2017年暑假一次函数专题复习
【名师点睛】2017年八年级数学下册同步讲义-第05课 一次函数单元复习题及答案(培优)

第05课 一次函数单元复习题一、选择题:1、函数自变量x的取值范围是( )A. 全体实数B. x>0C. x≥0且x≠1D.x>12、y=(m+3)x+2是一次函数,且y 随自变量x 的增大而减小,那么m 的取值是( )A .m <3B .m <-3C .m=3D .m ≤-33、对于一次函数y=kx ﹣k (k ≠0),下列叙述正确的是( )A.当k >0时,函数图象经过第一、二、三象限B.当k >0时,y 随x 的增大而减小C.当k <0时,函数图象一定交于y 轴负半轴一点D.函数图象一定经过点(1,0)4、一次函数y=-23x+3的图象如图所示,当-3<y<3时,x 的取值范围是( )A.x>4B.0<x<2C.0<x<4D.2<x<45、直线l 1∶y =k 1x +b 与直线l 2∶y =k 2x +c 在同一平面直角坐标系中的图象如图,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-26、若直线y =-2x -4与直线y =4x +b 的交点在第三象限,则b 的取值范围是( )A .-4<b <8B .-4<b <0C .b <-4或b >8D .-4≤b ≤87、为使我市冬季“天更蓝,房更暖”,政府决定实施“煤改气”供暖改造工程,现甲乙工程队 分别同时开挖两条600 m 长的管道,所挖管道长度y(m)与挖掘时间x(天)之间的关系如图,则下列说法中正确的有( )①甲队每天挖100 m ; ②乙队开挖两天后,每天挖50 m ;③当x =4时,甲、乙两队所挖管道长度相同; ④甲队比乙队提前2天完成任务.A .1个B .2个C .3个D .4个8、如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是( )A.18B.16C.10D.209、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于( )A.(3,2)B.(3,-2)C.(-3,2)D.(-3,-2)10、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D →C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )11、图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确说法共有()A. 1个B. 2个C. 3个D. 4个12、如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于( )A.B.C.D.13、函数y=﹣中自变量x的取值范围是14、已知y﹣3与x+1成正比例函数,当x=1时,y=6,则y与x的函数关系式为.15、飞机起飞时,首先要在跑道上滑行一段路程,这种运动在物理学上叫匀加速运动,其公式为。
一次函数专题复习ppt课件

关运费的信息如右表
A地
B地
(1)设从A地运到乙地x台机 甲地 乙地 400元/台 600元/台
求总运费y(元)关于x的函数关系式;
(2)若要求总运费不超过11000元,有几种方案?
(3)在(2)问的条件下,指出总运费最低的调运方 案,最低的运费是多少?
5、一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而___增__大____。 ⑵当k<0时,y随x的增大而___减__小____。 ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图
中k、b的符号:
k_>__0,b__>_0
k__>_0,b_<__0
k_<__0,b_>__0 k_<__0,b_<__0
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
例3. 某公司在A、B两地分别有库存机器16台和12台。
现要运往甲、乙两地,其中甲地15台,乙地13台。有
(__bk__3,、0一)的次_函一__数条__y直_=_k线_x_+_b。(k≠0)的图象是过点(0,__b_),
4、正比例函数y=kx(k≠0)的性质: ⑴当k>0时,图象过一__、__三__象限;y随x的增大而_增__大_。 ⑵当k<0时,图象过二__、__四__象限;y随x的增大而_减__小_。
答:最低运费是10300元。
达标测试
1、在下列函数中, x是自变量, y是x的函数, 那些是一
一次函数专题复习

A.x>
3 C.x< 2
3 2
B.x>3
D.x<3
解析 ∵一次函数y=-2x+b的图象交y轴于点A(0,3), ∴A(0,3)在一次函数y=-2x+b的图象上,将点A(0,3)代入y=-2x+b得b
3 =3,令y=0,则-2x+3=0,解得x= , 2 3 ∴B ,0 , 2 3 观察函数图象知,当x< 时,一次函数的图象在x轴上方, 2 3 ∴不等式-2x+b>0的解集为x< ,故选C. 2
3 将点A(3,m)代入,得 +1=m, 2 5 即m= ,故选C. 2
变式3-1 一次函数y=kx+|k-1|的图象过点(0,2),且y随x的增大而 增大,则k的值为 3 .
解析 ∵一次函数y=kx+|k-1|的图象过点(0,2),∴|k-1|=2,∴k -1 =2或k-1=-2,解得k=3或k=-1,又∵y随x的增大而增大,∴k>0,∴k=3.
知识点四
+b=m.
一次函数与方程(组)、不等式
1.一次函数与一元一次方程:一次函数y=kx+b的值为m⇔解方程kx
2.一次函数与一元一次不等式:(1)求使一次函数y =kx +b的值大
于0的自变量x的取值范围⇔解不等式kx +b >0;(2)求使一次函数y
=kx+b的值小于0的自变量x的取值范围⇔解不等式kx +b<0.
考点四
一次函数的应用
中考解题指导 用一次函数解决实际问题常见的三种题型:(1)建
立函数模型,然后借助方程、不等式或函数图象来解决方案选择 问题;(2)利用一次函数的性质,如增减性等来解决生活中的优化
(完整版)一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.1、已知一次函数kx k y )1(-=+3,则k = . 2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
(完整版)一次函数知识点复习总结

6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
一次函数知识点复习(详解加练习)

j距离(km)时间1513121110.5O 1530一次函数复习一、 变量与函数①函数定义:在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么x 是自变量,y 是x 的函数 ②函数的三种表示法:列表法、图象法、解析法 ③会求函数自变量的取值范围。
④函数是研究运动变化的重要数学模型,它来源于实际,又服务于实际,学会利用函数图象研究函数的性质。
【例题讲解】例1、学校有一批复印任务,原来由甲复印社承接,按每100页40元计费,现乙复印社表示,若学校先按月付给200元的承包费,则可按每100页15元收费。
设复印页数为x 页。
(1)分别写出甲复印社收费y 1(元)、乙复印社收费y 2(元)与x 的函数关系式。
(2)请你选择:①复印页数是多少时,选择甲、乙复印社收费相同? ②复印页数是多少时,选择甲复印社收费较少? ③复印页数是多少时,选择乙复印社收费较少?例2、学校阅览室有能坐4 人的方桌,如果多于4 人,就把方桌拼成一行,2张方桌拼成一行能坐6 人,如图所示,请你结合这个规律,填写下表:例4、地壳的厚度约为8到40km ,在地表以下不太深的地方,温度可按y =3.5x +t 计算,其中x 是深度,t 是地球表面温度,y 是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么? (2)如果地表温度为2℃,计算当x 为5km 时地壳的温度.例5、下列各曲线中不能表示y 是x 的函数是( )。
y (千米)与所用的时间x (小时)之间关系的函数图象,小明9点离开家,15点回家。
根据这个图象,请你回答下列问题: ①小强到离家最远的地方需几小时?此时离家多远? ②何时开始第一次休息?休息时间多长? ③小强何时距家21㎞?(写出计算过程)O x(吨)y(元)856.33.6例7、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y (元)与水量x (吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为 元/吨;若用水超过5吨,超过部分的水费为 元/吨。
一次函数复习1
解:由图像知直线过(-2,0),(0,-1)两点, 把两点的坐标分别代入y=kx+b,得 0=-2k+b
-1=b Y
解得 k=- 1
2
b=-1
-2
所以,其函数解析式为y= - 1x-1
-1
X
2
四.知识拓展
1.直线y=k1x+b1 、y=k2x+b2.若平行则
k1=k2 b1≠b2
若与y轴相交于同一点,则 k1 ≠ k2 b1= b2
y
o
x
A
y
o
x
B
y
o
x
C
y
o
x
D
例:线段AB, CD分别是一辆轿车的油箱剩余油量y1 (升) 与另一辆客车的油箱剩余油量y2 (升)关于行驶路程 x(千米)的函数图象。
(1)分别求y1, y2关于x的函数解析式,并写出定义域。
(2)如果两车同时出发,轿车的行驶速度为每小时100千米,
客车的行驶速度为每小时80千米,当邮箱的剩余油量相同
y
x
4.函数y=(-k+3)x+(2k-4)
(1)当k =2 时,函数图像过原点. (2)当k﹤3 时, y随x的增大而增大.
5.函数y=kx+b 当k>0,b<0时,此函数图像不经过
的象限是 第二象限
y x
6.一次函数y=(a-5)x+(a-3)的图像不经过第三
象限,则a的取值范围 _3_≤_a_﹤__5_
(1) y 2x (2) y 1 (3) y x 1(4) y kx b x
答: (1)是 (2)不是 (3)是 (4)不是
2:函数y=(k+2)x+( k2-4)为正比例
一次函数函数专题复习知识点与典型题
一次函数专题复习1变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
练习题1、设一个长方体的高为10cm,底面的宽为x cm,长是宽的2倍,这个长方体的体积V(cm3)与长、宽的关系式为V=20x2,在这个式子里,自变量是()A.20x2B.20x C.V D.x2函数概念一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y 都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
注意:(1)有两个变量(2)一个变量的数值随着另一个变量数值的变化而变化(3)对自变量的每一个确定值,函数有且只有一个值与之对应练习题1、在下列等式中,y是x的函数的有()3x-2y=0,.|xy=y==||x|,x,yA.1个B.2个C.3个D.4个2、图2-2中,表示y是x的函数图象是()图2-23求函数值4函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
练习题——列函数解析式电话每台月租费28元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过3分钟,则每月应缴费y(元)与市内电话通话次数x之间的函数关系式是()A .y =28x +B .y =+28xC .y =+28D .y =28-5自变量的取值范围 1、52+-=x x y 2、.324-=x xy 3.32+=x y4.12-=x x y5.321x y -=6.23++=x x y 6函数图象的应用如图2-3是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()图2-3A .39.0℃B .38.2℃C .38.5℃D .37.8℃如图2-4,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息小时后,再用1小时爬上山顶,游客爬山所用时间t (小时)与山高h (千米)间的函数关系用图象表示是( )星期日晚饭后,小红从家里出去散步,图2-5所示,描述了她散步过程中离家的距离s (m )与散步所用的时间t (min )之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题图2-5(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分; (2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分; (4)小红从邮亭走回家用了______分,平均速度是______米/秒.一次函数和正比例函数一般地,如果b=(k,b是常数,k≠0),那么y叫做x的一次函数。
一次函数复习与练习题(专题练习)
一次函数专题复习一、一次函数解析式问题1.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
2.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .3.若一次函数y=kx+b 的自变量x 的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9, 求此函数的解析式。
4.某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,求此函数的关系式.5.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线、交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.6.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图象. ①根据图象,写出该图象的函数关系式;②某人乘坐2.5km ,应付多少钱?③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?二、次函数平移问题1. 直线y=2x+1向上平移4个单位得到直线 ;直线y=-3x+5向下平移6个单位得到直线 .1l 33y x =-+1l x D 2l AB ,1l 2lCD 2l ADC △2l C P ADP △ADC △P2. 直线y=5x-3向左平移2个单位得到直线 ; 直线y=-x-2向右平移3个单位得到直线 .3.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得函数是____________; 规律总结:“上加下减在末梢,左加右减在括号”.4. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.5.已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。
一次函数的全章复习课件
例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看
对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(一)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.针对练习1.下列说法正确的是( )A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数 2.下列函数中,y 是x 的一次函数的是( )A .y=-3x+5B .y=-3x 2C .y=1xD .3.已知等腰三角形的周长为20cm ,将底边y (cm )表示成腰长x (cm )•的函数关系式是y=20-2x ,则其自变量的取值范围是( )A .0<x<10B .5<x<10C .x>0D .一切实数4.一次函数y=kx+b 满足x=0时,y=-1;x=1时,y=1,则这个一次函数是( •) A .y=2x+1 B .y=-2x+1 C .y=2x-1 D .y=-2x-1 ☆我能填5.已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.6.从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t ≥3(分)时,电话费y (元)与t 之间的函数关系式是_________.7.已知A 、B 、C 是一条铁路线(直线)上顺次三个站,A 、B 两站相距100•千米,现有一列火车从B 站出发,以75千米/时的速度向C 站驶去,设x (•时)表示火车行驶的时间,y (千米)表示火车与A 站的距离,则y 与x 的关系式是_________. ☆我能答8.某电信公司的一种通话收费标准是:不管通话时间多长,•每部手机每月必须缴月租费50元,另外,每通话1分缴费0.25元.(1)写出每月应缴费用y (元)与通话时间x (分)之间的关系式;(2)某用户本月通话120分钟,他的费用是多少元?•(3)若某用户本月预交了200元,那么该用户本月可以通话多长时间?9.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20个练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y (元)关于购买本数x (本)(x>10)的关系式,它们都是正比例函数吗?(3)小明现有24元钱,最多可买多少个本子?2、正比例函数及性质一般地,形如y=kx(k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.1.下列一次函数中,y 随x 值的增大而减小的( )A .y=2x+1B .y=3-4xC ..y=(5-2)x2.已知一次函数y=mx+│m+1│的图象与y 轴交于(0,3),且y 随x•值的增大而增大,则m 的值为( )A.2 B.-4 C.-2或-4 D.2或-43.已知一次函数y=mx-(m-2)过原点,则m的值为()A.m>2 B.m<2 C.m=2 D.不能确定4.下列关系:①面积一定的长方形的长s与宽a;②圆的周长s与半径a;•③正方形的面积s与边长a;④速度一定时行驶的路程s与行驶时间a.其中s是a的正比例函数的有()A.1个 B.2个 C.3个 D.4个☆我能填5.在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y•轴上的是_____.(填写序号)6.如果一次函数y=(m-3)x+m2-9是正比例函数,则m的值为_________.7.若从5%的盐水y千克中,蒸发x千克水分,制成含盐20%的盐水,则函数y•与自变量x 之间的关系是____________.8.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=_______.☆我能答9.已知点A(a+2,1-a)在函数y=2x-1的图象上,求a的值.10.已知一次函数y=kx+b的图象与x轴交于点A(-6,0),与y轴交于点B•,•若△AOB的面积是12,且y随x的增大而减小,你能确定这个一次函数的关系式吗?6、正比例函数和一次函数及性质6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.1.已知一次函数的图象经过点A(1,4)、B(4,2),•则这个一次函数的解析式为___________.2.如图1,该直线是某个一次函数的图象,•则此函数的解析式为_________.(1) (2)3.已知y-2与x成正比例,且x=2时,y=4,则y与x的函数关系式是_________;当y=3时,x=__________.4.若一次函数y=bx+2的图象经过点A(-1,1),则b=__________.5.如图2,线段AB的解析式为____________.☆我能答6.已知直线m与直线y=2x+1的交点的横坐标为2,与直线y=-x+2•的交点的纵坐标为1,求直线m的函数关系式.10.已知一次函数的图象经过点A(-3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.性质1.已知点(a,b)、(c,d)都在直线y=2x+1上,且a>c,则b与d的大小关系是( • )A.b>d B.b=d C.b<d D.b≥d2.已知自变量为x的一次函数y=a(x-b)的图象经过第二、三、四象限,则( • )A.a>0,b<0 B.a<0,b>0 C.a<0,b<0 D.a>0,b>03.如图所示的图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的是()☆我能填4.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y•轴的交点是_________.5.已知一次函数y=kx+b的图象经过点(0,-4),且x=2时y=0,则k=______,b=•_______.☆我能答6.在弹性限度内,弹簧的长度y(cm)是所挂物体的质量x(kg)的一次函数,•当所挂物体的质量为1kg 时,弹簧长10cm ;当所挂物体的质量为3kg 时,弹簧长12cm .写出y 与x 之间的函数关系,并求出所挂物体的质量为6kg 时弹簧的长度.7.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )•之间的函数关系图象.①根据图象,写出当x ≥3时该图象的函数关系式; ②某人乘坐2.5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?分类复习题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。