2013中考全国100份试卷分类汇编 轴对称

合集下载

2013中考全国100份试卷分类汇编 - 副本

2013中考全国100份试卷分类汇编 - 副本

2013中考全国100份试卷分类汇编一元一次不等式(组)1、(德阳市2013年)适合不等式组的全部整数解的和是A.一1 B 、0 C .1 D .22、(绵阳市2013年)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( C ) A .■、●、▲ B .▲、■、● C .■、▲、● D .●、▲、■3、(2013陕西)不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A .21>x B .1-<x C .211<<-x D .21->x4、(2013济宁)已知ab=4,若﹣2≤b ≤﹣1,则a 的取值范围是( ) A .a ≥﹣4 B .a ≥﹣2 C .﹣4≤a ≤﹣1 D .﹣4≤a ≤﹣25、(2013年临沂)不等式组20,1 3.2x x x ->⎧⎪⎨+≥-⎪⎩的解集是(A)8x ≥. (B)2x >. (C)02x <<. (D)28x <≤6、(2013年武汉)不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1B .-2<x <1C .x ≤-1D .x ≥27、(2013四川南充,5,3分)不等式组()⎪⎩⎪⎨⎧≥+--+23x 321x 1x 3>的整数解是()A.-1,0,1B. 0,1C. -2,0,1D. -1,18、(2013河南省)不等式组221xx≤⎧⎨+>⎩的最小整数解为【】(A)-1 (B)0 (C)1 (D)29、(2013•内江)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.10、(2013山西,2,2分)不等式组35215xx+≥⎧⎨-<⎩的解集在数轴上表示为()11、(2013•攀枝花)已知实数x,y,m 满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣612、(2013•眉山)不等式组的解集在数轴上表示为()A.B.C.D.13、(2013•雅安)不等式组的整数解有()个.A.1B.2C.3D.414、(2013泰安)不等式组的解集为()A.﹣2<x<4 B.x<4或x≥﹣2 C.﹣2≤x<4 D.﹣2<x≤415、(2013聊城)不等式组的解集在数轴上表示为()A.B.C.D.16、(2013•滨州)若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线17、(2013•铁岭)如图,在数轴上表示不等式组的解集,其中正确的是()A.B.C.D.18、(2013•张家界)把不等式组的解集在数轴上表示正确的是()A.B.C.D.19、(2013•淮安)不等式组的解集是()A.x≥0 B.x<1 C.0<x<1 D.0≤x<120、(2013•湘西州)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>21、(2013•孝感)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在22、(2013•荆门)若关于x的一元一次不等式组有解,则m的取值范围为()A .B .m ≤C .D .m ≤23、(2013•恩施州)下列命题正确的是( ) A . 若a >b ,b <c ,则a >c B . 若a >b ,则ac >bc C . 若a >b ,则ac 2>bc 2 D . 若ac 2>bc 2,则a>b 24、(2013•玉林)在数轴上表示不等式x +5≥1的解集,正确的是( ) A .B .C .D .25、(2013浙江丽水) 若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解释A. x ≤2B. x >1C. 1≤x <2D. 1<x ≤226、(2013年广东省3分、8)不等式5215+>-x x 的解集在数轴上表示正确的是27、(2013年广东省3分、4)已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33> 28、(2013福省福州4分、6)不等式1+x <0的解集在数轴上表示正确的是( )A .B .C .D .29、(13年安徽省4分、5)已知不等式组⎩⎨⎧≥+>-0103x x 其解集在数轴上表示正确的是( )30、(2013台湾、12)解一元一次不等式12﹣(2x﹣5)≥7x﹣3,得其解的范围为何?()A.x≥B.x≥C.x≤D.x≤->的解集为_________.31、(2013成都市)不等式2x1332、(2013•烟台)不等式的最小整数解是.33、(2013•宁夏)点P(a,a﹣3)在第四象限,则a的取值范围是.34、(2013•包头)不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.35、(2013•曲靖)不等式和x+3(x﹣1)<1的解集的公共部分是.36、(2013•白银)不等式2x+9≥3(x+2)的正整数解是.37、(2013哈尔滨)不等式组3x-1<2,x+3≥1的解集是.38、(2013安顺)已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是.39、(2013•钦州)不等式组的解集是.40、(2013•内江)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是.41、(2013•鄂州)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.42、(2013•株洲)一元一次不等式组的解集是.43、(2013•宁夏)若不等式组有解,则a的取值范围是 a >﹣1 .44、(2013•苏州)解不等式组:.45、(2013•淮安)解不等式:x+1≥+2,并把解集在数轴上表示出来.46、(2013•巴中)解不等式:,并把解集表示在数轴上.47、(13年北京5分15)解不等式组:⎪⎩⎪⎨⎧>+->x x x x 2312348、(2013年广东湛江)解不等式组 ,并把它的解集在数轴上表示出来.49、(2013•常德)求不等式组的正整数解.点评:50、(2013菏泽)(2)解不等式组,并指出它的所有非负整数解.51、(2013•衢州)不等式组的解集是 x ≥2 .2110x xx +>⎧⎨-<⎩考点:解一元一次不等式组.专题:计算题.分析:分别计算出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥2;由②得,x≥﹣;则不等式组的解集为x≥2.故答案为x≥2.点评:本题考查了解一元一次不等式组,找到公共解是解题的关键,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.52、(2013•自贡)解不等式组:并写出它的所有的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.专题:计算题.分析:先求出两个不等式的解集,再求其公共解,然后写出整数解即可.解答:解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).53、(2013•十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是﹣2≤a<﹣1.(2)如果[]=3,求满足条件的所有正整数x.考点:一元一次不等式组的应用.专题:新定义.分析:(1)根据[a]=﹣2,得出﹣2≤a<﹣1,求出a的解即可;(2)根据题意得出3≤[]<4,求出x的取值范围,从而得出满足条件的所有正整数的解.解答: 解:(1)∵[a ]=﹣2,∴a 的取值范围是﹣2≤a <﹣1,(2)根据题意得:3≤[]<4,解得:5≤x <7,则满足条件的所有正整数为5,6. 点评:此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.54、(2013•咸宁)(2)解不等式组:.考点: 解一元一次不等式组; 分析:(2)分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可. 解答: 解:(2)解不等式x+6≤3x+4,得;x ≥1.解不等式>x ﹣1,得:x <4.原不等式组的解集为:1≤x <4. 点评:解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.55、(2013年佛山市)已知两个语句:①式子12-x 的值在1(含1)与3(含3)之间; ②式子12-x 的值不小于1且不大于3. 请回答以下问题:(1) 两个语句表达的意思是否一样(不用说明理由)? (2) 把两个语句分别用数学式子表示出来.分析:(1)注意分析“在1(含1)与3(含3)之间”及“不小于1且不大于3”的意思即可; (2)根据题意可得不等式组.解:(1)一样;(2)①式子2x ﹣1的值在1(含1)与3(含3)之间可得1≤2x ﹣1≤3; ②式子2x ﹣1的值不小于1且不大于3可得.点评:此题主要考查了由实际问题抽象出一元一次不等式组,关键是正确理解题意,抓住题干中体现不等关系的词语.56、(2013•郴州)解不等式4(x﹣1)+3≥3x,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:首先去括号,然后移项、合并同类项,系数化成1,即可求得不等式的解集.解答:解:去括号得:4x﹣4+3≥3x,移项得:4x﹣3x≥4﹣3则x≥1.把解集在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.57、(2013•衡阳)解不等式组:;并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式①得:x≥1,解不等式②得:x>2,∴不等式组的解集为x>2,在数轴上表示不等式组的解集为.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.58、(2013•湖州)解不等式组:.考点:解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>;由②得,x<5,故此不等式组的解集为:<x <5.点评: 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.59、(2013凉山州)已知x=3是关于x 的不等式的解,求a 的取值范围.考点:不等式的解集.分析:先根据不等式的解的定义,将x=3代入不等式,得到9﹣>2,解此不等式,即可求出a 的取值范围. 解答:解:∵x=3是关于x 的不等式的解,∴9﹣>2,解得a <4.故a 的取值范围是a <4.点评:本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,根据不等式的解的定义得出9﹣>2是解题的关键.60、(2013年深圳市)解下等式组:⎪⎩⎪⎨⎧->++<+x x x x 3212347859,并写出其整数解。

2013数学中考百城细分类代数几何综合

2013数学中考百城细分类代数几何综合
1- m 2 当 P 的坐标为(m, )时,
2
m-1 x-m=
2
2
m=-
m=1
9
2x2-2- 1- m = m-1, 2
5
x=-
x=1
6
与 x>1 矛盾,此时点 Q 不满足题设条件;
3 当 P 的坐标为(m,2m-2)时,
m-x =2m-2
9
m=
m=1
2
2x2-2-(2m-2) = m-1,
5 x=-
考点:二次函数综合题. 专题:综合题. 分析:(1)由 OA 的长度确定出 A 的坐标,再利用对称性得到顶点坐标,设出抛物线的顶
点形式 y=a(x﹣2)2+3,将 A 的坐标代入求出 a 的值,即可确定出抛物线解析式; (2)设直线 AC 解析式为 y=kx+b,将 A 与 C 坐标代入求出 k 与 b 的值,确定出直线
2
2
OB DB 1 m-1 ②当△BOC∽△BDP 时, = , = ,p=2m-2 或 p=2-2m,
OC DP 2 |p|
点 P 的坐标为(m,2m-2)或(m,2-2m);
m-1
1- m
综上所述点 P 的坐标为(m, )、(m, )、(m,2m-2)或(m,2-2m);
2
2
(3)不存在满足条件的点 Q。 点 Q 在第一象限内的抛物线 y=2x2-2 上, 令点 Q 的坐标为(x, 2x2-2),x>1, 过点 Q 作 QE⊥直线 l ,
数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的
探究型试题.
4、(2013 陕西)在平面直角坐标系中,一个二次函灵敏的图象经过点 A(y1,0)、B(3,

(全国100套)2013年中考数学试卷分类汇编 中心对称图形、轴对称图形

(全国100套)2013年中考数学试卷分类汇编 中心对称图形、轴对称图形

中心对称图形、轴对称图形1、(2013年潍坊市)下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是().A. B. C. D.答案:A.考点:轴对称图形与中心对称图形的特征。

点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。

.2、(2013•某某)下列标志中,可以看作是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3、(2013某某)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确;故选D .点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.4、(2013某某某某,7,3分)有五X 卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。

将卡片背面朝上洗匀,从中抽取一X ,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 ( )A. 51B.52 C. 53 D. 54 答案:B解析:既是轴对称图形,又是中心对称图形的有线段、圆,共2X ,所以,所求概率为:525、(2013达州)下列图形中,既是轴对称图形,又是中心对称图形的是( )答案:D解析:A 、C 只是轴对称图形,不是中心对称图形;B 是中心对称图形,不是轴对称轴图形,只有D 符合。

2013中考全国100份试卷分类汇编 圆的综合题

2013中考全国100份试卷分类汇编  圆的综合题

2013中考全国100份试卷分类汇编圆的综合题1、(2013•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()...,,ππ3、(2013•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.+r==+r=4、(2013四川宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).考点:相似三角形的判定与性质;垂径定理;圆周角定理.分析:①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:=,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=;④首先求得△ADF的面积,由相似三角形面积的比等于相似比,即可求得△ADE的面积,继而求得S△DEF=4.解答:解:①∵AB是⊙O的直径,弦CD⊥AB,∴=,DG=CG,∴∠ADF=∠AED,∵∠F AD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG =CG ﹣CF =2; 故②正确; ③∵AF =3,FG =2, ∴AG ==,∴在Rt △AGD 中,tan ∠ADG ==,∴tan ∠E =;故③错误;④∵DF =DG +FG =6,AD ==,∴S △ADF =DF •AG =×6×=3,∵△ADF ∽△AED , ∴=()2,∴=,∴S △AED =7,∴S △DEF =S △AED ﹣S △ADF=4;故④正确. 故答案为:①②④.点评:此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.5、(2013年武汉)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接PA ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=;(2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.第22题图①第22题图②解析:(1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC . ∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a .在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aa EG a EG 402432=-,∴EG =12a . ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF .6、(2013•常州)在平面直角坐标系xOy 中,已知点A (6,0),点B (0,6),动点C 在以半径为3的⊙O 上,连接OC ,过O 点作OD ⊥OC ,OD 与⊙O 相交于点D (其中点C 、O 、D 按逆时针方向排列),连接AB .(1)当OC ∥AB 时,∠BOC 的度数为 45°或135° ; (2)连接AC ,BC ,当点C 在⊙O 上运动到什么位置时,△ABC 的面积最大?并求出△ABC 的面积的最大值.(3)连接AD ,当OC ∥AD 时,①求出点C 的坐标;②直线BC 是否为⊙O 的切线?请作出判断,并说明理由.第22(2)题图AB=,根据三角形面积公式得到当,则=,即=,再利用勾股定理计算出,所以∠AB=,AB=,AB=3,CE=OC+CE=3+3CE×3+36=99=,即=,解得,OF=,,7、(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O 与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是30°;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.②利用切线的性质以及矩形的性质和相似三角形的判定和性质得出=×n=,±OA=EOA==EOB=,=,±OA=±OA====8、(2013•包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC 的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.,ADB==,AC=2==,AB=ADB=ADB=ACE=.9、(2013•荆门)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.,即可得出答案.EOF=化简得:,时,10、(2013•莱芜)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.×.CO1+×π.11、(2013•遂宁)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,求BN 的长.CE====,=,=,CN==﹣.12、(2013济宁)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.考点:反比例函数综合题.分析:(1)∠AOB=90°,由圆周角定理的推论,可以证明AB是⊙P的直径;(2)将△AOB的面积用含点P坐标的表达式表示出来,容易计算出结果;(3)对于反比例函数上另外一点Q,⊙Q与坐标轴所形成的△COD的面积,依然不变,与△AOB的面积相等.解答:(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,∴AB是⊙P的直径.(2)解:设点P坐标为(m,n)(m>0,n>0),∵点P是反比例函数y=(x>0)图象上一点,∴mn=12.如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.由垂径定理可知,点M为OA中点,点N为OB中点,∴OA=2OM=2m,OB=2ON=2n,∴S△AOB=BO•OA=×2n×2m=2mn=2×12=24.(3)证明:若点Q为反比例函数y=(x>0)图象上异于点P的另一点,参照(2),同理可得:S△COD=DO•CO=24,则有:S△COD=S△AOB=24,即BO•OA=DO•CO,∴DO•OC=BO•OA.点评:本题考查了反比例函数的图象与性质、圆周角定理、垂径定理等知识,难度不大.试题的核心是考查反比例函数系数的几何意义.对本题而言,若反比例函数系数为k,则可以证明⊙P在坐标轴上所截的两条线段的乘积等于4k;对于另外一点Q所形成的⊙Q,此结论依然成立.13、(2013•攀枝花)如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A 作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.EF=x BD==,即EFF==,EF=xBEBD=AB=2BD=(x,×ACB===14、(2013年南京)如图,AD是圆O的切线,切点为A,AB是圆O的弦。

2013中考全国100份试卷分类汇编:反比例函数解析

2013中考全国100份试卷分类汇编:反比例函数解析

2013中考全国100份试卷分类汇编反比例函数1、(2013年潍坊市)设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.2、(2013年临沂)如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在第一象限内的图像经过OB 边的中点C ,则点B 的坐标是(A )( 1, 3). (B )(3, 1 ). (C )( 2 ,32). (D )(32 ,2 ).答案:C解析:设B 点的横坐标为a ,等边三角形OAB 中,可求出B,所以,C 点坐标为(,22a ),代入xy 3=得:a =2,故B 点坐标为( 2 ,32) 3、(2013年江西省)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ). A .0 B .1 C .2D .5【答案】 C .【考点解剖】 本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】 反比例函数图象既是轴对称图形又是中心对称图形,只有当A 、B 、O 三点共线时,才会有线段AB 的长度最小OA OB AB +=,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】 把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法规律】 要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.【关键词】 反比例函数 一次函数 双曲线 线段最小4、(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2x的图像没有公共点,则(A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 答案:C解析:当k 1>0,k2<0时,正比函数经过一、三象限,反比函数在二、四象限,没有交点;当k 1<0,k2>0时,正比函数经过二、四象限,反比函数在一、三象限,没有交点;所以,选C 。

2013中考全国100份试卷分类汇编 位似图像

2013中考全国100份试卷分类汇编  位似图像

2013中考全国100份试卷分类汇编位似图像1、(2013济宁)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为cm.考点:相似三角形的应用.分析:根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.解答:解:∵DE∥BC,∴△AED∽△ABC∴=设屏幕上的小树高是x,则=解得x=18cm.故答案为:18.点评:本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.2、(2013•孝感)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为3、(2013•泰州)如图,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,﹣3),△AB′O′是△ABO关于的A的位似图形,且O′的坐标为(﹣1,0),则点B′的坐标为(53,﹣4).== ====4、(13年山东青岛、8)如图,△ABO 缩小后变为O B A ''△,其中A 、B 的对应点分别为''B A 、,''B A 、均在图中格点上,若线段AB 上有一点),(n m P ,则点P 在''B A 上的对应点'P 的坐标为( )A 、),2(n m B 、),(n m C 、)2,(n m D 、)2,2(n m 答案:D解析:因为AB =''A B =''12A B AB =,所以点P (m ,n )经过缩小变换后点'P 的坐标为5、(2013•南宁)如图,△ABC 三个定点坐标分别为A (﹣1,3),B (﹣1,1),C (﹣3,2).(1)请画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出△A 2B 2C 2,并求出S △A1B1C1:S △A2B2C2的值.,)=6、(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.位似变换;作。

(全国100套)2013年中考数学试卷分类汇编 轴对称

(全国100套)2013年中考数学试卷分类汇编 轴对称

轴对称1、(某某市2013年)下列“数字”图形中,有且仅有一条对称轴的是( A )[解析]B不是轴对称图形,C、D都有2条对称轴。

2、(2013某某)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称做最短路线得出AE=BE,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.解答:解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则BE=4,即BE=AE,∵C′O∥AE,∴B′O=C′O=3,(第10题图)EDCBA∴点C′的坐标是(0,3),此时△ABC 的周长最小. 故选:D .点评:此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C 点位置是解题关键.3、(2013年某某)如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定...成立的是 (A ) AB=AD. (B) AC 平分∠BCD. (C) AB=BD. (D) △BEC ≌△DEC. 答案:C解析:由中垂线定理,知AB =AD ,故A 正确,由三线合一知B 正确,且有BC =BD ,故D 也正确,只有C 不一定成立。

4、(2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A .30°B .45°C .60°D .75°考点:生活中的轴对称现象;平行线的性质.分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解答:解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选C.点评:本题是考查图形的对称、旋转、分割以及分类的数学思想.5、(2013•某某)在四X背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两X,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.考点:列表法与树状图法;轴对称图形.3718684分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.6、(2013某某,8,2分)如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条【答案】C【解析】这是一个正八边形,对称轴有4条。

2013中考全国100份试卷分类汇编:四边形综合

2013中考全国100份试卷分类汇编:四边形综合

2013中考全国100份试卷分类汇编四边形综合2、(2013陕西)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC ,若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留根号) 考点:三角形面积的求法及特殊角的应用。

解析:BD 平分AC ,所以OA=OC=3,因为∠BOC=120°, 所以∠DOC=∠A0B=60°,过C 作CH ⊥BD 于H , 过A 作AG ⊥BD 于G ,在△CHO 中,∠C0H=60°,OC=3,所以CH=323,同理:AG=323,所以四边形ABCD 的面积=3123238=⨯=+∆∆CBD ABD S S 。

3、(2013河南省)如图,在等边三角形ABC 中,6BC cm =,射线AG BC ∥,点E 从点A 出发沿射线AG 以1/cm s 的速度运动,同时点F 从点B 出发沿射线BC 以2/cm s 的速度运动,设运动时间为()t s(1)连接EF ,当EF 经过AC 边的中点D 时,求证:ADE CDF ≅ 证明:∵AG BC ∥ ∴EAD ACB ∠=∠ ∵D 是AC 边的中点A BDCOHG第14题图∴AD CD =又∵ADE CDF ∠=∠ ∴ADE CDF ≅(2)填空:①当为 s 时,四边形ACFE 是菱形;②当为 s 时,以,,,A F C E 为顶点的四边形是直角梯形。

【解析】①∵当四边形ACFE 是菱形时,∴AE AC CF EF === 由题意可知:,26AE t CF t ==-,∴6t = ②若四边形ACFE 是直角梯形,此时EF AG ⊥过C 作CM AG ⊥于M ,3AG =,可以得到AE CF AM -=, 即(26)3t t --=,∴3t =,此时,C F 与重合,不符合题意,舍去。

若四边形若四边形AFCE 是直角梯形,此时AF BC ⊥, ∵△ABC 是等边三角形,F 是BC 中点, ∴23t =,得到32t =经检验,符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编轴对称1、(绵阳市2013年)下列“数字”图形中,有且仅有一条对称轴的是( A )[解析]B不是轴对称图形,C、D都有2条对称轴。

2、(2013济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C 是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C 的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称做最短路线得出AE=BE,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.解答:解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则BE=4,即BE=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选:D.(第10题图)E D CBA点评:此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C 点位置是解题关键.3、(2013年临沂)如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定...成立的是 (A ) AB=AD.(B) AC 平分∠BCD.(C) AB=BD.(D) △BEC ≌△DEC.答案:C 解析:由中垂线定理,知AB =AD ,故A 正确,由三线合一知B 正确,且有BC =BD ,故D 也正确,只有C 不一定成立。

4、(2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A .30°B .45°C .60°D .75°考点:生活中的轴对称现象;平行线的性质.分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解答:解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选C .点评:本题是考查图形的对称、旋转、分割以及分类的数学思想.5、(2013•自贡)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案...=.6、(2013山西,8,2分)如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条【答案】C【解析】这是一个正八边形,对称轴有4条。

7、(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.8、(2013泰安)下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8考点:轴对称图形.分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.解答:解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选B.点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.9、(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC 的最小值为()...)AB=×AM=,×AN=AD=DN=,,﹣﹣的最小值是11、(2013•内江)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD 的中点,P是对角线BD上一点,则PM+PN的最小值=5.12、(2013泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.13、(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.14、(2013•烟台)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.15、(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是1+.先求出BC和BE长,代入求出即可.解答:BE=,BC=1+,)BC=AE=2+﹣(=,BC+BE=1+=1+.16、(2013•泰州)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为6cm.17、(2013•嘉兴)如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为6,小球P所经过的路程为6.EF=GH=HM=,MN=NE=+++=6,618、(2013年广州市)点P在线段AB的垂直平分线上,PA=7,则PB=______________ .分析:根据线段垂直平分线的性质得出PA=PB,代入即可求出答案解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等19、(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点,则PB+PE的最小值是10.线段最短可知,连接=1020、(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.21、(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.,)=22、(2013哈尔滨压轴题)已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C),点E 、F 分别是线段BC和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G .(1)如图l ,求证:∠EAF=∠ABD ;(2)如图2,当AB=AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF=12 ∠BAF ,AF=23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.考点:本题考查了三角形全等的判断和性质,相似三角形的判断和性质,平行线分线段成比例定理,轴对称性质,三角形四边形内角和,线段的垂直平分线性质要求较高的视图能力和证明推理能力。

分析:(1)连接FE 、FC ,先证△ABF、△CBF 全等,得∠FEC=∠BAF ,通过四边形ABEF 与三角形AEF 内角和导出;(2)先由△AFG∽△BFA,推出∠AGF=∠BAF ,再得BG=MG ,通过△AGF∽△DGA ,导出GD=92a ,FD=52a ,过点F 作FQ ∥ED 交AE 于Q ,通过BE ∥AD 德线段成比例设EG=2kBG=MG=3k ,GQ=49EG=89k ,MQ=3k+89k =359k ,从而FM=72FN 本题综合考查了相似三角形线段之间的比例关系、平行线分线段成比例定理等重要知识点,难度较大.在解题过程中,涉及到数目较多的线段比,注意不要出错解答:(1)证明:如图1 连接FE 、FC ∵点F 在线段EC 的垂直平分线上∴.FE=FC ∴∠l=∠2 ∵△ABD 和△CBD 关于直线BD 对称.∴AB=CB ∠4=∠3 BF=BF∴△ABF≌ACBF ∴∠BAF=∠2 FA=FC ∴FE=FA ∠1=∠BAF . ∴∠5=∠6 ∵∠l+∠BEF=1800∠BAF+∠BEF=1800∵∠BAF+∠BEF+∠AFE+∠ABE=3600 ∴.∠AFE+∠ABE=1800 又∵∠AFE+∠5+∠6=1800 ∴∠5+∠6=∠3+∠4 ∴∠5=∠4即∠EAF=∠ABD (2)FM=72FN 证明:如图2 由(1)可知∠EAF=∠ABD 又∵∠AFB=∠GFA ∴△AFG∽△BFA∴∠AGF=∠BAF又∵∠MBF=12∠BAF .∠MBF=12∠AGF又∵∠AGF=∠MBG+∠BMG∴∠MBG=∠BMG ∴BG=MG∵AB=AD ∴∠ADB=∠ABD=∠EAF又∵∠FGA=∠AGD .∴△AGF ∽△DGA .GF AG AF AG GD AD ∴==∵AF=23AD 23GF AG AG GD ∴== 设GF=2a AG=3a .∴GD=92a ∴FD==52a ∵∠CBD=∠ABD ∠ABD=∠ADB ∴.∠CBD=∠ADB ∴BE //AD .∴BG EG GD AG =23EG AG BG GD ∴== 设EG=2k ∴BG=MG=3k 过点F 作FQ ∥ED 交AE 于Q24552GO GF a a QE FD ∴===∴45GO QE ∴= ∴GQ=49EG=89k . MQ=3k+89k =359k ∵FQ ∥ED 72MF MQ FN QE ∴==∴FM=72FN。

相关文档
最新文档