遗传算法解决TSP问题的Matlab程序

合集下载

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法引言在现代科技发展的背景下,优化算法成为解决各种问题的重要工具之一。

遗传算法作为一种生物启发式算法,具有全局寻优能力和适应性强的特点,在许多领域中被广泛应用。

本文将介绍如何使用Matlab进行遗传算法优化问题求解,包括问题建模、遗传算子设计、遗传算法编码、适应度评价和求解过程控制等方面。

一、问题建模在使用遗传算法求解优化问题之前,我们首先需要将问题定义为数学模型。

这包括确定问题的目标函数和约束条件。

例如,假设我们要最小化一个多变量函数f(x),其中x=(x1,x2,...,xn),同时还有一些约束条件g(x)<=0和h(x)=0。

在Matlab中,我们可通过定义一个函数来表示目标函数和约束条件。

具体实现时,我们需要在目标函数和约束函数中设置输入参数,通过调整这些参数进行优化。

二、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择(Selection)、交叉(Crossover)、变异(Mutation)和替代(Replacement)等。

选择操作通过一定的策略从种群中选择出适应度较高的个体,作为进行交叉和变异的父代个体。

交叉操作通过将两个父代个体的基因片段进行交换,产生新的子代个体。

变异操作通过改变个体某些基因的值,引入新的基因信息。

替代操作通过选择适应度较低的个体将其替换为新产生的子代个体。

三、遗传算法编码在遗传算法中,个体的编码方式决定了问题的解空间。

常见的编码方式有二进制编码和实数编码等。

当问题的变量是二进制形式时,采用二进制编码。

当问题的变量是实数形式时,采用实数编码。

在Matlab中,我们可以使用矩阵或向量来表示个体的基因型,通过制定编码方式来实现遗传算法的编码过程。

四、适应度评价适应度评价是遗传算法中判断个体优劣的指标。

在适应度评价过程中,我们将问题的目标函数和约束条件应用于个体的解,计算得到一个适应度值。

适应度值越大表示个体越优。

利用遗传算法求解TSP问题

利用遗传算法求解TSP问题

利⽤遗传算法求解TSP问题⼀、摘要TSP问题是指给定平⾯上N个点及每点的坐标,求⼀条路径,遍历所有的点并回到起点,使这条路径长度最⼩。

TSP问题是⼀个组合优化问题。

该问题可以被证明具有NPC计算复杂性。

因此,任何能使该问题的求解得以简化的⽅法,都将受到⾼度的评价和关注。

遗传算法是⼈⼯智能⽅法的⼀种,⽤于求解各种传统⽅法不⽅便求解或耗时很长的问题。

下⾯给出遗传算法求解TSP问题的步骤。

在传统遗传算法求解TSP的基础上,提出了⼀种新的编码⽅式,并且讨论了⼀种优化⽅法的可⾏性。

本次实验的程序⾸先在matlab上验证了基本的算法,然⽽由于matlab运⾏较慢,故⼜移植到C++平台上,经过测试,实验结果良好。

⼆、算法实现遗传算法的实现主要包括编码、选择、交叉、编译、将个体放⼊新种群这么⼏个步骤,经过很多代的编译求解,以逼近最优解。

下⾯讨论每⼀个步骤的实现,其中编码⽅式是我在考虑了传统编码⽅式不利于计算的缺点下,重新设计的⼀种全新的编码⽅式。

编码在传统TSP问题中,编码可以直接采⽤⼆进制编码或⾃然编码的形式,⽐如直接把城市转化成(2,5,4,1,3,6)的形式,表⽰从2到5到4到1到3到6最后回到起点。

但是在求解TSP问题时,如果直接采⽤此种编码⽅式,会导致在交叉或变异时出现冲突的情况。

如(2,5,4,1,3,6)和(3,5,6,1,2,4)交换后变成了(2,5,6,1,2,6)和(3,5,4,1,3,4),显然路径出现了冲突的现象,传统的解决⽅式是通过逐步调整的⽅法来消除冲突,但是这种⽅法增加了编码的复杂度,不利于问题的求解,根据问题的特点,提出了采⽤⼀种插⼊序号的编码⽅式。

假设6个城市(1,2,3,4,5,6)现在有编码(1,1,2,2,1,3),让第n个编码表⽰n放在第⼏个空格处。

那么⽣成路径的规则是⾸先取1放在第⼀个(1),然后取2放在第⼀个空格处(2,1),然后取3放在第⼆个空格处(2,3,1),然后取4放在第⼆个空格处(2,4,3,1)然后取5放在第⼀个空格处(5,2,4,3,1)最后取6放在第3个空格处(5,2,6,4,3,1)。

一些解决TSP问题的算法及源代码

一些解决TSP问题的算法及源代码
算法对应动态演示图:
模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当
前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法
决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
(3)产生新解S′
(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
(wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).
上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。
代价函数差设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un),则代价函数差为:
第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。
事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若Δt′<0则接受S′作
为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
% coordinates given by LOC, which is an M by 2 matrix and M is

TSP问题的求解

TSP问题的求解
(2)缺点:但是遗传算法的局部搜索能力较差,导致单纯的遗传算法比较 费时,在进化后期搜索效率较低。在实际应用中,遗传算法容易产生早熟收敛的 问题。采用何种选择方法既要使优良个体得以保留,又要维持群体的多样性,一 直是遗传算法中较难解决的问题。 5.3 线性规划优缺点:
(1)优点:算法稳定,易得标准值 (2)缺点:针对 TSP 问题,需要先计算出第 i 个城市到其余城市的距离, 当城市数目较多时计算复杂。
关键词:TSP 问题 模拟退火算法 线性规划 遗传算法
一、问题重述
1.1 引言 TSP 是典型的组合优化问题, 并且是一个 NP-hard 问题,TSP 简单描述为:
一名商人欲到 n 个不同的城市去推销商品, 每 2 个城市 i 和 j 之间的距离为 d ij , 如何选择一条路径使得商人每个城市走一遍后回到起点, 所走的路径最短。用数 学符号表示为:设 n 维向量 s =(c1 , c2 , …, cn )表示一条路经, 目标函数为:min
小可以不断变化。在该题中,取温度的衰减系数α=0.9,其中固定温度下最大迭 代次数为:100 次,固定温度下目标函数值允许的最大连续未改进次数为 5 次, 即当算法搜索到的最优值连续若干步保持不变时停止迭代。
④最短路径的确定
借助 Matlab 通过模拟退火算法得出最短路径为:27—26—25—24—15— 14—8—7—11—10—21—20—19—18—9—3—2—1—6—5—4—13—12—30—23 —22—17—16—29—28—27,最短路径图如下图 1
图1 最短距离为:423.7406
(2)法二:遗传算法 优化过程如下图 2 所示:
图2 初始种群中的一个随机值(初始路径):
22—6—3—16—11—30—7—28—17—14—8—5—29—21—25—27—26—19 —15—1—23—2—4—18—24—13—9—20—10—12—22

基于Matlab的遗传算法解决TSP问题的报告

基于Matlab的遗传算法解决TSP问题的报告

报告题目:基于Matlab的遗传算法解决TSP问题说明:该文包括了基于Matlab的遗传算法解决TSP问题的基本说明,并在文后附录了实现该算法的所有源代码。

此代码经过本人的运行,没有发现错误,结果比较接近理论最优值,虽然最优路径图有点交叉。

因为本人才疏学浅,本报告及源代码的编译耗费了本人较多的时间与精力,特收取下载积分,还请见谅。

若有什么问题,可以私信,我们共同探讨这一问题。

希望能对需要这方面的知识的人有所帮助!1.问题介绍旅行商问题(Traveling Salesman Problem,简称TSP)是一个经典的组合优化问题。

它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城市出发,需要经过所有城市后,回到出发地,应如何选择行进路线,以使总行程最短。

从图论的角度看,该问题实质是在一个带权完全无向图中。

找一个权值最小的Hemilton回路。

其数学描述为:设有一个城市集合其中每对城市之间的距离(),i j d c c R +∈,求一对经过C中每个城市一次的路线()12,,n c c c ΠΠΠ⋯使()()()1111min ,,n i n i i d c c d c c −ΠΠΠΠ+=+∑其中()12,,12n n ΠΠΠ⋯⋯是,的一个置换。

2.遗传算法2.1遗传算法基本原理遗传算法是由美国J.Holland 教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。

遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应用。

matlab中的遗传算法

matlab中的遗传算法

matlab中的遗传算法【原创版】目录一、引言二、遗传算法的基本原理1.种群概念2.适应度函数3.选择操作4.交叉操作5.变异操作三、MATLAB 中遗传算法的实现1.准备工作2.遗传算法的实现四、遗传算法的应用案例1.旅行商问题2.装载问题五、遗传算法的优缺点六、结论正文一、引言遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法,其主要思想是将进化过程中的自然选择、交叉和变异等遗传操作应用到问题的求解过程中,从而实现对问题的优化求解。

遗传算法在解决复杂问题、非线性问题以及大规模问题等方面具有较强的优势,因此在各个领域得到了广泛的应用。

本文将介绍遗传算法的基本原理以及在MATLAB 中的实现。

二、遗传算法的基本原理1.种群概念遗传算法以一个种群作为优化过程的载体。

种群中的个体代表问题的解,每个个体由一组参数表示。

在优化过程中,种群会不断进化,最终收敛到问题的最优解。

2.适应度函数适应度函数是遗传算法的核心部分,用于评价种群中个体的优劣。

适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。

在遗传算法的优化过程中,适应度函数用于选择优秀的个体,从而指导种群的进化。

3.选择操作选择操作是基于适应度函数的一种选择策略,用于选择下一代的父代个体。

常见的选择方法有轮盘赌选择、锦标赛选择等。

4.交叉操作交叉操作是遗传算法中产生新个体的主要方式,通过将选中的优秀个体进行交叉操作,产生具有更好适应度的新个体。

常见的交叉方法有单点交叉、多点交叉、均匀交叉等。

5.变异操作变异操作是在遗传算法中引入随机性的一种方式,通过随机改变某些基因的值,使新个体在进化过程中具有一定的多样性。

变异操作的强度由变异概率控制。

三、MATLAB 中遗传算法的实现1.准备工作在 MATLAB 中实现遗传算法,首先需要定义适应度函数、选择操作、交叉操作和变异操作等。

此外,还需要设置遗传算法的参数,如迭代次数、种群大小、交叉概率、变异概率等。

遗传算法matlab程序代码

遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。

在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。

改进遗传算法求解TSP问题的Matlab程序设计

改进遗传算法求解TSP问题的Matlab程序设计
第 2 卷 第 2期 1
2 1 年 6月 01
湖 南 工 程 学 院 学 报
Vo . 1 No 2 12 _ .
J n 0 1 u e2 1
J u n l fHu a n tt t fEn ie r g o r a n n I si eo g n e i o u n
改 进 遗 传 算 法 求 解 TS 问 题 的 M a lb 程 序 设 计 P ta
f n t n p p— TS nt l e( OP I E, u ci o o Piii i P az SZ NCI —
TI ) ES
直接 将它们 复 制 到下 一 代 群 体 中. 文 中用 a表 示 本
最优 个体 保存 的 比例 .
f n t n p p — s lc ( e g h, OP I E, i u ci o o ee t L n t P SZ ft — n s , o D , C TI e s p p, N I ES, ) a t - o n ( OP I E *a -  ̄ ru d P SZ );
关键 词 :改进遗 传算 法 ; P问题 ; t b程序 TS Mal a 中 图分类号 :TP 9 31 文献标 识码 :A 文章 编号 :1 7 一 l9 2 1 ) 2 O 2 4 6 1 1X( O 1 0 一O 4 —0
0 引 言
旅 行 商 问 题 ( a eig ae n P o lm, Trv l S lma rbe n TS ) 又 叫货 郎担 问题 , P , 是最基 本 的路 线 问题 , 问 该
e nd
p etj : = p p M () : ; b s(, ) o ( j , )
e nd
3 2 适 应 度评 估 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TSP问题遗传算法通用Matlab程序
程序一:主程序
%TSP问题(又名:旅行商问题,货郎担问题)遗传算法通用matlab程序
%D是距离矩阵,n为种群个数
%参数a是中国31个城市的坐标
%C为停止代数,遗传到第 C代时程序停止,C的具体取值视问题的规模和耗费的时间而定%m为适应值归一化淘汰加速指数,最好取为1,2,3,4,不宜太大
%alpha为淘汰保护指数,可取为0~1之间任意小数,取1时关闭保护功能,建议取
0.8~1.0之间的值
%R为最短路径,Rlength为路径长度
function [R,Rlength]=geneticTSP(D,a,n,C,m,alpha)
[N,NN]=size(D);
farm=zeros(n,N);%用于存储种群
for i=1:n
farm(i,:)=randperm(N);%随机生成初始种群
end
R=farm(1,:);
subplot(1,3,1)
scatter(a(:,1),a(:,2),'x')
pause(1)
subplot(1,3,2)
plotaiwa(a,R)
pause(1)
farm(1,:)=R;
len=zeros(n,1);%存储路径长度
fitness=zeros(n,1);%存储归一化适应值
counter=0;
while counter for i=1:n
len(i,1)=myLength(D,farm(i,:));%计算路径长度
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);%计算归一化适应值
rr=find(len==minlen);
R=farm(rr(1,1),:);%更新最短路径
FARM=farm;%优胜劣汰,nn记录了复制的个数
nn=0;
for i=1:n
if fitness(i,1)>=alpha*rand
nn=nn+1;
FARM(nn,:)=farm(i,:);
end
end
FARM=FARM(1:nn,:);
[aa,bb]=size(FARM);%交叉和变异
while aa if nn<=2
nnper=randperm(2);
else
nnper=randperm(nn);
end
A=FARM(nnper(1),:);
B=FARM(nnper(2),:);
[A,B]=intercross(A,B);
FARM=[FARM;A;B];
[aa,bb]=size(FARM);
end
if aa>n
FARM=FARM(1:n,:);%保持种群规模为n
end
farm=FARM;
clear FARM
counter=counter+1
end
Rlength=myLength(D,R);
subplot(1,3,3)
plotaiwa(a,R)
程序二:计算邻接矩阵
%输入参数a是中国31个城市的坐标
%输出参数D是无向图的赋权邻接矩阵
function D=ff01(a)
[c,d]=size(a);
D=zeros(c,c);
for i=1:c
for j=i:c
bb=(a(i,1)-a(j,1)).^2+(a(i,2)-a(j,2)).^2;
D(i,j)=bb^(0.5);
D(j,i)=D(i,j);
end
end
程序三:计算归一化适应值
%计算归一化适应值的子程序
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-((len(i,1)-minlen)/(maxlen-minlen+0.0001
))).^m;
end
程序四:交叉和变异的子程序
%交叉算法采用的是由Goldberg和Lingle于1985年提出的PMX(部分匹配交叉) function [a,b]=intercross(a,b)
L=length(a);
if L<=10%确定交叉宽度
W=9;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);%随机选择交叉范围,从p到p+W
for i=1:W%交叉
x=find(a==b(1,p+i-1));
y=find(b==a(1,p+i-1));
[a(1,p+i-1),b(1,p+i-1)]=exchange(a(1,p+i-1),b(1,p+i-1)); [a(1,x),b(1,y)]=exchange(a(1,x),b(1,y));
end
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
程序五: 计算路径的子程序
%该路径长度是一个闭合的路径的长度
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
程序六:用于绘制路径示意图的程序
function plotaiwa(a,R)
scatter(a(:,1),a(:,2),'x')
hold on
plot([a(R(1),1),a(R(31),1)],[a(R(1),2),a(R(31),2)])
hold on
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1]; plot(xx,yy) hold on
end。

相关文档
最新文档