+=> (3)直线l 与椭圆22
221x y a b +=相交与()()1122,y ,,A x B x y 两点,其中点(),P x y ,则有:
22AB OP
b K K a ⋅=-;若椭圆方程为22221y x a b +=时,2
2AB OP a K K b
⋅=-;
(4)椭圆的光学性质:从一个焦点发出的一束光线,照在椭圆上,其反射光线必经过另一个焦点,例:椭圆上一点P 到椭圆内一点A 和2F 的距离之和的最小值为12a AF -,最大值为12a AF +。
(5) 若000(,)P x y 在椭圆22
221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.
(6) 若000(,)P x y 在椭圆22
221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点
弦P 1P 2的直线方程是00221x x y y
a b
+=.
(7) 椭圆22
221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点
12F PF γ∠=,则椭圆的焦点角形的面积为122tan
2
F PF S b γ
∆=.
(8) 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
(9) 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
(10) 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
(11) 若000(,)P x y 在椭圆22
221x y a b
+=内,则被Po 所平分的中点弦的方程是
22
00002222x x y y x y a b a b
+=+ (12) 若000(,)P x y 在椭圆22
221x y a b
+=内,则过Po 的弦中点的轨迹方程是
22002222x x y y
x y a b a b
+=+. 双曲线问题小结论:
(1)与22
221x y a b
-=共轭的双曲线方程为22221x y a b -=-,①它们有公共的渐近线;②四个
焦点都在以原点为圆心,C 为半径的圆上;③
2
212
11
1e e +=。
(2)与22
221x y a b
-=有相同焦点的双曲线方程为
()2222
22
1,0,0,0x y a b a b
λλλλλ-=≠->+>-+ (3)与22
221x y a b
-=有相同焦点的椭圆方程为:
()2222
22
1,0,0x y a b a b
λλλλλ+=≠+>->+- (4)与22
221x y a b
+=有相同焦点的双曲线方程为:
()2222
22
1,0,0,0x y a b a b
λλλλλ-=≠->->-- (5)与22
221x y a b
-=有相同离心率的双曲线方程为:
①焦点在x 轴上时:()22
22,0,1x y a b λλλ-=>≠
②焦点在y 轴上时:()22
22,0y x a b
λλ-=>
(6)与22
221x y a b
-=有相同的渐近线方程为:()2222,0,1x y a b λλλ-=≠≠;
(7)双曲线的光学性质:从一个焦点发出的一束光线,照在双曲线上,其反射光线的反向
延长线必经过另一个焦点,例:双曲线上一点P 到双曲线位于Y 轴右侧的一点A 和右焦点
2F 的距离之和没有最大值,其最小值为12AF a -。
(8)直线y kx m =+与椭圆22
221x y a b
+=相交于()()1122,,,A x y B x y ,其中点(),P x y ,
则22AB OP
b K K a ⋅=,若双曲线的焦点在y 轴上时,2
2AB OP a K K b
⋅=。
(9)焦点在x 轴的双曲线来说,焦点到渐近线的距离是b 。
(10)双曲线上任意一点P ,使得12F PF θ∠=,则122tan
2
PF F b S θ
∆=
抛物线的小结论
抛物线的光学性质:从一个焦点发出的一束光,照在双曲线的一支上,其反射光线的反向延
长线必经过另外一个焦点。
(1)抛物线的通径长为2P ,弦的端点坐标为,2P A p ⎛⎫
⎪⎝⎭和,2P B P ⎛⎫
⎪⎝⎭
,设准线与x 轴的交点为,02P E ⎛⎫
-
⎪⎝⎭
,则1,1,0AE BE AE BE K K K K ==-+=,1AE BE K K ⋅=-, 所以AE BE ⊥,以通径AB 为直径的圆与准线相切于点E ;
(2)抛物线过焦点的弦AB ,则12AB x x P =++,若该弦的倾斜角为θ,
则221212,4P x x y y P ==-,22sin P AB θ
=,以AB 为直径的圆与准线相切于CD 的中点2O ,所以22AO BO ⊥;弦长最短的是通径,
112
AF BF P
+=; (3)AO 的延长线与准线相交于点C ,则CB x 轴;若经过点B 向准线作垂线,交准线于点C ,则,,A O C 三点共线;
(4)过点,A B 分别作准线的垂线,垂足分别为,D C ,则以CD 为直径的圆与AB 相切于点F ,则CF DF ⊥。