人教版高三数学《导数》专题复习资料

合集下载

高考数学压轴专题人教版备战高考《函数与导数》知识点总复习有答案

高考数学压轴专题人教版备战高考《函数与导数》知识点总复习有答案

【高中数学】数学《函数与导数》复习资料一、选择题1.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( )A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-,令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增,∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <.故选:C. 【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果.【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..3.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.4.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.5.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.6.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,337782log 98 1.414log 39 3.312322f ⎛⎫=+->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭.故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.7.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.8.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.31.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.9.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.11.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B 【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.12.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+- D .(]2ln2,2-【答案】A 【解析】 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x Q 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭. 故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.13.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A . 【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.14.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()32339214V x x x x x x x =+-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -,所以正六棱柱容器的容积为()()()()32921224V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫ ⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<,所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.15.下列求导运算正确的是( ) A .()cos sin x x '= B .()1ln 2x x'=C .()333log xx e '= D .()22x x x e xe '=【答案】B 【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x=⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222xxx x e xex e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.16.设函数()xf x x e =⋅,则( )A .()f x 有极大值1eB .()f x 有极小值1e-C .()f x 有极大值eD .()f x 有极小值e -【答案】B 【解析】 【分析】利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论. 【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-.当1x <-时,()0f x '<;当1x >-时,()0f x '>.所以,函数()xf x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B. 【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.17.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回, 则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.18.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C 【解析】 【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围. 【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意.当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2],因为a +2-2a =2-a >0,所以a +2>2a , 所以此时函数g (x )的值域为(2a ,+∞), 由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2], 当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C . 【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可.【详解】0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤故选:D 【点睛】本题考查对数函数的单调性,属于中档题.20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n≥≈⨯-,∴至少需要25次构造.故选:D.【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。

导数的专题复习-最经典最全

导数的专题复习-最经典最全

导数的专题复习-最经典最全
导数是微积分中的重要概念,它具有广泛的应用。

本文将对导数进行专题复,总结其中最经典、最全的内容。

1. 导数的定义
导数是描述函数在某一点处变化率的概念。

在数学上,函数
f(x)在点x=a处的导数表示为f'(a),它可以通过极限的概念进行定义。

2. 导函数的计算
导数的计算有多种方法,常用的包括求导法则、链式法则、隐函数求导法等。

这些方法能够帮助我们求出各种类型函数的导数,如常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

3. 导数的性质
导数具有一些重要的性质,包括:
- 导数存在性:函数在某一点处可导的条件;
- 可导性与连续性的关系:函数可导的充分必要条件;
- 导数的代数运算:导数与求导函数的和差、乘积、除法的关系;
- 高阶导数:对导数的导数的概念。

4. 导数的应用
导数在科学和工程的领域中具有广泛的应用,包括但不限于以下几个方面:
- 函数的最大值与最小值问题:利用导数可以求解函数的极值问题;
- 曲线的切线与法线:导数可以帮助我们确定曲线在某一点处的切线和法线;
- 运动学中的速度与加速度:导数可以描述物体在运动过程中的速度和加速度。

总结:
本文对导数进行了最经典、最全的复习,内容涵盖了导数的定义、导函数的计算、导数的性质以及导数的应用。

通过学习导数,我们可以更好地理解函数的变化规律,并运用它们解决实际问题。

人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第三章 导数

人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第三章 导数

第三章 导 数1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数y =C (C 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数.4.能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.①常见的基本初等函数的导数公式:(C )′=0(C 为常数); (x n )′=nx n -1(n ∈N +); (sin x )′=cos x; (cos x )′=-sin x ; (e x )′=e x; (a x )′=a xln a (a >0,且a ≠1);(ln x )′=1x ; (log a x )′=1xlog a e (a >0,且a ≠1).②常用的导数运算法则:法则1:[u (x )±v (x )]′=u ′(x )±v ′(x ). 法则2:[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ).法则3: ⎣⎢⎡⎦⎥⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )v 2(x )(v (x )≠0).5.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).7.会用导数解决实际问题. 8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.9.了解微积分基本定理的含义.§3.1 导数的概念及运算1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx就叫函数y =f (x )从x 0到x 0+Δx之间的平均变化率,即ΔyΔx=f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处____________,并把这个极限叫做f (x )在点x 0处的导数,记作____________或y ′|x =x 0,即f ′(x 0)= 0lim →∆x Δy Δx =0lim →∆x f (x 0+Δx )-f (x 0)Δx(2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=0lim →∆xf (x +Δx )-f (x )Δx.(3)求函数y =f (x )在点x 0处导数的方法 ①求函数的增量Δy = ;②求平均变化率ΔyΔx= ;③取极限,得导数f ′(x 0)=0lim →∆x ΔyΔx.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 .3.基本初等函数的导数公式 (1)c ′= (c 为常数), (x α)′= (α∈Q *);(2)(sin x )′=____________, (cos x )′=____________;(3)(ln x )′= , (log a x )′= ;(4)(e x )′=____________, (a x)′= .4.导数运算法则(1)[f (x )±g (x )]′=__________________. (2)[f (x )g (x )]′=____________________; 当g (x )=c (c 为常数)时,即[cf (x )]′=________.(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为______________.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.自查自纠:1.(1)可导 f ′(x 0) (3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.f ′(x 0) y -y 0=f ′(x 0)(x -x 0)3.(1)0 αx α-1(2)cos x -sin x (3)1x1x ln a(4)e x a xln a4.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x )(3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x函数f (x )=a 3+5a 2x 2的导数f ′(x )=( )A .3a 2+10ax 2B .3a 2+10ax 2+10a 2xC .10a 2x D .以上都不对解:f ′(x )=10a 2x .故选C.曲线y =1ln x在x =e 处的切线方程为( )A .x +ey -e =0B .ex +y -e =0C .x -ey -2e =0D .x +ey -2e =0解:y ′=-1x (ln x )2=-1x (ln x )2,y ′|x =e =-1e ,故所求方程为y -1=-1e(x -e ),整理得x +ey -2e =0.故选D .已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1D .12解:y ′=x 2-3x ,令x 2-3x =-12,解得x =2或x=-3(舍去).故选B.物体的运动方程是s =-13t 3+2t 2-5,则物体在t =3时的瞬时速度为 .解:v (t )=s ′(t )=-t 2+4t ,t =3时,v =3,故填3.(2014·新课标Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =________.解:y ′=a -1x +1,根据已知,当x =0时,y ′=2,代入解得a =3.故填3.类型一 导数的概念已知函数f (x )=x 2+1.用定义的方法求:(1)f (x )在x =2处的导数; (2)f (x )在x =a 处的导数.解:(1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2+1-(22+1)Δx=4+Δx ,当Δx →0时,4+Δx →4, 所以f (x )在x =2处的导数是4.(2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2+1-(a 2+1)Δx=2a +Δx ,当Δx →0时,2a +Δx →2a , 所以f (x )在x =a 处的导数是2a .点拨:利用导数定义求函数在某一点处的导数,首先写出函数在该点处的平均变化率ΔyΔx ,再化简平均变化率,最后判断当Δx →0时,ΔyΔx无限趋近于哪一常数,该常数即为所求导数,这是定义法求导数的一般过程.航天飞机发射后的一段时间内,第t s时的高度h (t )=5t 3+30t 2+45t +4(单位:m ).(1)求航天飞机在第1 s 内的平均速度; (2)用定义方法求航天飞机在第1 s 末的瞬时速度.解:(1)航天飞机在第1 s 内的平均速度为 h (1)-h (0)1=5+30+45+4-41=80 m /s .(2)航天飞机第1 s 末高度的平均变化率为 h (1+Δt )-h (1)Δt=错误!=5Δt 3+45Δt 2+120Δt Δt=5Δt 2+45Δt +120,当Δt →0时,5Δt 2+45Δt +120→120, 所以航天飞机在第 1 s 末的瞬时速度为120 m /s .类型二 求导运算求下列函数的导数: (1)y =5x 2-4x +1; (2)y =x ln x ;(3)y =sin(πx +φ)(其中φ为常数);(4)y =x +3x +2(x ≠-2).解:(1)y ′=10x -4;(2)y ′=ln x +x ·1x=ln x +1;(3)y ′=cos(πx +φ)·(πx +φ)′=πcos(πx +φ);(4)y ′=⎝⎛⎭⎪⎫1+1x +2′=-1(x +2)2.点拨:求导运算,一是熟记公式及运算法则,二是掌握求复合函数导数的步骤,遵从“由外到内”的原则,三是要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.求下列函数的导数:(1)y =(x +1)(x +2); (2)y =xe x-1(x ≠0); (3)y =cos2x ;(4)y =ln x +3x +1(x >-1).解:(1)y ′=(x +1)′(x +2)+(x +1)(x +2)′=x +2+x +1=2x +3;(2)y ′=x ′(e x -1)-x (e x -1)′(e x -1)2=(1-x )e x-1(e x -1)2; (3)y ′=-sin2x ·(2x )′=-2sin2x ;(4)y ′=[ln(x +3)-ln(x +1)]′=1x +3-1x +1=-2(x +1)(x +3).类型三 导数的几何意义已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程.解:(1)y ′=x 2,设切点为(x 0,y 0),故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝ ⎛⎭⎪⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)∵y ′=x 2,且P (2,4)在曲线y =13x 3+43上,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,又∵切线的斜率k =y ′|x =x 0=x 20,∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x -y -4=0或x -y +2=0.点拨:曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.已知函数f (x )=x 3+x -16.(1)求满足斜率为4的曲线的切线方程;(2)求曲线y =f (x )在点(2,-6)处的切线方程;(3)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程.解:(1)设切点坐标为(x 0,y 0),∵f ′(x 0)=3x 20+1=4,∴x 0=±1, ∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18. ∴切线方程为y =4x -18或y =4x -14.(2)∵f ′(x )=3x 2+1,且(2,-6)在曲线f (x )=x 3+x -16上, ∴在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线方程为y =13x -32.(3)解法一:设切点为(x 0,y 0),∵直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得x 0=-2, ∴斜率k =13.∴直线l 的方程为y =13x . 解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则斜率k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1, ∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2,∴k =13.∴直线l 的方程为y =13x .1.弄清“函数在一点x 0处的导数”“导函数”“导数”的区别与联系(1)函数在一点x 0处的导数f ′(x 0)是一个常数,不是变量;(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x );(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.2.求函数y =f (x )在x =x 0处的导数f ′(x 0)通常有以下两种方法(1)利用导数的定义:即求lim →∆x f (x 0+Δx )-f (x 0)Δx 的值;(2)利用导函数的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.正确区分“曲线在某点处的切线”与“过某点的曲线的切线”的含义,前者的“某点”即切点,后者的“某点”是否为切点则须检验.4.求曲线在某一点处的切线方程时,可以先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.如果切点未知,要先求出切点坐标.1.函数f (x )=x 3+sin2x 的导数f ′(x )=( )A .x 2+cos2xB .3x 2+cos2xC .x 2+2cos2xD .3x 2+2cos2x解:f ′(x )=3x 2+(2x )′cos2x =3x 2+2cos2x .故选D.2.已知f (x )=(x -2)(x -3),则f ′(2)的值为( )A .0B .-1C .-2D .-3 解:∵f ′(x )=(x -3)+(x -2)=2x -5,∴f ′(2)=-1.故选B.3.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15解:由y ′|x =1=3,得在点P (1,12)处的切线方程为3x -y +9=0,令x =0,得y =9,故选C.4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞) B.(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)解:∵f ′(x )=2x -2-4x =2(x -2)(x +1)x>0,x >0,∴x -2>0,解得x >2.故选C.5.(2014·湖北八市高三3月调考)设a ∈R ,函数f (x )=e x+a ·e -x 的导函数是f ′(x ),且f ′(x )是奇函数,则a 的值为( )A .1B .-12C .12D .-1解:因为f ′(x )=e x -ae -x,由奇函数的性质可得f ′(0)=1-a =0,解得a =1.故选A .6.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278 B .-2 C .2 D .-278解:设切点坐标为(t ,t 3-at +a ).切线的斜率为k =y ′|x =t =3t 2-a ,①所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ),②将点(1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解之得t =0或t =32.分别将t =0和t=32代入①式,得k =-a 或k =274-a ,由它们互为相反数得a =278.故选A.7.(2014·江西)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.解:设点P 的坐标为(x 0,y 0),y ′=-e -x.又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln2,此时y =2,所以点P 的坐标为(-ln2,2).故填(-ln 2,2).8.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x,则f ′(1)=________.解:令e x =t ,则x =ln t .∵f (e x )=x +e x,∴f (t )=ln t +t ,∴f ′(t )=1t+1,∴f ′(1)=1+1=2.故填2.9.求函数f (x )=x 3-4x +4图象上斜率为-1的切线的方程.解:设切点坐标为(x 0,y 0),∵f ′(x 0)=3x 20-4=-1,∴x 0=±1. ∴切点为(1,1)或(-1,7).切线方程为x +y -2=0或x +y -6=0.10.设函数f (x )=13x 3-ax (a >0),g (x )=bx2+2b -1.若曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,求实数a ,b 的值,并写出切线l 的方程.解:因为f (x )=13x 3-ax (a >0),g (x )=bx 2+2b -1,所以f ′(x )=x 2-a ,g ′(x )=2bx .因为曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,所以f (1)=g (1),且f ′(1)=g ′(1),即13-a =b +2b -1,且1-a =2b , 解得a =13,b =13,得切点坐标为(1,0).切线方程为y =23(x -1),即2x -3y -2=0.11.已知函数f (x )=x -1+a ex (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)当a =1时,若直线l :y =kx -1与曲线y =f (x )相切,求l 的直线方程.解:(1)f ′(x )=1-a ex ,因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=1-a e=0,解得a =e .(2)当a =1时,f (x )=x -1+1e,f ′(x )=1-1ex .设切点为(x 0,y 0),∵f (x 0)=x 0-1+1ex 0=kx 0-1,①f ′(x 0)=1-1ex 0=k ,②①+②得x 0=kx 0-1+k ,即(k -1)(x 0+1)=0.若k =1,则②式无解,∴x 0=-1,k =1-e . ∴l 的直线方程为y =(1-e )x -1.(2014·安徽)若直线l 与曲线C 满足下列两个条件:(1)直线l 在点P (x 0,y 0)处与曲线C 相切;(2)曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号).①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x解:对于①,y ′=(x 3)′=3x 2,y ′|x =0=0,所以l :y =0是曲线C :y =x 3在点P (0,0)处的切线,画图可知曲线C :y =x 3在点P (0,0)附近位于直线l 的两侧,①正确;对于②,l :x =-1显然不是曲线C :y =(x +1)2在点P (-1,0)处的切线,②错误;对于③,y ′=(sin x )′=cos x ,y ′|x =0=1,曲线在点P (0,0)处的切线为l :y =x ,画图可知曲线C :y =sin x 在点P (0,0)附近位于直线l 的两侧,③正确;对于④,y ′=(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,y ′|x =0=1cos 20=1,曲线在点P (0,0)处的切线为l :y =x ,画图可知曲线C :y =tan x 在点P (0,0)附近位于直线l 的两侧,④正确;对于⑤,y ′=(ln x )′=1x,y ′|x =1=1,在点P (1,0)处的切线为l :y =x -1,令h (x )=x -1-ln x (x >0),可得h ′(x )=1-1x =x -1x,所以h (x )min=h (1)=0,故x -1≥ln x ,可知曲线C :y =ln x 在点P (1,0)附近位于直线l 的下方,⑤错误.故填①③④.§3.2 导数的应用(一)1.函数的单调性与导数在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内____________.2.函数的极值与导数(1)判断f (x 0)是极大值,还是极小值的方法: 一般地,当f ′(x 0)=0时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x 0附近的左侧_________,右侧_________,那么f (x 0)是极小值.(2)求可导函数极值的步骤: ①求f ′(x );②求方程_________的根;③检查f ′(x )在上述方程根的左右对应函数值的符号.如果左正右负,那么f (x )在这个根处取得_________;如果左负右正,那么f (x )在这个根处取得_________.3.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则____________为函数在[a ,b ]上的最小值,_________为函数在[a ,b ]上的最大值;若函数f (x )在[a ,b ]上单调递减,则_________为函数在[a ,b ]上的最大值,_________为函数在[a ,b ]上的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与端点处的函数值______,______比较,其中最大的一个是最大值,最小的一个是最小值.自查自纠:1.单调递减2.(1)②f ′(x )<0 f ′(x )>0(2)②f ′(x )=0 ③极大值 极小值3.(2)f (a ) f (b ) f (a ) f (b ) (3)②f (a ) f (b )关于函数的极值,下列说法正确的是( )A .导数为0的点一定是函数的极值点B .函数的极小值一定小于它的极大值C .f (x )在定义域内最多只能有一个极大值,一个极小值D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数解:导数为0的点不一定是极值点(如y =x 3,在x =0处),而极值点的导数一定为0.极值是局部概念,因此极小值可能有多个且有可能大于极大值.极值点是单调性的转折点.故选D.已知函数f (x )=12x 2-x ,则f (x )的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)解:f ′(x )=x -1,令f ′(x )>0,解得x >1.故选D.若在区间[1,2]内有f ′(x )>0,且f (1)=0,则在[1,2]内有( )A .f (x )≥0B .f (x )≤0C .f (x )=0D .f (x )≥1 解:∵f ′(x )>0,∴f (x )在[1,2]内单调递增. ∵f (1)=0,∴在[1,2]内f (x )≥0.故选A.若函数f (x )的导函数f ′(x )=x 2-4x +3,则函数f (x -1)的单调递减区间是________.解:由f ′(x )=x 2-4x +3<0得1<x <3,所以函数f (x )的单调递减区间为(1,3),函数y =f (x -1)的图象由函数y =f (x )的图象向右平移1个单位得到,故函数f (x -1)的单调递减区间是(2,4).故填(2,4).函数f (x )=x +2cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解:f ′(x )=1-2sin x ,令f ′(x )=0得sin x =12,从而x =π6,当x ∈⎝⎛⎭⎪⎫0,π6时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫π6,π2时,f ′(x )<0,f (x )单调递减,所以f (x )在x =π6处取得极大值,即最大值π6+ 3.故填π6+ 3.类型一 导数法判断函数的单调性设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是()解:当x <0时,f (x )为增函数,f ′(x )>0,排除A ,C ;当x >0时,f (x )先增后减,再增,对应f ′(x )先正后负,再正.故选D.点拨:导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).(2014·北京联考)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是()A .在(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .当x =2时,f (x )取极大值D .当x =4时,f (x )取极大值 解:由y =f ′(x )的图象可得y =f (x )的大致图象如图.由图可知,A ,B ,D 均错.故选C .类型二 导数法研究函数的单调性已知函数f (x )=x 3-ax ,f ′(1)=0. (1)求a 的值; (2)求函数f (x )的单调区间. 解:(1)f ′(x )=3x 2-a ,由f ′(1)=3-a =0,得a =3.(2)∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3.令f ′(x )>0,得x <-1或x >1.所以f (x )的单调递增区间是(-∞,-1),(1, +∞),单调递减区间是[-1,1].点拨:①用导数求函数的单调区间,突破口是讨论导数的符号.②注意:区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.如,本例中[-1,1]也可以写成(-1,1).③写单调区间时,一般不要使用符号“∪”,可以用“,”“和”分开各区间,原因是各单调区间用“∪”连接的条件是在合并后的区间内函数单调性依然成立.如,本例中(-∞,-1),(1,+∞)不能写成(-∞,-1)∪(1,+∞),不妨取x 1=-32∈(-∞,-1),x 2=32∈(1,+∞),x 1<x 2,而f (x 1)=f ⎝ ⎛⎭⎪⎫-32=98,f (x 2)=-98,这时f (x 1)<f (x 2)不成立.(2014·山东)设函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x (k ≤0,k 为常数,e =2.71828…是自然对数的底数),求函数f (x )的单调区间.解:函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2xe x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=xe x -2e x x 3-k (x -2)x 2=(x -2)(e x-kx )x 3.由k ≤0可得e x-kx >0, 所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).类型三 导数法研究函数的极值问题已知函数f (x )=12x 3+cx 在x =1处取得极值.(1)求函数f (x )的解析式; (2)求函数f (x )的极值. 解:(1)f ′(x )=32x 2+c ,当x =1时,f (x )取得极值,则f ′(1)=0,即32+c =0,得c =-32. 故f (x )=12x 3-32x .(2)f ′(x )=32x 2-32=32(x 2-1)=32(x -1)(x +1),令f ′(x )=0,得x =-1或1.f (1)=-1.点拨:找函数的极值点,即先找导数的零点,但并不是说导数为零的点就是极值点(如y =x 3),还要保证该零点为变号零点.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线斜率为2.(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解:(1)f ′(x )=2a (x -5)+6x,依题意,f ′(1)=6-8a =2,得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x.令f ′(x )=0,得x =2或3.单调减区间为(2,3).f (x )的极大值f (2)=92+6ln2,极小值f (3)=2+6ln3.类型四 导数法研究函数的最值问题已知函数f (x )=ax 2+2,g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线.(1)求a ,b 的值;(2)求函数f (x )+g (x )的单调区间,并求其在区间(-∞,1]上的最大值.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , ∵f (1)=g (1),f ′(1)=g ′(1),∴a +2=1+b ,且2a =3+b ,解得a =4,b =5.(2)设h (x )=f (x )+g (x )=x 3+4x 2+5x +2,则h ′(x )=3x 2+8x +5=(3x +5)(x +1).所以f (x )在⎝⎛⎭⎪⎫-∞,-3,(-1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-53,-1上单调递减. ∵h ⎝ ⎛⎭⎪⎫-53=427,h (1)=12,12>427,∴f (x )+g (x )在(-∞,1]上的最大值为12.点拨:函数在限定区间内最多只有一个最大值和一个最小值,如果存在最大或最小值,最大值一般是在端点或极大值点取得,最小值一般是在端点或极小值点取得.已知函数f (x )=2x 3+ax 2+bx +1,若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值;(2)求函数f (x )在区间[-2,2]上的最大值和最小值.解:(1)f ′(x )=6x 2+2ax +b , 函数y =f ′(x )的图象的对称轴为x =-a6.∵-a 6=-12,∴a =3.∵f ′(1)=0,∴6+2a +b =0,得b =-12.故a =3,b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, f ′(x )=6x 2+6x -12=6(x -1)(x +2).∴所以f (x )在[-2,2]上的最大值为21,最小值为-6.类型五 实际应用问题(优化问题)请你设计一个包装盒,如图所示,ABCD是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,x 应取何值?(2)若厂商要求包装盒容积V (cm 3)最大,x 应取何值?解:(1)根据题意有S =602-4x 2-(60-2x )2=240x -8x 2,0<x <30,S ′=240-16x ,令S ′=0,得x =15. 当0<x <15时,S ′>0,S 递增; 当15<x <30时,S ′<0,S 递减. 所以x =15 cm 时包装盒侧面积S 最大. (2)根据题意有V =(2x )2·22(60-2x )=22x 2(30-x ),0<x <30,V ′=62x (20-x ),当0<x <20时,V ′>0,V 递增; 当20<x <30时,V ′<0,V 递减. 所以x =20 cm 时包装盒容积V 最大.点拨:本题主要考查学生的空间想象能力、阅读能力、运用数学知识解决实际问题的能力及建立函数模型的能力,属于中档题.注意用导数求解实际问题中的最大(小)值时,如果函数在区间只有一个极值点,那么依据实际意义,该极值点也就是最值点.用长为15 cm ,宽为8 cm 的长方形铁皮做一个无盖的容器,先在四角分别裁去一个边长为x cm 的小正方形,然后把四边翻转90°角,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?解:依题意,0<x <4,容积V =(15-2x )·(8-2x )·x =4x 3-46x 2+120x ,V ′=12x 2-92x +120=4(3x -5)(x -6).令V ′=0,得x =53或6(舍去).当0<x <53时,V ′>0,V 递增;当53<x <4时,V ′<0,V 递减. 所以高x =53cm 时容器的容积最大.1.用导数判断单调性用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.2.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,一个连续函数在闭区间内的最值一定存在且是唯一的,而极值可以同时存在若干个或不存在,且极大(小)值并不一定比极小(大)值大(小).(3)从位置上看,极值只能在定义域内部取得,而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,连续函数的最值只要不在端点处必定是极值.3.实际问题中的最值在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.1.(2014·新课标Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解:由条件知由q 可推出p ,而由p 推不出q .故选C .2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象有可能是()解:当x <0时,f ′(x )>0,f (x )单调递增; 当0<x <1时,f ′(x )<0,f (x )单调递减.故选C.3.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解:f ′(x )=(x -3)′e x +(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.4.设函数f (x )=2x+ln x ,则( )A . x =12为f (x )的极大值点B . x =12为f (x )的极小值点C . x =2为 f (x )的极大值点D . x =2为 f (x )的极小值点解:f ′(x )=x -2x2,令f ′(x )=0,得x =2.当x <2时,f ′(x )<0,f (x )为减函数;当x >2时,f ′(x )>0,f (x )为增函数,所以x =2为f (x )的极小值点,故选D.5.函数f (x )=x 3-3x 2+m 在区间[-1,1]上的最大值是2,则常数m =( )A .-2B .0C .2D .4解:f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x =0或x =2(舍去),当-1≤x <0时,f ′(x )>0; 当0<x ≤1时,f ′(x )<0.所以当x =0时,f (x )取得最大值为m ,m =2.故选C.6.已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列判断正确的是()A .a <0,b <0,c <0B .a >0,b >0,c <0C .a >0,b <0,c >0D .a >0,b >0,c >0 解:因为x >0时,f (x )>0恒成立,所以a >0;f ′(x )=3ax 2+2bx +c =0的两个根x 1、x 2均小于零,所以x 1+x 2=-2b 3a <0,则b >0;x 1x 2=c3a>0,则c >0,所以a ,b ,c 同为正.故选D.7.函数f (x )=x 3+2xf ′(-1),则函数f (x )在区间[]-2,3上的值域是____________.解:f ′(x )=3x 2+2f ′(-1),令x =-1,则f ′(-1)=3+2f ′(-1),得f ′(-1)=-3,因此f (x )=x 3-6x ,f ′(x )=3x 2-6=3(x +2)(x -2),∵f (-2)=4, f (-2)=42,f (2)=-42,f (3)=9,∴f (x )在区间[]-2,3上的值域为[-42,9].故填[-42,9].8.已知圆柱的体积为16π cm 3,则当底面半径r =________cm 时,圆柱的表面积最小.解:圆柱的体积为V =πr 2h =16π⇒r 2h =16,圆柱的表面积S =2πrh +2πr 2=32πr+2πr 2=2π⎝ ⎛⎭⎪⎫16r+r 2, 由S ′=2π·⎝ ⎛⎭⎪⎫-162+2r =0,得r =2.因此r(0,2) 2 (2,+∞)S′- 0+S↘极小值,也是最小值↗填2.9.(2014·重庆)已知函数f (x )=x 4+ax -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln5.10.已知函数f (x )=x 2+a ln x ,a ≠0. (1)若x =1是函数f (x )的极值点,求实数a 的值;(2)讨论f (x )的单调性.解:f ′(x )=2x +a x,x >0.(1)因为f ′(1)=0,所以2+a =0,得a =-2, 经检验,当a =-2时,x =1是函数f (x )的极值点.(2)①若a >0,则f ′(x )>0恒成立,f (x )在(0,+∞)上单调递增.②若a <0,令f ′(x )=0,得x =-a2, 当x ∈⎝⎛⎭⎪⎫0,-a 2时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎪⎫-a2,+∞时,f ′(x )>0,f (x )单调递增.11.(2014·天门、仙桃、潜江高三期末)某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地AOCB 规划建成一个矩形的高科技工业园区.已知AB ⊥BC ,OA ∥BC ,AB =BC =2AO =4 km ,曲线段OC 是以点O 为顶点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落在AB ,BC 上,且一个顶点P 落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到0.1 km 2).解:以O 为原点,AO 所在直线为x 轴建立直角坐标系(如图).依题意可设抛物线的方程为 x 2=2py ,且C (2,4).∴22=2p ·4,∴p =12.故曲线段OC 的方程为y =x 2(0≤x ≤2).设P (x ,x 2)(0≤x <2),则|PM |=2+x ,|PN |=4-x 2. ∴工业园区的用地面积S =|PM |·|PN |=(2+x )(4-x 2)=-x 3-2x 2+4x +8.∴S ′=-3x 2-4x +4,令S ′=0⇒x 1=23,x 2=-2(舍去),当x ∈⎣⎢⎡⎭⎪⎫0,23时,S ′>0,S 是x 的增函数; 当x ∈⎝ ⎛⎭⎪⎫23,2时,S ′<0,S 是x 的减函数. ∴x =23时,S 取到最大值,此时|PM |=2+x =83,|PN |=4-x 2=329,S max =83×329=25627≈9.5(km 2).答:把工业园区规划成长(PN )为329km ,宽(PM )为83km 时,矩形工业园区的用地面积最大,最大用地面积约为9.5 km 2.(2014·全国Ⅱ)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2.设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4,由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]上有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,所以g(x)>h(x)≥h(2)=0,所以g(x)=0在(0,+∞)上没有实根.综上,g(x)=0在R有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.§3.3 导数的应用(二)1.当f ′(x )在某个区间内个别点处为零,在其余点处均为正(或负)时,f (x )在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f (x )=x 3,当x =0时,f ′(x )=_________,当x ≠0时,f ′(x )>0,而f (x )=x 3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x )=0⇒x =x 1,x 2,…,x n ,x ∈[a ,b ]. 直接比较f (a ),f (b ),f (x 1),…,f (x n ),找出__________和____________即可.在此基础上还应注意:(1)结合____________可减少比较次数. (2)含参数的函数求最值可用: ①按____________分类; ②按____________分类. 3.实际问题中的导数,常见的有以下几种情形: (1)加速度是速度关于________的导数; (2)线密度是质量关于________的导数; (3)功率是功关于________的导数;(4)瞬时电流是电荷量关于________的导数; (5)水流的瞬时速度是流过的水量关于________的导数;(6)边际成本是成本关于________的导数. 4.N 型曲线与直线y =k 的位置关系问题如图,方程f (x )=0有三个根x 1,x 2,x 3时,极大值f (a )>0且极小值f (b )<0.曲线y =f (x )与直线y =k (k 是常数)有一个交点时,见图中的直线①或直线②,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有两个交点时,见图中的直线③或直线④,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有三个交点时,见图中的直线⑤.以上这些问题,常见于求参数的取值范围、讨论不等关系等形式的题目.自查自纠: 1.02.最小值 最大值 (1)单调性 (2)单调性极值点3.(1)时间 (2)长度 (3)时间 (4)时间 (5)时间 (6)产量 4.< > = =函数y =4x 2+1x的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎪⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎪⎫-∞,-12 解:y ′=8x -1x 2,令y ′>0,解得x >12,∴函数y =4x 2+1x 在⎝ ⎛⎭⎪⎫12,+∞上递增.故选B.函数f (x )=ax 3+x +1在x =-1处有极值,则a 的值为( )A .1B .0C .-13D .-12解:f ′(x )=3ax 2+1,∵f ′(-1)=3a +1=0,∴a =-13.故选C.已知函数f (x )=ax 3+bx +c (a ,b ,c ∈R ),若f ′(1)=2,则f ′(-1)=( )A .0B .3C .-1D .2解:f ′(x )=3ax 2+b ,f ′(-1)=f ′(1)=2.故选D.已知f (x )=sin x +2x ,x ∈R ,且f (2a )<f (a -1),则a 的取值范围是________.解:∵f ′(x )=cos x +2>0恒成立,∴f (x )在R 上单调递增.∵f (2a )<f (a -1),∴2a <a -1,得a <-1.故填(-∞,-1).若函数f (x )=ax 3+3x 2+3x (a <0)在区间(1,2)是增函数,则a 的取值范围是________.解:f ′(x )=3ax 2+6x +3,当a <0时,f (x )在区间(1,2)是增函数,当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.故填⎣⎢⎡⎭⎪⎫-54,0.类型一 函数单调性的进一步讨论 已知实数a >0,函数f (x )=a (x -2)2+2ln x .(1)当a =1时,讨论函数f (x )的单调性; (2)若f (x )在区间[1,4]上是增函数,求实数a 的取值范围.解:(1)当a =1时,f (x )=x 2-4x +4+2ln x ,f ′(x )=2x -4+2x =2(x -1)2x,∵x >0,∴f ′(x )≥0,∴f (x )在区间(0,+∞)上单调递增.(2)∵f ′(x )=2ax -4a +2x =2ax 2-4ax +2x,又f (x )在区间[1,4]上是增函数,∴f ′(x )=2ax 2-4ax +2x≥0对x ∈[1,4]恒成立,即2ax 2-4ax +2≥0对x ∈[1,4]恒成立,令g (x )=2ax 2-4ax +2,则g (x )=2a (x -1)2+2-2a ,∵a >0,∴g (x )在[1,4]上单调递增,只要使g (x )min =g (1)=2-2a ≥0即可,∴0<a ≤1.点拨:函数f (x )在限定区间是单调函数,求参数范围的问题,可以转化为恒成立问题求解.设函数f (x )=xe kx(k ≠0).(1)若k >0,求函数f (x )的单调区间;(2)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围.解:(1)f ′(x )=(1+kx )e kx.若k >0,令f ′(x )>0,得x >-1k,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-1k,+∞,单调递减区间是⎝ ⎛⎭⎪⎫-∞,-1k .(2)∵f (x )在区间(-1,1)内单调递增, ∴f ′(x )=(1+kx )e kx≥0在(-1,1)内恒成立,∴1+kx ≥0在(-1,1)内恒成立, 即⎩⎪⎨⎪⎧1+k ·(-1)≥0,1+k ·1≥0, 解得-1≤k ≤1. 因为k ≠0,所以k 的取值范围是[-1,0)∪(0,1].类型二 极值与最值的进一步讨论(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.解:(1)∵当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x.∴f (1)=1,f ′(1)=-1.∴所求切线方程为y -1=-(x -1),即x +y -2=0.(2)f ′(x )=1-a x =x -ax,x >0.若a ≤0,则f ′(x )>0恒成立,f (x )不存在极值.若a >0,则x ,f ′(x ),f (x )的变化情况如下点拨:本题要求掌握运用导数研究函数的单调性、极值的一般步骤.分类与整合思想是解这类题目常用的数学思想方法,注意:①分类标准统一,层次分明;②不重不漏.已知函数f (x )=(x -k )e x.(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x, 令f ′(x )=0,得x =k -1.;单调递增区间是(k -1,+∞),(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e .类型三 方程根的讨论已知函数f (x )=e x,x ∈R .(1)求f (x )的图象在点(0,f (0))处的切线方程;(2)证明:曲线y =f (x )与直线y =ex 有唯一公共点.解:(1)∵f ′(0)=e 0=1,f (0)=1,∴切线方程为y -1=1·(x -0),即x -y +1=0.(2)证法一:设g (x )=e x-ex ,曲线y =e x与y =ex 的公共点的个数等于函数g (x )=e x -ex 零点的个数.∵g ′(x )=e x-e ,令g ′(x )=0,得x =1, ∴g (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,∴g (x )的最小值g (1)=e 1-e =0,g (x )=e x -ex ≥0(仅当x =1时,等号成立). ∴曲线y =f (x )与直线y =ex 有唯一公共点.证法二:⎝⎛⎭⎪⎫由于方程e x =ex 等价于x ex =1e .设h (x )=x ex ,分析方法类似证法一.点拨:本题通过作差或作商构造出新的函数,求出新函数的单调区间、极值点、区间端点处的函数值、特殊点(如图象与x 轴,y 轴交点),来判断交点的个数,这是函数与方程思想的体现.若a >1e,则方程ln x -ax =0的实根的个数为( )A .0个B .1个C .2个D .无穷多个解法一:由于方程ln x -ax =0等价于ln xx=a .设f (x )=ln xx.∵f ′(x )=1x·x -ln xx 2=1-ln xx2, 令f ′(x )=0,得x =e ,∴f (x )在(0,e )上单调递增;在(e ,+∞)上单调递减.∴f (x )的最大值f (e )=1e,f (x )=ln x x ≤1e(仅当x =e 时,等号成立).∵a >1e,∴原方程无实根.解法二:设g (x )=ln x -ax ,分析单调性、极值可得结论.故选A.类型四 导数法证明不等式已知函数f (x )=e x,当x ∈[0,1]时,求证:(1)f (x )≥1+x ;(2)(1-x )f (x )≤1+x .证明:(1)设g (x )=e x-x -1,x ∈[0,1].∵g ′(x )=e x-1≥0,∴g (x )在[0,1]上是增函数,g (x )≥g (0)=1-0-1=0. ∴e x≥1+x ,即f (x )≥1+x .(2)设h (x )=(1-x )e x-x -1,x ∈[0,1].∵h ′(x )=-xe x-1<0,∴h (x )在[0,1]上是减函数,h (x )≤h (0)=1-0-1=0.∴(1-x )e x-x -1≤0, 即(1-x )f (x )≤1+x .点拨:①用导数证明不等式问题的关键在于构造函数;②由作差或者作商来构造函数是最基本的方法;③本题通过作差构造函数,分析其单调性、最值,得出函数值恒大于或小于0,使问题得证.(2013·江西模拟)设函数f (x )=x 1+x ,g (x )=ln x +12.求证:当0<x ≤1时,f (x )≥g (x ).证明:设h (x )=x 1+x -ln x -12,0<x ≤1.∵h ′(x )=1+x -x (1+x )2-1x =1(1+x )2-1x=-x 2-x -1(1+x )2x<0,∴h (x )在(0,1]上单调递减.∵h (1)=12-0-12=0,h (x )≥0(仅当x =1时,等号成立). ∴当0<x ≤1时,f (x )≥g (x ).1.证明不等式问题可通过作差或作商构造函数,然后用导数证明.2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值.3.方程根的问题:可化为研究相应函数的图象,。

高中数学导数及其导数应用的复习资料

高中数学导数及其导数应用的复习资料

导数及其导数的应用考纲要求解读1、了解导数概念的实际背景。

2、理解导数的几何意义。

3、掌握函数y=c(c为常数)。

y=x n(n是正整数)等的导数公式,会求多项式函数的导数。

4、理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。

5、会利用导数求某些简单实际问题的最大值与最小值。

重点难点剖析趋向1、运用导数的有关知识研究函数最值问题,这是考试常考不衰的热点内容,另一方面从数学角度反映实际问题,建立数学模型,转化为函数的最值问题,在利用函数的导数求解。

趋向2、利用导数的几何意义,研究曲线的切线斜率问题也是导数的一个重要作用,并且也是考试考查的重点内容之一。

趋向3、运用导数的有关知识,研究函数的单调性是它的又一重点应用,在考试中所占的地位是比较重要的。

第一节导数的概念及常见函数的导数一、基础知识整合1、导数概念(1)函数在点处的导数(x o )==深刻理解“函数在一点处导数”、“导函数”、“导数”的区别和联系。

函数y=f (x )在点x 0处的导数()就是导函数()在点x= x 0处的函数值,即()=()|x=x0.(2) 导函数导函数也简称导数。

(3) 导数的几何意义函数f (x )在区间处的几何意义,就是曲线y=f (x )在点p (,f ())处的切线的斜率。

也就是说,曲线y=f (x )在点P (,f ())处切线的斜率是()。

相应地,切线方程为y-y 0=()(x-x 0)。

2、 常用的导数公式 (1)0'=C (C 为常数); (2)1)'(-=n n nx x (Q n ∈);(3)x x cos )'(sin =; (4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(; (7)e x x a a log 1)'(log =; (8)xx 1)'(ln =. 3、 导数的运算法则法则1 )()()]()(['''x v x u x v x u ±=±.法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=.法则3 '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭. 二、 夯实基础例一、 求下列函数的导数(1) y =(2x 3-1)(3x 2+x );(2) y =3(2x+1)2-4x例二、 导数的几何意义及应用已知直线l 1为曲线y=x 2+x-2在点(1,2)处的切线,l 2为该曲线的另一条切线,切l 1⊥l 2.(1) 求直线l 2的方程。

(完整版)高三复习导数专题

(完整版)高三复习导数专题

导 数一、导数的基本知识 1、导数的定义:)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 2、导数的公式: 0'=C (C 为常数) 1')(-=n n nxx (R n ∈) xx e e =')(a a a x x ln )('= xx 1)(ln '= exx a a log 1)(log '=x x cos )(sin '= x x sin )(cos '-=3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=-[()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()bf x ax x=+ ( 0a > ,0b >) 其图像关于原点对称(2)三次函数32()f x ax bx cx d =+++(0)a ≠导数导数的概念 导数的运算导数的应用导数的定义、几何意义、物理意义 函数的单调性 函数的极值函数的最值 常见函数的导数导数的运算法则 比较两个的代数式大小导数与不等式讨论零点的个数求切线的方程导数的基本题型和方法1、、导数的意义:(1)导数的几何意义:()k f x'=(2)导数的物理意义:()v s t'=2、、导数的单调性:(1)求函数的单调区间;()0()b]f x f x'≥⇔在[a,上递增()0()b]f x f x'≤⇔在[a,上递减(2)判断或证明函数的单调性;()f x c≠(3)已知函数的单调性,求参数的取值范围。

高考数学-导数-专题复习课件

高考数学-导数-专题复习课件

)
v0t
,求1物gt体2 在时刻
2
时的瞬t0时速度.
解析:
s(t)
v0
1 2
g
2t
v0
gt
∴物体在 t时0 刻瞬时速度为 s(t0 ) v0 gt0. 题型四 导数的几何意义及几何上的应用
【例4】(12分)已知曲线 y 1 x3 4 .
33
(1)求曲线在点P(2,4)处的切线方程; (2)求过点P(2,4)的曲线的切线方程.
x0
x0
x0
典例分析
题型一 利用导数求函数的单调区间
【例1】已知f(x)= e-xax-1,求f(x)的单调增区间.
分析 通过解f′(x)≥0,求单调递增区间.
解 ∵f(x)= -aexx -1,∴f′(x)= -a. ex 令f′(x)≥0,得 ≥ae. x 当a≤0时,有f′(x)>0在R上恒成立; 当a>0时,有x≥ln a. 综上,当a≤0时,f(x)的单调增区间为(-∞,+∞); 当a>0时,f(x)的单调增区间为[ln a,+∞).
分析 (1)在点P处的切线以点P为切点.关键是求出切线斜率k=f′(2). (2)过点P的切线,点P不一定是切点,需要设出切点坐标.
解(1)∵y′= ,…x2……………………………2′ ∴在点P(2,4)处的切线的斜率 k y |x..23′ 4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0……………………………………….4′ (2)设曲线 y 1 x过3 点4 .P(2,4)的切线相切于点
33
则切线的斜率 k y |xx0……x02…. …………..6′
∴切线方程为
y
(1 3

人教版数学备课资料导数高考考点解析.

人教版数学备课资料导数高考考点解析.

导数高考考点解析导数是数学中最重要的概念之一,是我们这一章内容的根本,只有准确把握好导数的概念才能用它指导相关知识的学习,才能用它来解决问题. 一 细数导数的概念:1. 函数()f x 在某一点0x 处的导数:它是用函数在这一点的函数值的改变量与自变量的改变量的比值,当自变量的改变量趋与零时的极限来度量的,即()'0000()()limx f x x f x f x x∆→+∆-=∆,或者()0'000()()lim x x f x f x f x x x →-=-,或者()'0000()()limx f x f x x f x x∆→--∆=∆,或者在k 为非零常数时()'0000()()limx f x k x f x f x k x∆→+∆-=∆等.这几种形式是等价的,明确这点对解题很有帮助. 例1.已知函数()f x 中,()'12f =,求xf x f x ∆-∆-→∆)1()21(lim 0.分析:当0x ∆→时,20x -∆→,只需将xf x f x ∆-∆-→∆)1()21(lim 0变形为(2)0[1(2)](1)2lim (2)x f x f x -∆→+-∆---∆,即可用导数的定义解决. 解:()'0(2)0(12)(1)[1(2)](1)lim2lim 214(2)x x f x f f x f f x x ∆→-∆→-∆-+-∆-=-=-=-∆-∆. 点评:函数在某一点0x 处的导数,就是函数在这一点的函数值的增量与自变量的增量的比值在自变量的增量趋近于零时的极限,分子分母中的自变量的增量x ∆必须保持对应一致,它是非零的变量,它可以是2x -∆, 12x ∆等.2. 函数()f x 在开区间(),a b 内的导数:如果函数()f x 在开区间(),a b 内可导,对于开区间(),a b 内的每一个0x ,都对应着一个导数 ()0f x ',这样'()f x 在开区间(),a b 内构成一个新的函数,这一新的函数叫做()f x 在开区间(),a b 内的导函数, 记作()()()00limlim x x f x x f x yf x y x x∆→∆→+∆-∆'='==∆∆,导函数也简称为导数.例2.求()22f x x =的导数. 分析:我们先认定x 为函数()f x 在定义域内的某一个固定的点,用导数的定义求其在这一点处的导数,而这个x 在定义域内又是任意的,故所求出的导数就是函数()22f x x =的导数.解:()()()()222'0002242lim lim lim 424x x x x x x x x x f x x x x x x∆→∆→∆→+∆-⋅∆+∆===+⋅∆=∆∆.点评:定义法是求函数导数的基本方法.二 看看它在解决问题中的应用例3.求证:偶函数的导数是奇函数.分析:根据偶函数的定义和导数的定义进行变换. 证明:设()f x 是偶函数,则()()()()()()()()'00'()0limlim ()lim ()x x x f x x f x f x x f x x f x xf x x f x f x x ∆→∆→-∆→+∆-=∆--∆--=∆-+-∆--=-=---∆, 即对函数()f x 的定义域内的任意x 有()''()f x f x -=-,即'()f x 是奇函数.点评:0030x x x ∆→⇔-∆→⇔∆→等是活用导数的定义的关键,变形时注意分子分母中自变量改变量的一致性.例4.用定义求24(10)51680(10)x x y x x ⎧≤⎪=⎨⎪->⎩在点10x =处的导数.分析:函数是分段的,10x =正是分界点,在定义域内,用导数的定义求0limx yx∆→∆∆的值,如在10x ≤和10x >时,0lim x y x∆→∆∆的值相等,则这个值,就是函数24(10)51680(10)x x y x x ⎧≤⎪=⎨⎪->⎩在点10x =处的导数,否则函数24(10)51680(10)x x y x x ⎧≤⎪=⎨⎪->⎩在点10x =处的导数不存在. 解:当10x ≤时,自变量的增量x ∆只能是负的,()()22000441010455lim lim lim 16165x x x x y x x x ∆→∆→∆→+∆-⋅∆⎛⎫==+∆= ⎪∆∆⎝⎭;当10x >时,自变量的增量x ∆只能是正的,()()00016108016108016limlim lim 16x x x x y x x xx ∆→∆→∆→+∆--⨯-⎡⎤∆∆⎣⎦===∆∆∆. 综上知,在点10x =处对任意的0x ∆≠有0lim 16x y x∆→∆=∆,所以函数24(10)51680(10)x x y x x ⎧≤⎪=⎨⎪->⎩在点10x =处的导数为16.点评:导数定义中自变量的增量x ∆必须具有绝对的任意性,即只要0x ∆≠,0x ∆→是任意的,即只要能说明在某点0x 处对任意的0x ∆≠有0lim x ya x∆→∆=∆,则该函数在点0x 处的导数就是a ,否则该函数在点0x 处的导数不存在.小结:从上面不难看出导数概念中的关键是"自变量改变量的一致性和自变量的改变量趋于零的绝对任意性".疑难解析 解析导数及其应用的几个错觉点王献新在导数问题中由于受各种因素的影响,常常产生一些潜意识里的错误认识,即我们所说的错觉,不澄清这些错觉点,就会对我们的学习产生负面作用,下面举例加以说明. 一:在解决函数的极值问题时,由于受"极大""极小"中"大小"两字的影响,就产生了 “极大值一定比极小值大”的错觉,事实不然,我们先看下面的例子.例1.求函数()(0)pf x x p x=+>的极值.分析:用导数研究其变化趋势,结合函数取得极值的充分条件求解.解析:22()11p p f x x px x x -'⎛⎫'=+=-=- ⎪⎝⎭,令()0f x '=,得x p =±.当x 变化时,()()f x f x ',变化状态如下表:x()p --,∞ p - (0)p -, (0)p , p ()p +,∞()f x ' +- -0 +()f x2p -2p当x p =-时,()f x 有极大值2p -; 当x p =时,()f x 有极小值2p .点评:从本例可知,函数的极大值不一定比极小值大.事实上,极值只是相对于一点附近的局部性质,即只要函数在某一点左右导数值异号,在这一点处导数为零即可.这与最值不同,最值是相对整个定义域内或所研究问题的整体的性质.我们可以借助软件作出函数()(0)p f x x p x=+>的图象,如图所示,我们可以直观地看出,极大值反而比极小值小.二.由于我们在用导数求函数的极值时,往往是先求函数的导数为0的点,这就使我们形成了"导数为0的点一定是极值点,函数在极值点处的导数一定为0"的错觉,事实不然,看下面的例子. 例2.求函数()()321f x x =-的极值点.解析:()()()()2'2'32121621f x x x x =--=-,令()'0f x =得12x =,但当12x ≠时()'0f x >,即函数()()321f x x =-的导数()'f x 在12x =左右两侧不变号,故12x =不是函数()f x 的极值点,即函数()f x 没有极值点.点评:可导函数在某点的导数等于0只是该函数在该点取得极值的必要条件,要真正在该点取得极值还得其导数在该点左右变号!本题如不注意这一点,很可能就求出来102f ⎛⎫=⎪⎝⎭为该函数的极值的错误结果.例3.求函数()1f x x =-的极值.分析:按极值的定义进行判断,去掉绝对值,转化为分段函数分析其极值点与导数的关系. 解析:由于该函数在1x =时,函数值为0,而1x ≠时,函数值大于0,由函数极值的定义我们知道该函数在1x =处取得极小值0,即1x =是该函数的极小值点.但是()1(1)1(1)x x f x x x -≥⎧=⎨-<⎩,按照导数的定义,当1x >时,()()()()'1111111lim lim 1x x f x f x f x x∆→∆→+∆-+∆-===∆∆,当1x <时,()()()()'1111111lim lim 1x x f x f x f x x∆→∆→+∆--+∆===-∆∆,由于在1x =左右两侧,差商的极限值不相等,故函数()f x 在1x =处的导数不存在!也就是说1x =是函数()f x 的极值点,但在该点处函数的导数不存在,那就更谈不上其导数为0了! 点评:函数在某点取得极值与函数在该点的导数等于0是不等价的.即导数等于0的点不一定是极值点,在极值点处导数不一定就等于0,可能其导数不存在.三.由于受解析几何里直线和圆锥曲线相切时,直线和圆锥曲线只有一个公共点的影响,我们就形成了"曲线的切线与曲线一定只有一个公共点"的错觉,其实不然,看下面的例子.例4.求曲线33y x x =-在点1x =-处的切线方程,并探求该直线与曲线的公共点的个数. 分析:根据导数的几何意义,可以求出曲线在点1x =-处的切线的斜率,再根据直线的点斜式方程写出切线方程,由切线方程和曲线方程联立后的方程组的解的组数可以判断切线和曲线的公共点的个数.解析:'233y x =-,当1x =-时,'0y =,又切点坐标为()1,2-,故切线方程为2y =.而在曲线上当2x =时2y =,即切线2y =和曲线33y x x =-除了切点外还有一个公共点(2,2),即曲线33y x x =-与它在1x =-处的切线有两个公共点,也就是说曲线的切线和曲线不一定只有一个公共点!点评:曲线的切线可以与曲线有两个以上,甚至无穷个公共点. 上面所列只是我们在学习导数中的部分错觉,在整个高中数学的学习中还有很多让我们产生错觉的地方,在学习中我们只有不断地克服这些错觉,才能学好数学,为未来献身科学事业奠定良好的基础.。

高中数学人教版选修2-2导数及其应用知识点总结

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记1.函数的平均变化率是什么? 答:平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念是什么?答:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。

5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分y c ='y =0————————n y x =()*n N ∈1'n y nx -=11n nx x dx n +=+⎰xy a=()0,1a a >≠'ln xy a a = ln xxa a dx a =⎰x y e ='x y e =x xe dx e=⎰log a y x =()0,1,0a a x >≠> 1'ln y x a =————————ln y x =1'y x=1ln dx x x =⎰sin y x = 'cos y x =cos sin xdx x =⎰ cos y x ='sin y x =-sin cos xdx x =-⎰6、常见的导数和定积分运算公式有哪些? 答:若()f x ,()g x 均可导(可积),则有:和差的导数运算[]'''()()()()f x g x f x g x ±=± 积的导数运算[]'''()()()()()()f x g x f x g x f x g x ⋅=±特别地:()()''Cf x Cf x =⎡⎤⎣⎦商的导数运算[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 特别地:()()21'()'g x g x g x ⎡⎤-=⎢⎥⎣⎦复合函数的导数x u x y y u '''=⋅微积分基本定理()baf x dx =⎰ (其中()()'F x f x =)和差的积分运算1212[()()]()()b bbaaaf x f x dx f x dx f x dx±=±⎰⎰⎰ 特别地:()()()bb aakf x dx k f x dx k =⎰⎰为常数积分的区间可加性()()()()bcbaacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中6.用导数求函数单调区间的步骤是什么? 答:①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; 注:求单调区间之前一定要先看原函数的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数专题复习
一、知识要点
1.求导的公式
2.导数的几何意义
3.利用导数求极值与最值
二、填空
1. x e x x f )2()(-=的增区间为____________
2. x x x f cos 2)(+=在]2,0[π的最大值为___________
3. x x y ln 232-=单调增区间为__________________
4. a x x x f --=3)(3在]3,0[最大值为M,最小值为N,则=-N M ____________
5. c bx x y ++-=22在)1,2(-处的切线为3-=x y 求=+c b ___________________
6. x y ln =上的点到直线22+=x y 距离最小值为______________________________
7. x ax x x f 3)(23++=在3-=x 取得极值,则=a ___________________________ 8. 1)(23++=ax x x f 无极值,求a 的范围为_________________________________
三、选择题
9. 方程06932
3=---x x x 有______个实根 A.无 B.一个 C.二个 D.三个 10.直线b x y +=
21为曲线)0(ln >=x x y 的一条切线则=b _______________ A. 1 B. 2 C. 12+ D.12ln -
11.若函数)(3x x a y -=减区间为)33,33(-则a 的范围为________________
A.0>a
B.01<<-a
C.1>a
D.0<a
12.ax x x f -=3)(在],1[+∞为增函数,求a 的最大值为____________________
A. 4
B. 3
C. 2
D. 1
13.设)(),(x g x f 分别为定义在R上的奇函数和偶函数当0<x 时,0)()()()(>'+'x g x f x g x f
且0)3(=-g 则不等式0)(),(<x g x f 解集为
A.)0,3(- B.)3,0()0,3(⋃- C. ),3()3,(+∞⋃--∞
D.)3,0()3,(⋃--∞
四、解答题
14.已知d cx ax x f ++=3)(为R上奇函数,当1=x 时)(x f 取得极值为—2
1.求单调区间和极大值
2.求证对任意)1,1(,21-∈x x ,不等式4)()(21<-x f x f 恒成立
15.已知x x x f ln 21)(2
+=
1. 求)(x f 在[]e ,1的值域
2. 求证1>x 时,3
32
)(x x f <
16.a x x x x f +--=23)(
1. 求)(x f 极值
2. 当a 在什么范围内时,曲线)(x f y =与x 轴仅一个交点。

17. 函数R a x ax x x f ∈-+=,ln )(2 若)(x f 在[]2,1为减函数,求a 的范围
18. 若1)(23+++=x ax x x f
1. 在⎥⎦⎤
⎢⎣⎡--31,32内为减函数,求a 的范围
2. 试讨论)(x f 的单调区间
19. 设0(ln 1
)(>=x x x x f 且)1≠x
1. 求)(x f 单调区间
2. 已知a x x >1
2对任意)1,0(∈x 成立,求a 的范围
20. 设a x x x x f -+-
=62
9)(23 1. 对于任意实数x ,m x f ≥')(恒成立,求m 的范围
2. 若)(x f 的图像与x 轴只有一个交点,求a 的范围
21. 已知x x x f -=3)(
1. 设[]1,1,21-∈x x 求证1)()(21<-x f x f
2. 设a>0,若过曲线外一点),(b a A 可作)(x f y =的三条切线,证明)(a f b a <<-。

相关文档
最新文档