18.2 勾股定理的逆定理(二)

合集下载

勾股定理的逆定理(2)

勾股定理的逆定理(2)
又 ∵ m4 -
2m2n2 + n4 + 4m2n2
= m4 + 2m2n2 + n4
∴ a2 + c2 = b2
即: 三角形是直角三角形
科教园地
如果勾股定理的公式c2 = a2 + b2中的 a ,b ,c未知数,是第一个不定方程(即未知 数的个数多于方程的个数)也是最早得出完整解答的不定方程,它一方面引导到各式 各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。 法国人费尔马(Pierre de Fermat, 1601-1665)虽然学的是法律,从事的也是 律师的职业,但他对数学却有浓厚的兴趣,在业余时间常读数学书,并自己从事一些 数学研究。他在阅读希腊数学家丢番图(Diophontus)的《算术》一书中论述求解 x2 + y2 = z2 的一般解的问题时,在书的空白处,用笔写下这样的心得:“反过来说 不可能把一个立方数分拆为两个立方数的和,一个四方数分拆成两个四方数之和。更 一般地,任何大于二的方数不能分拆为同样方数的两个之和。我已发现了一个绝妙的 证明,但因为空白太小,写不下整个证明”。用数学语言来表达,费尔马的结论是: 当n≥3时, xn + yn = zn 没有正整数解。 1983年,史皮娄(Lucien Szpiro)提出史皮娄猜想,并证明由史皮娄猜想可以推出, 对于充分大的指数,费尔马大定理均成立。1985年,与塞尔(D.W.Masser)等人提 出一系列等价猜想,其中一个称为abc猜想,由它可推出史皮娄猜想。1987年,史皮 娄又提出一系列猜想,由它们也能推出史皮娄猜想。这些猜想似乎更容易下手,但至 今一个也没有证明。 1987年,塞尔由伽罗华表示出发提出一些更强的猜想,称为塞尔强(弱)猜想。 由它不仅可以推出费尔马大定理,还可推出许多其他猜想,但这条路最终也没有能走 通。 英国数学家维尔斯正是沿着这一道路,在经过漫长的7年探索,终于在1993年6月取 得突破。最终在一九九五年完全证明费尔马大定理。解开了困惑世间300多年的谜 .

《勾股定理》同步作业及答案

《勾股定理》同步作业及答案

《勾股定理》同步作业及参考答案§18.1 勾股定理(一)1.在Rt △ABC ,∠C=90°:⑴已知a=b=5,求c ; ⑵已知a=1,c=2, 求b ;⑶已知c=17,b=8, 求a ; ⑷已知a :b=1:2,c=5, 求a ; ⑸已知b=15,∠A=30°,求a ,c .2. 已知:如图,等边△ABC 的边长是6cm :⑴求等边△ABC 的高;⑵求S △ABC .3.填空题:⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= ; ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= ;⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= ; ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 ; ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 ; 4.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长.5.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.中考链接1.(2005 扬州)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.2.(2006,娄底)如图,滑杆在机械槽内运动,ACB ∠为直角,已知滑杆AB 长2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米? DBAAEC§18.1 勾股定理(二)1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米.A2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长. ArrayB3.(2009年,北京市)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、n ,且n为BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(2整数),则A′N=(用含有n的式子表示).4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是多少?5.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为.BC6.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米.Q7.有一个边长为1米的正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米. 8.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是米,水平距离是米.中考链接棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.()A.一定不会B.可能会C.一定会D.以上答案都不对§18.1 勾股定理(三)1. 已知:在Rt △ABC 中,∠ACB=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长.2. 已知:如图,△ABC 中,AC=4,∠A =45°,∠B =60°,根据题设可知什么?3. 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD 的面积.4.(2010年,北京市燕山)已知等边△ABC 的边长为a ,则它的面积是( ).A .21a 2 B .23a 2 C .42a 2 D .43a 25.如图,将长方形ABCD 沿直线AE 折叠,点D 落在BC 边上的点D ′.若AB=8,AD=10,求CE 的长.6.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22, 求(1)AB 的长;(2)S △ABC .C中考链接1.(2006,河北课改)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从→→所走的路程为m.(结果保留根号)A B C2.(2010年,北京市门头沟区)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________(n为正整数).§18.1 勾股定理(四)1. △ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = .2.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC .3.如图所示在平面直角坐标系中,第一象限的角平分线OM 与反比例函数的图象相交于点M ,已知OM①求点M 的坐标;②求此反比例函数的解析式.4.如图,甲、乙两船从港口A 同时出发,甲船以16海里/时速度向南偏东50°航行,乙船向北偏东40°航行,3小时后,甲船到达B 岛,乙船到达C 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?5.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域. (1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?C中考链接(2010年,北京市大兴区)如图,ABC 的三个顶点A 、B 、C 的坐标分别为(33),、(64)46,、(,),则B C 边上的高为 .1.在Rt △ABC 中,若AC BC AB =4,则下列结论中正确的是( ).A .∠C =90°B .∠B =90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ). A. 仍是直角三角形 B. 不可能是直角三角形 C. 是锐角三角形 D. 是钝角三角形3.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:44.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴ a=3,b=22,c=5; ⑵ a=5,b=7,c=9; ⑶ a=2,b=3,c=7; ⑷ a=5,b=62,c=1 .5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.6.如图所示,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,△DBC 是直角三角形吗?为什么?中考链接(2006,荆门大纲)园丁住宅小区有一块草坪如图所示,已知3AB =米,4BC =米,12CD =米,13DA =米,且AB BC ⊥,求这块草坪的面积.1.在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 2.△ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( )A .如果∠C -∠B=∠A ,则△ABC 是直角三角形;B .如果c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90°; C .如果(c +a )(c -a )=b 2,则△ABC 是直角三角形;D .如果∠A :∠B :∠C=5:2:3,则△ABC 是直角三角形. 3. 根据三角形的三边a ,b ,c 的长,判断三角形是不是直角三角形: (1)a =11,b =60,c =61 (2)a =32,b =1,c =45 4.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形?为什么?CD5.如图,四边形ABCD 中,AD=4,CD=3,AB=13,BC=12, ∠ADC=90°,求四边形ABCD 的面积.6.在△ABC 中,AB=13,BC=10,BC 边上的中线AD=12,求AC 的长.C中考链接(2005年,呼和浩特课改)如图,在由单位正方形组成的网格图中标有AB CD EF GH ,,,四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD EF GH ,, B.A BE F G H ,, C.AB CD GH ,, D.A BC D E F ,,1.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52 ⑷9,40,41;⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ).A .2个B .3个 C.4个 D.5个2.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;⑶a=2,b=32,c=4; ⑷a=5k ,b=12k ,c=13k (k >0). 3.已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状.4.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积.5.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?N中考链接某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?参考答案及解析§18.1 勾股定理(一)1.(1)25; (2)3; (3)15; (4)5; (5)a=53, c=103.2. (1)33; (2)S △ABC =93.3.⑴17; ⑵7; ⑶a=6,b=8; ⑷6,8,10; ⑸4或34.4.8.5.48.中考链接1. 4.2.由勾股定理求得AC =2米,DC =2米,CE=1.5米,所以滑杆顶端A 下滑的长AE=0.5米.§18.1 勾股定理(二)1.2502米.2. 334.3.2,n (2n ≥,且n 为整数).4.18米.5. 503米.6.20厘米.7.22米.8.23米,6米.中考链接A.§18.1 勾股定理(三)1. 4.2. 根据题设可求得BC=634,AB=63222+.提示:作CD ⊥AB 于D.3. 63.提示:延长AD 、BC 交于点E ,则S 四边形ABCD =S △ABE - S △CDE .4. D .5.3.6.(1)AB=4; (2)S △ABC =2+23.中考链接 1.52 .2. 22-n .§18.1 勾股定理(四)1.AC=2,CD=3,BD=3,AD=1,S △ABC =23.2. S △ABC =204.提示:作BD ⊥AC 于D.设AD=x ,由勾股定理得方程:2222)17(2526x x --=-,解得x =10. 3.①点M 的坐标为(2,2); ②反比例函数的解析式为xy 4=. 4.12海里/时.5.(1)A 城会受到这次台风的影响.作AM ⊥BF 于M ,则AM=160km<200km .(2)以A 为圆心、以200km 为半径画圆,分别交BF 于C 、D 两点,求得MC=MD=120km ,即CD=240 km , A 城遭受这次台风影响的时间为240÷40=6小时.中考链接S △ABC =5,BC=22,则B C 边上的高为225.§18.2 勾股定理的逆定理(一)1.A .2.A.3.D .4.⑴是直角三角形,∠B 是直角; ⑵不是直角三角形;⑶是直角三角形,∠C 是直角; ⑷是直角三角形,∠A 是直角.5.设短边长x 米,则另外两边分别长7+x 、8+x 米,x +7+x +8+x =30,x =5,三边长分别为5、12、13,这个三角形是直角三角形.6.在R t △ABD 中,由勾股定理得BD=5;在△CBD 中,由勾股定理的逆定理得∠CBD=90º,△DBC 是直角三角形吗.中考链接连结AC .在R t △ABC 中,由勾股定理得AC=5;在△ACD 中,由勾股定理的逆定理得∠ACD=90º,则S=6,S△ACD=30, S四边形ABCD=36米2.△ABC§18.2 勾股定理的逆定理(二)1.直角,∠B.2.B.3.(1)是,(2)不是.4.BC=25,AC=5,AB=5,由勾股定理的逆定理得∠ACB=90º,即A、B、C三点能构成直角三角形.5. 连结AC.在R t△ADC中,由勾股定理得AC=5;在△ACB中,由勾股定理的逆定理得∠ACB=90º,则S△ADC=6,S△ACB=30, S四边形ABCD=24米.6. AC=13.中考链接B.§18.2 勾股定理的逆定理(三)1.B.分别是⑴、⑷、⑸.2.⑴是直角三角形,∠B是直角;⑵不是直角三角形;⑶是直角三角形,∠C是直角;⑷是直角三角形,∠C是直角.3.由a+b=4,ab=1,得a2+b2=(a+b)2-2ab=14= c2,所以∠C=90º,即△ABC是直角三角形.4.由a2+b2+c2+50=6a+8b+10c,得(a-3)2+(b-4)2+( c-5)2=0,则a=3,b=4,c=5,由勾股定理的逆定理得∠ACB=90º,则S△ABC=6.5.AC=12, BC=5, AB=13,∠ACB=90º,又∠ABC=50º,则∠CAB=40º,甲巡逻艇的航向为北偏东50°.中考链接“海天”号沿西北(或北偏西45º)方向.。

(完整)八年级上册勾股定理练习题及答案

(完整)八年级上册勾股定理练习题及答案

八年级勾股定理练习题及答案1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?“路”4m3m第2题图第5题图第7题图第9题图第8题图5m13m第11题第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222ACBC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯xx ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8,设AB=x ,则AE=2x ,由勾股定理。

人教版八年级数学下册《勾股定理的逆定理(2)》名师教案

人教版八年级数学下册《勾股定理的逆定理(2)》名师教案

17.2 勾股定理的逆定理(第二课时)一、教学目标1.核心素养:通过运用勾股定理的逆定理,提高运算能力、逻辑推理能力和应用意识.2.学习目标(1)理解勾股数的含义.(2)能运用勾股定理的逆定理解决实际问题.3.学习重点勾股定理的逆定理的应用.4.学习难点二、教学设计(一)课前设计1.预习任务请写出几组能作为直角三角形边长的正整数.2.预习自测1.由7、24、25组成的三角形是直角三角形吗?2.我们知道以3、4、5为边长能构成直角三角形,那6、8、10呢?9、12、15呢?你发现了什么?(二)课堂设计1.知识回顾勾股定理的逆定理是什么?2.问题探究问题探究一勾股数●活动一理解定义像3、4、5这样,能够成为直角三角形三边长的三个正整数成为勾股数. 即满足的三个正整数就称为勾股数.再如:…●活动二推理论证我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗? 因为,,所以且3k 、4k 、5k 均为正整数,所以3k 、4k 、5k 也是一组勾股数.●活动三 推广提升一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗? 因为,,而,∴∴,则ak 、bk 、ck (k 是正整数)也是一组勾股数.请你再写几组勾股数.问题探究二 利用勾股定理的逆定理解决生活中的问题 重点知识★ ●活动一 初步应用 例1 如图,某港口P 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile ,“海天”号每小时航行12nmile, 它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?E NRP Q【知识点:勾股定理的逆定理;】详解:根据题意PQ=16×1.5=24,PR=12×1.5=18, QR=30,因为,即,所以QPR=90o .由“远航”号沿东北方向航行可知,“海天”号沿西北方向航行. 点拨:由已知条件易想到求出两轮船航行的路程,即为三角形的边长,从而已知C A 三角形的三边长,再利用勾股定理的逆定理判断该三角形为直角三角形而解决问题 .●活动二 拓展提升例2 如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?【知识点:勾股定理的逆定理;】详解:设MN 交AC 于E ,则∠BEC=90°.又AB 2+BC 2=52+122=169=132∴△ABC 是直角三角形,∠ABC=90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE=288,∴CE=13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.点拨:由题意可得△ABC 的三边长分别为5、12、13,根据勾股定理的逆定理判断∠ABC=90°,由题可知走私艇C 进入我领海的最近距离是CE ,再利用勾股定理建方程求出CE 的长,从而解决问题.问题探究三 勾股定理及逆定理的综合运用例3. 某中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【知识点:勾股定理,勾股定理的逆定理;】详解:连接BD. 在Rt△ADB中∠BAD=90o,BD==5,在△DBC中,则∴∠DBC=90o,∴S四边ADBC=S△ADB+ S△DBC=5×12=36∴36×200=7200(元).答:学校需投入7200元买草皮.点拨:根据条件易想到链接BD,将四边形的面积转化为两个三角形的面积之和,由AB=3,AD==4,易求BD=5,而△CBD中已知三边的长,可根据勾股定理的逆定理判断该三角形为直角三角形,再根据面积计算公式求出答案.3.课堂总结【知识梳理】1. 一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数.2.利用勾股定理的逆定理解决生活中的问题.【重难点突破】1.三个数是勾股数,则必须满足两个条件:(1)较小的两个数的平方和等于较大数的平方.(2)三个数必须是正整数.2.已知一个三角形的三边长时,首先应想到利用勾股定理的逆定理来判断这个三角形是否为直角三角形.3.在勾股定理及其逆定理的综合运用时需注意正确区分:勾股定理是在直角三角形中运用,而其逆定理是判断一个三角形是否为直角三角形.4.随堂检测1. 在△ABC中,三边长a、b、c满足 = 0,则此三角形为()A . 钝角三角形 B. 等腰三角形C. 等腰直角三角形D. 直角三角形【知识点:勾股定理的逆定理】【答案】D2. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出两组基本勾股数:, .【知识点:勾股数】【答案】5,12,13;9,40,41.3.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?东【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】∵AC=16×3=48,AB=12×3=36,∴222222+=-==,BC AC AB604836∴△ABC为直角三角形且∠CAB=90°,∴乙船出发后的航向是南偏东40o.4. 一个零件的形状如图,按规定这个零件中∠A与∠DBC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=13 , BC=12,这个零件符合要求吗?【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】这个零件符合要求.在△ADB中,,则,∴∠DAB=90o,同理,在△DBC中,则∴∠DBC=90o,∴这个零件符合要求.。

18。2 勾股定理逆定理(二)勾股数[下学期] 新人教版

18。2  勾股定理逆定理(二)勾股数[下学期]  新人教版
3
4
学海中学 何邦辉
问题: 判断由线段a、b、c组成的三 角形是不是直角三角形?
(1) a=8 b = 15 c =17 c =15
(2) a=13 b = 14
像8、15、17这样,能够成为直角三角形三 条边长的三个正整数,称为勾股数。
谈谈勾股数的特征:
(1)a、b、c三数都是正整数,且a <c ,b <c .
数海拾贝
• 从代数的角度看勾股数,就是考察方程 x + y = z 的正 整数解,古代中国人发现了”勾三股四弦五”,古希腊人找 到了这个方程的全部整数解. 17世纪,法国数学家费马提出猜想:当n≥3时,方程 n n n x + y = z 无正整数解,围绕着这个看似简单的费 马大定理,一批杰出的数学家,如欧拉,柯西,伽罗华, 还有维尔斯,他们前赴后继用了整整358年才最后完成这 项证明. 费马大定理被人比作数论中的“喜马拉雅山的顶峰”
(1)请你根据上述四组勾股数的规律,写出第 五组勾股数。 (2)试用数学等式描述上述勾股数组规律。 (3)请证明你所发现的规律。
1、下列数组中,不是勾股数的是( D ) A、3k、4k、5k(k为正整数)B、5、12、13
C、7、24、25
D、8、12、13
2、已知下列命题: (1) 如果a、b、c是一组勾股数,那么 ka、 kb、kc( k是正整数)仍是勾股数。 (2) 如果直角三角形的两边是3、4,那么斜 边必是5。 (3) 如果一个三角形的三边是12、25、21,那 么此三角形必是直角三角形。 (4) 2499、100、2501是一组勾股数组。
(2) 三数符合
a b c
2 2
2
今天,我们将沿着前人的足迹, 去寻找这些勾股数组的规律!

《勾股定理的逆定理》PPT免费课件(第2课时)

《勾股定理的逆定理》PPT免费课件(第2课时)

田的面积为( A )
A.7.5平方千米
B.15平方千米
C.75平方千米
D.750平方千米
课堂检测 基础巩固题
B
1.五根小木棒,其长度分别为7,15,20,24,25,现将他 们摆成两个直角三角形,其中摆放方法正确的是 ( D )
A.
B.
B
C.
D.
课堂检测
2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东 25°的方向,且到医院的距离为300 m,公园到医院的距离为 400 m,若公园到超市的距离为500 m,则公园在医院的 ( B ) A.北偏东75°的方向上 B.北偏东65°的方向上 C.北偏东55°的方向上 D.无法确定
课堂检测
3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,
同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,
2h后同时停下来,这时A,B两组相距30km.此时,A,B两组
行进的方向成直角吗?请说明理由.
解:∵出发2小时,A组行了12×2=24(km),
A
B组行了9×2=18(km),
Байду номын сангаас
巩固练习
解:由题意得,OB=12×1.5=18海里, OA=16×1.5=24海里, 又∵AB=30海里, ∴182+242=302,即OB2+OA2=AB2, ∴∠AOB=90°. ∵∠DOA=40°, ∴∠BOD=50°. 则另一艘舰艇的航行方向是北偏西50°.
探究新知
知识点 2 利用勾股定理的逆定理解答面积问题
应用 方法
航海问题
与勾股定理结合解决不规 则图形等问题
认真审题,画出符合题意的图 形,熟练运用勾股定理及其逆 定理来解决问题

勾股定理的逆定理

勾股定理的逆定理
(2)你能否举a出2 两个b这2 种关c系2的命题?
我们把这样的两个命题叫做互逆
命另命满题一题足如个.如2:叫”果同做把如位它a其果角2的中相三逆一等b角命个2,形两题叫直的.c做线2三原平边命行长题”,a那与,b么,”c
两那直么线这平个行,三同角位角形相是等直”角是三互角逆形命.题.
一起探究
系:
.
2.52 62 6.52
那么画出的三角形是直角三角形吗? 换成三边分别是4cm,7.5cm,8.5cm 呢?
由以上例子,我们猜想:
命题2 如果三角形的三边长a,b,c
满足 a2 b2 c2
那么这个三角形是直角三角形.
观察思考
(什1命)直么命题?角题它1边1和们长命如有分题什果别2么直的为关角题a系、设三?、b角,斜结形边论的分长两别为是 c,那么
命题1经证明是正确的,你能证 明命题2的正确性吗?练习本上试 一试,与同学交流你的想法.
一般地,如果一个定理的逆命题经 过证明是正确的,它也是一个定理,称 这两个定理互为逆定理.
命题2经证明是正确的,所以我 们把它叫做勾股定理的逆定理.
一个命题一定有逆命题,但逆命 题不一定正确.所以一个定理不一定 有逆定理.
练习
1.如果三条线段a,b,c满足 a2 c2 b2 , 这三条线段组成的三角形是不是 直角三角形?为什么?
练习
2.说出下列命题的逆命题.这些命题的逆命题 成立吗?
(1)两条直线平行,内错角相等; (2)如果两个实数相等,那么它们的绝对值相
等; (3)全等三角形的对应角相等; (4)到角的两边距离相等的点在角的平分线上.
我国古代大禹治水测量工程时,也用 类似方法确定直角.你知道这是为什么 吗?其中蕴涵什么道理?

18.2勾股定理逆定理

18.2勾股定理逆定理
拿出事先准备好的纸片、剪刀,实验、领会、感悟:(1)它们完全重合,(2).在△A′B′C′中,A′B′2=B′C′2+A′C′2=a2+b2,因为a2+b2=c2,因此,A′B′=C.从△ABC和△A′B′C′中,BC=a=B′C′,AC=b=A′C′,AB=c=A′B′,推出△ABC≌△A′B′C′,所以∠C=∠C′=90°,可见△ABC是直角三角形.
教学设计
题目
18.2勾股定理的逆定理
课时
2
学校
星火一中
教者
杨玉杰
年级
八年
学科
数学
设计来源
自我设计及网络
教学时间
2012-4-26




本节内容是著名的勾股定理,它是建立在三角形、全等三角形、等腰三角形等有关三角形知识的基础上的,揭示的时直角三角形中三边的数量关系,它是直角三角形的一条非常重要的性质,也是几何中重要定理之一。它把代数和几何很好的结合起来,应用非常广泛。
学生观看
动手画图,体验发现,得到猜想
△再现古人做法
△采用实验、观察、比较的数学手法,突破难点.
总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。
教学流程
分课时
环节
与时间
教师活动
学生活动
△设计意图
◇资源准备
□评价○反思
课堂演练】(投影显示)
1.以下各组数为边长,能组成直角三角形的是(C).
A.12.5 B.12 C. D.9
学生回答
小组合作

以例为理解勾股逆定理的应用,再补充“问题探究2”来拓展勾股定理逆定理的应用范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八数教学案
一、课时学习目标
1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。

2.难点:灵活应用勾股定理及逆定理解决实际问题。

二、课前预习导学
1.填空题。

⑴任何一个命题都有 ,但任何一个定理未必都有 。

⑵“两直线平行,内错角相等。

”的逆定理是 。

⑶在△ABC 中,若a 2=b 2-c 2
,则△ABC 是 三角形, 是直角; 若a 2<b 2-c 2,则∠B 是 。

⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2
,则△ABC 是 三角形。

2.下列四条线段不能组成直角三角形的是( )
A .a=8,b=15,c=17
B .a=9,b=12,c=15
C .a=5,b=3,c=2
D .a :b :c=2:3:4
3.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=3,b=22,c=5; ⑵a=5,b=7,c=9;
⑶a=2,b=3,c=7; ⑷a=5,b=62,c=1。

4.若三角形的三边是 ⑴1、3、2; ⑵5
1,41,
31; ⑶32,42,52
⑷9,40,41; ⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ) A .2个 B .3个 C.4个 D.5个 5.叙述下列命题的逆命题,并判断逆命题是否正确。

⑴如果a 3>0,那么a 2>0;
⑵如果三角形有一个角小于90
°,那么这个三角形是锐角三角形; ⑶如果两个三角形全等,那么它们的对应角相等; ⑷关于某条直线对称的两条线段一定相等。

三、课堂学习研讨
例1(P75例2)在军事和航海上经常要确定方向和位置, 从而使用一些数学知识和数学方法。

分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR= ,PQ= ,QR= ;
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较.短边..长7米,比较长边...短1米,请你试判断这个三角形的形状。

有关网格问题
例3.边长为1m 的正方形地板板砖铺设的地面示意图, 小明沿着图中所示的折线从A →B →C 。

①他所走的路程为________②∠ABC=__________ ③连接AC 则△ABC 的面积是________
2.已知如图中每个小正方形的边长为1,则△ABC 的三边长a _____b=______c=_______则a 、b 、c 大小关系是______________ △ABC 的面积是__________
3.如图正方形网格中有一个△ABC 。

若小正方形的边长为1,则△ABC 是直角三角形,为什么?请给予说明。

七、课后练习
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。

2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。

小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。

已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
N
A
B
A
B
C
C A
B a
b
c
A
B
C。

相关文档
最新文档