一元一次方程知识点总结

合集下载

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、一元一次方程的定义1. 等式:用“=”号连接而成的式子叫等式。

2. 方程:含未知数的等式,叫方程。

3. 一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

注:1、方程一定是等式,但等式不一定是方程。

2、方程中的未知数可以用x 表示,也可以用其他字母表示,如a 、y 、b 等。

3、方程中可含有多个未知数。

4、一元一次方程的等号两边都是整式。

二、一元一次方程的解1. 方程的解:使等式左右两边相等的未知数的值叫方程的解。

2. 解方程:求出方程的解的过程叫做解方程。

3. 方程的解与解方程的关系:方程的解是一个数,而解方程是一个解题过程。

三、等式的性质1. 等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等。

如果a =b,那么a ±c =b ±c2. 等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等。

如果a =b ,那么ac=bc ;如果a =b (c ≠0),那么cb c a =。

四、解一元一次方程(移项、合并同类项)1. 解方程:求出方程的解的过程叫做解方程。

2. 移项:根据等式性质1,把等式一边的某项变号后移到另一边。

一般地,把未知项移到左边,常数项移到右边。

注:移项一定要改变符号。

3. 合并同类项:分别将未知项的系数相加、常数项相加,化为最简形式b ax =。

4. 系数化为1:根据等式性质2,在方程两边同除以未知数的系数a,得到a bx =五、解一元一次方程(去括号、去分母)1. 去括号:用乘法分配律,先去小括号,再去大括号的顺序。

2. 去分母:在方程的两边同时乘以所有分母的最小公倍数。

注:1、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来。

六、一元一次方程的应用题(路程、利润、费用、工程、配套、调配)1. 列一元一次方程解应用题的一般步骤:(1)审题:通过读题,弄清题意(提取已知量和未知量等信息);(2)找等量关系:用文字表示出包含题目相、关数量关系的等量关系;(3)设未知数:选设一个未知量(可以是直接或间接未知量,还可以是辅助元)(4)列方程:用代数式表示出等量关系中的相关量;(5)解方程: 仔细解出方程;(6)检验:看是否是原方程的解,再看是否符合实际意义;(7)回答:完整回答题目中的问题.2. 路程问题:速度×时间=路程(1)相遇问题:速度和×相遇时间=两者间路程(2)追及问题:速度差×追上时间=两者间路程(3)行船问题:静水的速度+水流的速度=顺水的速度静水的速度-水流的速度=逆水的速度(4)火车过桥问题3. 利润问题:单个商品利润=商品销售价-商品进价(成本)总利润=销售总额-总成本=单个商品利润×商品数量利润率=成本利润×100% 现价=原价×折扣4. 费用问题:总价=单价×数量5. 工程问题:工作总量=工作效率×工作时间6. 配套问题:配套问题中根据已知条件分清数量关系,尤其是倍数关系。

一元一次方程(知识点完整版)

一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。

题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。

题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。

一元一次方程知识点总结

一元一次方程知识点总结

牛娃出品、必属精品一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式不变.若a b=那么a c b c+=+②等式两边同时乘以或除以同一个不为0的整式,等式不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.牛娃出品、必属精品二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了牛娃出品、必属精品要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax ba≠)的形式.=(0⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.牛娃出品、必属精品(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。

初中数学知识点总结 一元一次方程

初中数学知识点总结 一元一次方程

初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。

1、方程必须具备的两个条件(1)是等式。

(2)含有未知数。

(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。

符号语言:如果a=b,那么B土C=B土C。

(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。

三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。

(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。

依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。

依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。

(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。

4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。

依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。

依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。

(2)检验方程的解是否符合实际意义。

6、写出答案。

一元一次方程(知识点完整版)

一元一次方程(知识点完整版)

第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。

注意未知数的理解,n m x ,,等,都可以作为未知数。

题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。

题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。

例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。

即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。

即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一元一次方程单元复习与巩固 一元一次方程单元复习与巩固一元一次方程单元复习与巩固一、知识网络二、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a ≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数;(2) 未知数的次数是1次;(3) 整式方程.2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果b a =,那么c b c a ±=±;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果b a =,那么bc ac =;如果)0(≠=c b a ,那么cb c a =要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:mb ma bm amb a ÷÷==(其中m ≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:6.12.045.03=+--x x ,将其化为:6.1241053010=+--x x 。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤常用步骤 具体做法 依据 注意事项去分母 在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号;去括号 一般先去小括号,再去中括号,最后去大括号 去括号法则、分配律 注意变号,防止漏乘;移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号) 等式基本性质1 移项要变号,不移不变号;合并同类项 把方程化成ax =b(a ≠0)的形式 合并同类项法则计算要仔细,不要出差错; 系数化成1 在方程两边都除以未知数的系数a ,得到方程的解 a bx =等式基本性质2计算要仔细,分子分母勿颠倒 要点诠释: 理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:一元一次方程单元复习与巩固 一元一次方程单元复习与巩固①a ≠0时,方程有唯一解a b x =;②a=0,b=0时,方程有无数个解; ③a=0,b ≠0时,方程无解。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一元一次方程是高中数学的基础内容,也是解决实际问题中常见的一种数学模型。

下面是我对一元一次方程的知识点的总结:一、一元一次方程的基本概念1. 方程的定义和基本性质:方程是由等号连接的两个代数式构成的等式,方程中含有一个未知数。

2. 一元一次方程的定义:一元一次方程是含有一个未知数,且未知数的最高次数为1的方程。

3. 方程的解:对于一元一次方程,其解就是使得方程成立的未知数的值,也即方程中满足等号两边相等的数值。

二、一元一次方程的解法1. 移项法:将方程中的项移到等号两侧,使等号两边只有未知数。

2. 合并同类项:将方程中同类项合并,使方程简化。

3. 消元法:通过加减乘除等运算来消去方程中的系数和常数,最终得到未知数的值。

三、解一元一次方程的常用方法1. 原方程法:直接将原方程逐步化简,最终解得未知数的值。

2. 换元法:引入一个新的未知数,通过替换的方式简化方程,使得方程能够更容易求解。

3. 系数比较法:将方程与其他已知的一元一次方程进行系数的比较,从而求得未知数的值。

四、解一元一次方程的步骤1. 观察方程:确定方程的类型和形式。

2. 移项:将方程中未知数的项移到等号两侧。

3. 合并同类项:对方程中的同类项进行合并。

4. 消元:通过加减乘除等运算,将方程化简为未知数的项和常数项。

5. 求解:根据简化后的方程,求得未知数的值。

6. 检验:将求得的未知数代入原方程,验证解的正确性。

7. 唯一解、无解和无数解:根据方程的求解结果,判断方程的解的情况。

五、一元一次方程的应用1. 简单的实际问题:例如,甲、乙两个数之和是10,甲比乙多2,求甲和乙分别是多少。

2. 代数表达式的求解:例如,求一个数的三倍加2等于11,求这个数是多少。

3. 几何问题的求解:例如,某直角三角形的两条直角边长度之和是10,求这两条直角边的长度。

综上所述,一元一次方程是高中数学中的重要内容,解一元一次方程是我们解决实际问题的常用方法。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、知识1.含有未知数的等式叫方程2.只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程二、知识1.判断下列各式哪些是一元一次方程:(1)43x=21; (2)3x -2; (3)71y -51=32x -1; (4)5x 2-3x+1; (5)3x+y=1-2y ; (6)1-7y 2=2y.2.若关于x 的方程3x3a+1-5=0是一元一次方程, 则a=____.3.写出一个解是-2的一元一次方程为____.4.若2x -a=3,则2x=3+___,这是根据等式的性质1,在等式两边同时______. 若-6a=4.5,则___=-1.5,这是根据等式的性质,在等式两边同时________.5.下列方程中以x=21为解的是( ) A.-2x=4 B.-2x -1=-3 C.-21x -1=-43 D.-21x+1=43 6.已知5a -3b -1=5b -3a, 利用等式的性质比较a 、b 的大小.7.某钢铁厂今年5月份的某种钢产量是50吨, 预计6月份产量是a 吨, 比5月份增长x%, 那么a 是( )A.50(1+x%)B.50x%C.50+x%D.50(1+x )%8.已知关于x 的方程5x+3k=24的解为3, 求k2-1+k 的值9.利用等式性质解方程: - x+3=-10.10.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童每套平均用布1.5米,现在已做了80套成人服装,用余下的布还可以做几套儿童服装?三、直通中考[2008年山东中考]下列方程是一元一次方程的是( ).A. -5x+4=3y2B. 5(m2-1)=1-5m2C. 2-D. 5x-33.2-3.3解一元一次方程【一元一次方程合并同类项与移向】一、基础知识把等式一边的某项变号后移向等式的另一边, 叫做移向。

(移向要变号)二、知识题库1.在1,-2, 21这三个数中,是方程7x+1=10-2x 的解的是____. 2.当k=____时,方程5x -k=3x+8的解是-2.3.若代数式21-x +612x 与31-x +1的值相等,则x=____. 4.如果2x 5a -4-3=0是关于x 的一元一次方程,那么a=____,此时方程的解是____. 5.如果x =-2是方程3x +5= -m 的解, 那么m2=____.6.解方程:5x-|x|=8.7.今年儿子13岁,父亲40岁,多少年后父亲的年龄是儿子年龄的2.5倍?8.一群小孩分一堆梨,1人1个多1个,1人两个少2个,问有几个小孩、几个梨?9.一个三位数, 三个数位上的和是17, 百位上的数比十位上的数大7, 个位上的数是十位上的3倍, 求这个三位数.10.某市居民生活用电基本价格为每度0.40元, 若每月用电量超过a 度, 超出部分按基本电价的70%收费.(1)某户五月份用电84度, 共交电费30.72元, 求a.(2)若该户六月份的电费平均为每度0.36元, 求六月份共用电多少度?应交电费多少元?三、直通中考[2010年辽宁中考]已知关于x的方程ax+2=2(a-x), 它的解满足|x+|=0, 则a=_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三课时一元一次方程
廖雅欣2月3日
1、从算式到方程
①一元一次方程
⑴方程:方程是含有未知数的等式。

列方程式,要先设字母表示未知数(通常用x、y、z等字母表示未知数),,然后根据题目中的相等关系写出等式。

注:Ⅰ、方程有两个条件,一是含有未知数,二是含有“=”,二者缺一不可。


都是方程。

Ⅱ、方程一定是等式,但等式不一定是方程,如6+2=8,又如a+b=b+a,a+2a=3a,它们是表示运算律的恒等式,其中的字母不是未知数而是任意数,故他们也不是方程。

⑵一元一次方程:只含有一个未知数(元),未知数的次数是1,等号两边都是整式(包含单项式与多项式)的方程。

注:Ⅰ、一元一次方程中分母不含未知数,即方程是由整式组成的,如就不是一元一次方程。

Ⅱ、一元一次方程中只含有一个未知数,如就不是一元一次方程。

(注意含参数的一元一次方程)
Ⅲ、一元一次方程化简以后未知数的次数为1,是指含有未知数的项的最高次数为1,如就不是一元一次方程,而可以化简为,故
是一元一次方程。

Ⅳ、注意判别一元一次方程与恒等式(式中的字母取任意值等式都恒成立)。

⑶解方程:解方程就是求出使方程中等号左右两边相等的未知数的值,这个使方程中等号左右两边相等的未知数的值叫做方程的解。

归纳:
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

2、等式的性质
①等式的性质1:等式的两边加上(或减去)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c
②等式性质2 :等式两边同乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a=b,那么ac=bc ; 如果a=b且c不等于0,那么a÷c=b÷c
掌握关键:<1> “两边”“同一个数(或式子) ”
<2> “除以同一个不为0的数”
补充性质:③对称性:等式的左右两边交换位置,所得的结果仍是等式,即由a=b可以推得b=a.
④传递性:如果a=b,b=c,那么a=c.
利用等式的性质解方程,实质就是将方程转化为x=a(a是常数)的形式。

3、解一元一次方程
最简方程?
形如ax=b(a、b都是已知数,a≠0)的方程,我们称为最简方程.它的解是x=b÷a.
将方程化为最简方程:
①去括号:用分配律,去括号解决关于含括号的一元一次方程。

②合并同类项:把含有未知数的项合并在一起。

③移项:把方程一边的某项变号后移到等号的另一边,叫移项。

移项的依据是:等式的基本性质1(注:一般的我们把含未知数的项移到等号的左边,把常数项移到等号的右边。


④把未知数x的系数化成1。

(可能要进行去分母)
【总结】解一元一次方程的一般步骤:
(1)去括号
(2)移项
(3)合并同类项
(4)化为最简方程ax=b(a≠0)
(5)把未知数x的系数化成1
得到方程的解x= b÷a
★移项,合并同类项,系数化为1,要注意什么?
⑴移项时要变号.(变成相反数)
⑵合并同类项时,只是把同类项的系数相加作为所得项的系数,字母部分不变.
⑶系数化为1,也就是说方程两边同时除以未知数前面的系数.
例1、利用等式的性质,用适当的数或式子填空,使结果仍是等式。

⑴若4x = 7x – 5,则4x + = 7x
⑵若3a + 4 = 8,则3a = 8 + .
⑶3x = - 9,两边都,得x = -3
⑷- 0.5x = 2,两边都,得x = .
⑸2x + 1 = 3,两边都,得2x = ;两边都,得x = .
例2、(整体求值法)已知5a+8b=3b+10,试利用等式的性质求3(a+b)的值。

例3、(整体求值法)已知,求代数式的值。

例4、已知方程是关于x的一元一次方程,求a的值。

例5、若关于x的方程的一个解是2,求a的值。

例6、若x=y,且字母a可以取任何有理数,则下列等式的变形①;②;
③;④;其中一定成立的有。

例7、解方程: x+7=26
分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的7.
例8、(黄冈中考)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.
例9、利用等式性质解下列方程:
⑴ -5X=20⑵
例10、检验:3x + 7 = 1 的解是否是x = -2。

(把解带入方程,判断等号两边是否相等)
例11、根据下列条件, 列出方程:
(1)x的2倍与3的差是5;
(2)x的三分之一与y的和等于4.
例12、书本导语中的问题
复习:路程=速度×时间速度=路程÷时间时间=路程÷速度。

相关文档
最新文档