误差分析习题解答

合集下载

定量分析中的误差及有效数字答案

定量分析中的误差及有效数字答案

思考题1. 指出在下列情况下,各会引起哪种误差?如果是系统误差,应该用什么方法减免?(1) 砝码被腐蚀;答:引起系统误差(仪器误差),采用校准砝码、更换砝码。

(2) 天平的两臂不等长;答:引起系统误差(仪器误差),采用校正仪器(天平两臂等长)或更换仪器。

(3) 容量瓶和移液管不配套;答:引起系统误差(仪器误差),采用校正仪器(相对校正也可)或更换仪器。

(4) 试剂中含有微量的被测组分;答:引起系统误差(试剂误差),采用空白试验,减去空白值。

(5) 天平的零点有微小变动;答:随机(偶然)误差。

(6) 读取滴定管体积时最后一位数字估计不准;答:随机(偶然)误差。

采用读数卡和多练习,提高读数的准确度。

(7) 滴定时不慎从锥形瓶中溅出一滴溶液;答:过失,弃去该数据,重做实验。

(8) 标定HCl 溶液用的NaOH 标准溶液中吸入CO2。

答:系统误差(试剂误差)。

终点时加热,除去CO2,再滴至稳定的终点(半分钟不褪色)。

2. 判断下列说法是否正确(1) 要求分析结果达到0.2%的准确度,即指分析结果的相对误差为0.2%。

(2) 分析结果的精密度高就说明准确度高。

(3) 由试剂不纯造成的误差属于偶然误差。

(4) 偏差越大,说明精密度越高。

(5) 准确度高,要求精密度高。

(6) 系统误差呈正态分布。

(7) 精密度高,准确度一定高。

(8) 分析工作中,要求分析误差为零。

(9) 偏差是指测定值与真实值之差。

(10) 随机误差影响测定结果的精密度。

(11) 在分析数据中,所有的“0”均为有效数字。

(12) 方法误差属于系统误差。

(13) 有效数字中每一位数字都是准确的。

(14) 有效数字中的末位数字是估计值,不是测定结果。

(15) 有效数字的位数多少,反映了测量值相对误差的大小。

(16) 有效数字的位数与采用的单位有关。

(17) 对某试样平行测定多次,可以减少系统误差。

(18) Q检验法可以检验测试数据的系统误差。

答:(1) 对;(2) 错;(3) 错;(4) 错;(5) 对;(6) 错;(7) 错;(8) 错;(9) 错;(10) 对;(11) 错;(12) 对;(13) 错;(14) 对;(15) 对;(16) 错;(17) 错;(18) 错3. 单选题(1) 准确度和精密度的正确关系是……………………..……………………………………………….( )(A) 准确度不高,精密度一定不会高(B) 准确度高,要求精密度也高(C) 精密度高,准确度一定高(D) 两者没有关系(2) 从精密度好就可判断分析结果准确度的前提是…………………..……………………………….( )(A) 偶然误差小(B) 系统误差小(C) 操作误差不存在(D) 相对偏差小(3) 以下是有关系统误差叙述,错误的是………………………………...…………………………….( )(A) 误差可以估计其大小(B) 误差是可以测定的(C) 在同一条件下重复测定中,正负误差出现的机会相等(D) 它对分析结果影响比较恒定(4) 测定精密度好,表示………….…………………………………..………………………………….( )(A) 系统误差小(B) 偶然误差小(C) 相对误差小(D) 标准偏差小(5) 下列叙述中错误的是…………….……………………………………..…………………………….( )(A) 方法误差属于系统误差(B) 系统误差具有单向性(C) 系统误差呈正态分布(D) 系统误差又称可测误差(6) 下列因素中,产生系统误差的是………………………………………….………………………….( )(A) 称量时未关天平门(B) 砝码稍有侵蚀(C) 滴定管末端有气泡(D) 滴定管最后一位读数估计不准(7) 下列情况所引起的误差中,不属于系统误差的是……..………………..………………………….( )(A) 移液管转移溶液后残留量稍有不同(B): 称量时使用的砝码锈蚀(C) 天平的两臂不等长(D) 试剂里含微量的被测组分(8) 下述说法不正确的是……..…..………………..…………………….……………………………….( )(A) 偶然误差是无法避免的(B) 偶然误差具有随机性(C) 偶然误差的出现符合正态分布(D) 偶然误差小,精密度不一定高(9) 下列叙述正确的是……….…………………..……………………………………………………….( )(A) 溶液pH为11.32,读数有四位有效数字(B) 0.0150g试样的质量有4位有效数字(C) 测量数据的最后一位数字不是准确值(D) 从50mL滴定管中,可以准确放出5.000mL标准溶液(10) 分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称……….( )(A) 0.1000克以上(B) 0.1000克以下(C) 0.2克以上(D) 0.2克以下(11) 精密度的高低用()的大小表示………………………..………………………………………….( )(A) 误差(B) 相对误差(C) 偏差(D) 准确度(12) 分析实验中由于试剂不纯而引起的误差属于…………………..…………….……………..…….( )(A): 系统误差(B) 过失(C) 偶然误差(D)方法误差(13) 四次测定结果:0.3406、0.3408、0.3404、0.3402,其分析结果的平均值为……………………….( )(A) 0.0002 (B) 0.3405 (C) 0.059% (D) 0.076%(14) 配制一定摩尔浓度的NaOH溶液时,造成所配溶液浓度偏高的原因是…..…………………….( )(A) 所用NaOH固体已经潮解(B): 向容量瓶倒水未至刻度线(C) 有少量的NaOH溶液残留在烧杯中(D) 用带游码的托盘天平称NaOH固体时误用“左码右物”(15) 四次测定结果:55.51、55.50、55.46、55.49、55.51,其分析结果的平均偏差为………..………….( )(A) 55.49 (B) 0.016 (C) 0.028 (D) 0.008(16) 托盘天平读数误差在2克以内,分析样品应称至( )克才能保证称样相对误差为1% 。

第一章 误差分析与误差的传播习题及解答

第一章 误差分析与误差的传播习题及解答

有 5 位有效数字,其误差限
,相对误差限
有 2 位有效数字,
有 5 位有效数字, 3. 下列公式如何才比较准确? (1)
(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2)
4.设
,假定 是准确的,而对 的测量有
而相对误差却减少。
解:
秒的误差,证明当 增加时 的绝对误差增加,
四、解答题 1. 设 x>0,x*的相对误差为 δ,求 f(x)=ln x 的误差限。
解:求 lnx 的误差极限就是求 f(x)=lnx 的误差限,由公式有
已知 x*的相对误差 满足
,而
,故

2. 下列各数
都是经过四舍五入得到的近似值,试指出它们有几
位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得
( )
3. 任给实数 a 及向量 x ,则 || ax || a || x ||。
()
二、填空题:
1.设
x*
2.40315 是真值
x
2.40194 的近似值,则
x* 有(3)位有效数字。
2. x*的相对误差约是 x*的相对误差的 1 倍。
2
3. 为了使计算
y 10 3 4 6 x 1 (x 1)2 (x 1)3
5. 的近似值 3.1428 是准确到
近似值。答: 102
6. 取 x 3.142 作为 x 3.141 592 654 ┅的近似值,则 x 有
位有效数字.答:4
7. 近似值 x* 0.231关于真值 x 0.229有( 2 )位有效数字;
8. 3 x* 的相对误差为 x* 的相对误差的(

误差分析及绪论习题-复习题 (1)

误差分析及绪论习题-复习题 (1)

课本例外补充习题 (第一章)1. 下列个数都是对真值进行四舍五入法后得到的近似值,试分别写出它们的绝对误差限,相对误差限和有效数字的位数?2.为了使11 的近似值的相对误差%1.0≤ , 问至少应取几位有效数字?3.如果利用四位函数表计算 2cos 1- 试用不同方法计算并比较结果的误差.4.求方程01402=+-x x 的两个根 . 使他们至少具有四位有效数字.( 已知 975.19399≈ )5、设0>x , *x 的相对误差为δ求 x ln 的误差。

6、下列个数都是经四舍五入法得到的近似数,即误差限不超过最后一位的半个单位。

摄指出他们是几位有效数字。

解:(1) *1x =1.1021 是五位有效数字。

(2) *2x =0.031 (2位)(3) *3x =385.6 (4位) (4) *4x =56.430 (5位) (5) *5x =7*1.0 (2位) .7、 求下 列各近似值得误差限 .(.1)*3*2*1x x x ++ , (.1.1)*3*2*1x x x , (.1.1.1) *4*2x x , 其中*4*3*2*1,,,x x x x 均为第6题 所给的数 .8、计算球体积要使相对误差限为 1% , 问度量半径R 是允许的相对误差限 是多少?、 9、设 221gt s =假定g 是准确的 , 而对t 的测量有1.0±秒的误差 , 证明 当t 增加时s 的绝对误差增加 , 而相对误差却减少.10、 )1ln()(2--=x x x f 求)30(f 的值 , 若开平方用六位函数表问求对数时误差有多大?若改用另一个等价公式 )1ln()1ln(22-+-=--x x x x 计算 ,求对数时误差由多大?课本例外补充习题 (第一章)答案2. 下列个数都是对真值进行四舍五入法后得到的近似值,试分别写出它们的绝对误差限,相对误差限和有效数字的位数? 2.为了使11 的近似值的相对误差%1.0≤ , 问至少应取几位有效数字?解: 3166.311≈ , 31=∴a , %1.010**21|)(|11*≤≤∴+-n r a x ε ⇒ 10006101≤+-n ⇒ (-n+1)lg10≤lg6-lg1000= -n+1≤ 0.77815 –3 ⇒-n+1≤-2.2218 ⇒n ≥3.2218 .∴ n=4 . 说明应取4位有效数时相对误差限≤0.1% .3.如果利用四位函数表计算 2cos 1- 试用不同方法计算并比较结果的误差.解: 用四位函数表值接计算0006.09994.012cos 1=-≈- , 只有1位有效数字.42210*092.69994.1)03490.0(2cos 12sin 2cos 1-≈≈+=-只有4位有效数字. 4210*09.61sin 22cos 1-≈=- , 只有3位有效数字.准确值 410*0917.62cos 1-=- , 故以上3种算法误差限分别为44410*002.0,10*0003.0,10*1.0--- .4.求方程01402=+-x x 的两个根 . 使他们至少具有四位有效数字.( 已知975.19399≈ )解: 975.393992021400240241600401=+=-+=-+=x975.1920*1+=x , 由伟大定理211x x = ,)1*(21=x x , 故0250151.0975.3912==x ,02500.0975.19203992021400240*22=-=⇒-=--=x x00005.010*2100001565.0|975.19974984.19||975.19399||||)(|4*111=≤=-=-=-=-x x x ε 4*22210*21|975.19399||||)(|-≤-=-=x x x ε 可见 21,x x 有四位有效数字.5、设0>x , *x 的相对误差为δ求 x ln 的误差。

分析化学 第二章 误差和分析数据处理(课后习题答案)

分析化学 第二章 误差和分析数据处理(课后习题答案)

第二章 误差和分析数据处理(课后习题答案)1. 解:①砝码受腐蚀:系统误差(仪器误差);更换砝码。

②天平的两臂不等长:系统误差(仪器误差);校正仪器。

③容量瓶与移液管未经校准:系统误差(仪器误差);校正仪器。

④在重量分析中,试样的非被测组分被共沉淀:系统误差(方法误差);修正方法,严格沉淀条件。

⑤试剂含被测组分:系统误差(试剂误差);做空白实验。

⑥试样在称量过程中吸潮:系统误差;严格按操作规程操作;控制环境湿度。

⑦化学计量点不在指示剂的变色范围内:系统误差(方法误差);另选指示剂。

⑧读取滴定管读数时,最后一位数字估计不准:偶然误差;严格按操作规程操作,增加测定次数。

⑨在分光光度法测定中,波长指示器所示波长与实际波长不符:系统误差(仪器误差);校正仪器。

⑩在HPLC 测定中,待测组分峰与相邻杂质峰部分重叠:系统误差(方法误差);改进分析方法。

2. 答:表示样本精密度的统计量有:偏差、平均偏差、相对平均偏差、标准偏差、相对标准偏差。

因为标准偏差能突出较大偏差的影响,因此标准偏差能更好地表示一组数据的离散程度。

3. 答:定量分析结果是通过一系列测量取得数据,再按一定公式计算出来。

每一步测量步骤中所引入的误差都会或多或少地影响分析结果的准确度,即个别测量步骤中的误差将传递到最终结果中,这种每一步骤的测量误差对分析结果的影响,称为误差传递。

大误差的出现一般有两种情况:一种是由于系统误差引起的、另一种是偶然误差引起的。

对于系统误差我们应该通过适当的方法进行改正。

而偶然误差的分布符合统计学规律,即大误差出现的概率小、小误差出现的概率大;绝对值相等的正负误差出现的概率相同。

如果大误差出现的概率变大,那么这种大误差很难用统计学方法进行处理,在进行数据处理时,就会传递到结果中去,从而降低结果的准确性。

4. 答:实验数据是我们进行测定得到的第一手材料,它们能够反映我们进行测定的准确性,但是由于“过失”的存在,有些数据不能正确反映实验的准确性,并且在实验中一些大偶然误差得到的数据也会影响我们对数据的评价及对总体平均值估计,因此在进行数据统计处理之前先进行可疑数据的取舍,舍弃异常值,确保余下的数据来源于同一总体,在进行统计检验。

第一章 误差分析与误差的传播习题及解答

第一章 误差分析与误差的传播习题及解答

四、解答题 1. 设 x>0,x*的相对误差为 δ,求 f(x)=ln x 的误差限。
解:求 lnx 的误差极限就是求 f(x)=lnx 的误差限,由公式有
已知 x*的相对误差 满足
,而
,故

2. 下列各数
都是经过四舍五入得到的近似值,试指出它们有几
位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得
第一章 误差分析与误差的传播
一、判断题: 1.舍入误差是模型准确值与用数值方法求得的准确值产生的误差。 ( )
x2 2. 用 1- 2 近似表示 cosx 产生舍入误差。
( )
3. 任给实数 a 及向量 x ,则 || ax || a || x ||。
()
二、填空题:
1.设
x*
2.40315 是真值
5. 计算下列矩阵的范数:
1)
,求
2)
,求
3)
,求
解:1)
2)
3)
1 0 1
6.
求矩阵
A
0
1
0
的谱半径.
2 0 2
1 0 1
解 I A 0 1 0 1 3
4分
2 0 2
矩阵 A 的特征值为 1 0, 2 1, 3 3
8分
所以谱半径 A max0,1,3 3
7. 证明向量 X 的范数满足不等式

。( 2.7183 和 8.0000)
12. 、
,则 A 的谱半径

,A 的

( 11.计算


,利用( )式计算误差最小。
四个选项:
解:
三、选择题

《分析化学》第2章》误差及分析数据的处理复习题及答案

《分析化学》第2章》误差及分析数据的处理复习题及答案

一、判断题1、测定的精密度高,则准确度一定高。

(×)2、用标准偏差表示测定结果的精密度比算术平均偏差更合理。

(√)3、测得某溶液pH=6.21,其有效数字是三位。

(×)4、测得某溶液体积为1.0L,也可记为1000mL。

(×)5、所有的误差都能校正。

(×)6、为提高包含区间的包含概率,可适当提高包含区间的宽度。

(√)7、误差为正值表示测得值比真值低。

(×)8、若测量只进行一次,则无法考察测得值的精密度。

(√)9、评价进行多次平行测量结果时,正确度和准确度含义相同。

(×)10、定量检测中,精密度和精确度含义相同。

(×)11、可通过回收试验回收率的高低判断有无系统误差存在。

(√)12、某测得值的总误差是系统误差与随机误差之和。

(√)13、随着测量次数增加,随机误差变小。

(×)14、定量检测报告中仅需给出平行测定值的平均值即可。

(×)15、分析结果的准确度由系统误差决定,而与随机误差无关。

(×)16、测定结果的准确度仅取决于测量过程中的系统误差的大小。

(×)17、准确度反映的是分析方法或测定系统的系统误差的大小。

(×)18、精密度反映的是分析方法或测定系统随机误差的大小。

(√)19、两组数据的平均偏差相同,它们的标准偏差不一定相同。

(√)20、在定量分析中精密度高,准确度不一定高。

(√)21、进行无限多次测量,总体均值就是真值。

(×)22、系统误差分布符合正态分布规律。

(×)23、有效数字中不应该包含可疑数字。

(×)24、离群值的取舍可采用F检验。

(×)25、置信度越高,则相应的置信区间越宽。

(√)26、t检验可用于判断测定值与标准值之间有无显著性差异。

(√)27、采用F检验可以判断两组测定结果的均值有无显著性差异。

(×)28、采用F检验可以判断两组测定结果的精密度有无显著性差异。

误差和分析数据的处理习题及答案(可编辑)

误差和分析数据的处理习题及答案(可编辑)

误差和分析数据的处理习题及答案误差和分析数据的处理 1.指出在下列情况下,各会引起哪种误差?如果是系统误差,应该采用什么方法减免?(1)砝码被腐蚀;(2)天平的两臂不等长;(3)容量瓶和移液管不配套;试剂中含有微量的被测组分;(5)天平的零点有微小变动;(6)读取滴定体积时最后一位数字估计不准;(7)滴定时不慎从锥形瓶中溅出一滴溶液;(8)标定HCl溶液用的NaOH标准溶液中吸收了CO2。

2.如果分析天平的称量误差为±0.2mg,拟分别称取试样0.1g和1g左右,称量的相对误差各为多少?这些结果说明了什么问题? 3.滴定管的读数误差为±0.02mL。

如果滴定中用去标准溶液的体积分别为2mL和20mL左右,读数的相对误差各是多少?从相对误差的大小说明了什么问题? 4.下列数据各包括了几位有效数字?(1)0.0330 (2) 10.030 (3) 0.01020 (4) 8.7×10-5 (5) pKa=4.74 (6) pH=10.00 5.将0.089g Mg2P2O7沉淀换算为MgO的质量,问计算时在下列换算因数(2MgO/Mg2P2O7)中哪个数值较为合适:0.3623,0.362,0.36?计算结果应以几位有效数字报出。

6.用返滴定法测定软锰矿中MnO2质量分数,其结果按下式进行计算:问测定结果应以几位有效数字报出? 7.用加热挥发法测定BaCl2??2H2O中结晶水的质量分数时,使用万分之一的分析天平称样0.5000g,问测定结果应以几位有效数字报出? 8.两位分析者同时测定某一试样中硫的质量分数,称取试样均为3.5g,分别报告结果如下:甲:0.042%,0.041%;乙:0.04099%,0.04201%。

问哪一份报告是合理的,为什么? 9.标定浓度约为0.1mol??L-1的NaOH,欲消耗NaOH溶液20mL左右,应称取基准物质H2C2O4??2H2O 多少克?其称量的相对误差能否达到0. 1%?若不能,可以用什么方法予以改善?若改用邻苯二甲酸氢钾为基准物,结果又如何? 10.有两位学生使用相同的分析仪器标定某溶液的浓度(mol??L-1),结果如下:甲:0.12,0.12,0.12(相对平均偏差0.00%);乙:0.1243,0.1237,0.1240(相对平均偏差0.16%)。

第2章-测量误差分析及处理-习题-答案

第2章-测量误差分析及处理-习题-答案

电子测量技术第二章(一)填空题1、相对误差定义为测量值与真值的比值,通常用百分数表示。

2、绝对误差是指由测量所得到的真值与测量值之差。

3、测量误差就是测量结果与被测量____真值____的差别,通常可以分为__ 绝对误差_____和____相对误差___两种。

4、根据测量的性质和特点,可将测量误差分为随机误差、系统误差、粗大误差。

5、精密度用以表示随机误差的大小,准确度用以表示系统误差的大小,精确度用以表示系统误差与随机误差综合影响的大小。

6、可以用____系统误差_____来作为衡量测量是否正确的尺度,称为测量的准确度。

7、随机误差的大小,可以用测量值的___精密度___来衡量,其值越小,测量值越集中,测量的___密集度___越高。

8、误差的基本表示方法有_绝对误差_、_相对误差_和最大引用误差(满度误差)9、消弱系统误差的典型测量技术有零示法、替代法、补偿法、对照法、微差法和交叉读数法。

10、多次测量中随机误差具有___有界_____性、____对称____性和___抵偿_____性。

11、满度(引用)误差表示为绝对误差与满量程之比,是用量程满度值代替测量真值的相对误差。

12、测量仪器准确度等级一般分为7级,其中准确度最高的为_0.1_级,准确度最低的为_5.0_级。

13、1.5级100mA的电流表,引用相对误差为±1.5% ,在50mA点允许的最大绝对误差为___±1.5mA 。

14、为保证在测量80V电压时,误差≤±1%,应选用等于或优于0.5 级的100V量程的电压表。

15、___马利科夫_____判据是常用的判别累进性系差的方法。

16、____阿贝一赫梅特____判据是常用的判别周期性系差的方法。

三种,在工程上凡是要求计算测量结果的误差时,一般都要用__相对误差__。

17、对以下数据进行四舍五入处理,要求小数点后只保留2位。

4.850=__4.85__;200.4850000010=_____200.48___。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“误差分析和数据处理”习题及解答
1.指出下列情况属于偶然误差还是系统误差?
(1)视差;(2)游标尺零点不准;(3)天平零点漂移;(4)水银温度计毛细管不均匀。

答:(1)偶然误差;(2)系统误差;(3)偶然误差;(4)系统误差。

2.将下列数据舍入到小数点后3位:
;;;;;。

答:根据“四舍六入逢五尾留双”规则,上述数据依次舍为:;;;;;。

3.下述说法正确否?为什么?
(1)用等臂天平称衡采取复称法是为了减少偶然误差,所以取左右两边所称得质量的平均值作为测量结果,即
(2)用米尺测一长度两次,分别为cm及cm,因此测量误差为cm。

答:(1)错。

等臂天平称衡时的复称法可抵消因天平不等臂而产生的系统误差。

被测物(质量为m)放在左边,右边用砝码(质量为m r)使之平衡,ml1 =m r l2,即
当l1 =l2时,m=m r。

当l1 ≠l2时,若我们仍以m r作为m的质量就会在测量结果中出现系统误差。

为了抵消这一误差,可将被测物与砝码互换位置,再得到新的平衡,m l l1 =ml2,即
将上述两次称衡结果相乘而后再开方,得
这时测量结果中不再包含因天平不等臂所引起的系统误差。

(2)错。

有效数字末位本就有正负一个单位出入;测量次数太少;真值
未知。

4.氟化钠晶体经过五次重复称量,其质量(以克计)如下表所示。

试求此晶体的平均质量、平均误差和标准误差。

解:平均质量 3.69130
0.738265i
i
m
m n
=
=
=∑ 平均误差 ||
0.00012
0.0000245
i
i
m m d n
-=±

=±∑ 标准误差 0.000032σ===±
5.测定某样品的重量和体积的平均结果W = g ,V = mL ,它们的标准误差分别为 g 和 mL ,求此样品的密度。

解:密度 -110.287 4.436 g mL 2.319
W V ρ=
==⋅ 间接测量结果(乘除运算)的相对标准误差: 测量结果表示为:ρ = ± g ·mL -1
6.在629 K 测定HI 的解离度α时得到下列数据:
,, 01968,,,
,,,,。

解离度α与平衡常数K的关系为:
2HI == H
2 + I
2
试求在629K时的平衡常数及其标准误差。

解:略去可疑值后,α的平均值α=,平均误差d=±,标准误差σα=±(因 |?α|>4|d|,故可疑值可以舍弃)。

7.物质的摩尔折射度R,可按下式计算:
已知苯的摩尔质量M=g·mol-1,密度d=±g·cm-3,折光率n=±,试求苯的摩尔折射度及其标准误差。

解:
22
22
1 1.498178.08
26.04
2 1.49820.879
n M
R
n d
--
=⋅=⨯=
++
8.乙胺在不同温度下的蒸气压如下:
试绘出p—t及lg p—
T
关系曲线,并求出乙胺的蒸气压与温度的关系式。

解:作图如下:
从上图所作直线上任意取两个端点,如(, )、(, ),得直线方程为:
1000
lg 1.4837.992p T
=-⨯
+(和电脑作图所得方程 1000lg 1.48117.9865p T =-⨯+ 一致)。

9.计算下列某物理量重复测定值的平均值及平均偏差。

(1) ; ;
(2) ρ(g ·cm -3) ; ;
(3) 当ρ的准确值为 g ·cm -3时,求上述ρ的绝对误差和相对误差。

解:(1) 20.2020.2420.25
20.233
i
i
a
a n
++=
=
=∑
(2) 0.87860.87870.8782
0.87853
i
i
n ρ
ρ++=
=
=∑
||
|0.87860.8785||0.87870.8785||0.87820.8785|
0.0002
3
i
i
d n
ρ
ρ--+-+-=±

=±∑(3) 绝对误差为: ? = ? (g ·cm -3) 相对误差为:
0.0005
0.00060.8790
-=-
10.在不同温度下测得偶氮异丙烷分解速率常数,其分解反应式和数据结果如下:
C 3H 7NNC 3H 7 == C 6H 14 + N 2
(1)试用直线化法作图验证k 与T 间的关系,可用下列指数函数式表示:
E RT
k Ae
-=
(2)求出A 、E 值,并写出完整的方程式。

解:(1)将方程改写为 ln ln E k A RT
=-+,作ln k —
1
T
图如下:
所得图形为一直线,得证。

(2)由图可得,斜率 20600E R
-=-,截距 ln A =
故 E = ×105 J ·mol -1,A = ×1013
k 与T 间的方程式为: 5
1.71310135.9110RT
k e
⨯-
=⨯
11.某次用光电比色法测得光透过Cu(NH 3)42+水溶液时的结果如下:
若lg R 随c 的变化成线性关系,可用下式表示:lg R = a ? bc 试用最小二乘法求出上式中a 和b 的值。

解:最小二乘法的根据是在有限次测量中最佳结果应使标准误差最小,也即使残差的平方和为最小,即:()221
1
lg n
n
i i i i i a bc R δ==∆==--=∑∑最小
使 Δ 为最小的必要条件为:()1
2lg 0n
i i i a bc R a =∂∆=--=∂∑
由此即可求得a 和b 。

为此,先列出各个残差如下:
得方程:8a ? 140×b ? = 0
140a ? 3500×b ? = 0
解得: a =
b =
附电脑作图所得直线及其方程:
12.在不同温度下测得氨基甲酸铵的分解反应
NH 2COONH 4(s ) == 2NH 3(g ) + CO 2(g )
的数据如下:
试用最小二乘法求出方程 1lg p K f T
⎛⎫
= ⎪⎝⎭
,由此求平均等压反应热效应ΔH 。

解:令 c =
1
,设 lg K p = a ? bc ,列出各个残差如下:
得方程:6a ? ×b + = 0
?
×b + = 0
解得: a =
b = 8340
比较平衡常数与温度的关系:ln p H K C RT
∆=-+ 或 'lg 2.3026p H
K C RT
∆=-
+
可得:
83402.3026H
b R
∆==
即 ΔH = ×105 J ·mol -1 附电脑作图所得直线及其方程:。

相关文档
最新文档