计算方法曲线拟合
第3章曲线拟合的最小二乘法计算方法

最小二乘拟合,特别是多项式拟合,是最流行的数据处理 方法之一.它常用于把实验数据(离散的数据)归纳总结为经 验公式(连续的函数),以利于进一步的推演分析或应用.
1
结束
§3.2 线性拟合和二次拟合函数
1. 线性拟合
计 已知数据点为 ( xi , yi ), i 1,2,..., n
算 用直线 p( x) a bx作为近似曲线,均方误差为
计
i xi yi xi yi xi2 xi2yi xi3
xi4
0 3 5 15 9 45 27
81
算
1 5 2 10 25 50 125 625
方
2 6 1 6 36 36 216 1296
法
3 8 2 16 64 128 512 4096
课
4 10 4 40 100 400 1000 10000
件
Y ln y, A ln a Y A bx
8
i
xi
0
1
yi
Yi
15.3
2.7279
xi2
xiYi
1
2.7279
1
2
20.5
3.0204
4
6.0408
计
2
3
27.4
3.3105
9
9.9315
算
3
4
36.6
3.6000
16
14.4000
方
4
5
49.1
3.8939
25
19.4695
法
5
6
65.6
4
例1 设5组数据如下表,用一多项式对其进行拟合。
x 3 5 6 8 10
计
计算方法课件第六章最小二乘法与曲线拟合

例1: y aebx
ln y ln a bx
u ln y, A ln a, B b
u A Bx
例2: y
a
1 bx
u 1 y
1 a bx y u a bx
3.写出矛盾方程组。 4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。 6.将正则方程组的解带回到数学模型中,得到拟 合曲线。
Remark
1.同一问题可以有不同的拟合曲线,通常根据均方误
差 N [ (xi 和) 最yi大]2 偏差
max
1i N
( xi
t cos 0.669131 0.390731 0.121869 -0.309017 -0.587785
记 a 1 , b e ,得拟合模型:a bt y
p
p
则矛盾方程组为:
1 0.669131
0.370370
1
1 1
0.390731 0.121869 0.309017
a b
0.500000
一、曲线拟合模型
定义:依据某种标准选择一条“最好”的简单
曲线作为一组离散数据(
xi
,
yi
)
N i0
的连续模型。
确定曲线的类型:一般选取简单的低次多项式。
求一个次数不高于N-1次的多项式:
y (x) a0 a1x a2x2 amxm
(m N 1)
(其中a0,a1,…,am待定),使其“最好”的拟合
j 1
j 1
n a1 j x j b1
计算方法 第三章曲线拟合的最小二乘法20191103

§2 多项式拟合函数
例3.1 根据如下离散数据拟合曲线并估计误差
x 1 23 4 6 7 8 y 2 36 7 5 3 2
解: step1: 描点
7
*
step2: 从图形可以看出拟
6 5
*
合曲线为一条抛物线:
4
y c0 c1 x c2 x2
3 2 1
* *
* * *
step3: 根据基函数给出法
法
18
定理 法方程的解是存在且唯一的。
证: 法方程组的系数矩阵为
(0 ,0 ) (1 ,0 )
G
(0
,1
)
(1 ,1 )
(0 ,n ) (1 ,n )
(n ,0 )
(
n
,
1
)
(n ,n )
因为0( x),1( x), ...,n( x)在[a, b]上线性无关,
所以 G 0,故法方程 GC F 的解存在且唯一。
第三章 曲线拟合的最小二乘法
2
最小二乘拟合曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
3
三次样条函数插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
4
Lagrange插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
5
一、数据拟合的最小二乘法的思想
已知离散数据: ( xi , yi ), i=0,1,2,…,m ,假设我们用函
便得到最小二乘拟合曲线
n
* ( x) a*j j ( x) j0
为了便于求解,我们再对法方程组的导出作进一步分析。
第三章 曲线拟合的最小二乘
物理实验技术使用中如何进行数据拟合与曲线拟合

物理实验技术使用中如何进行数据拟合与曲线拟合在物理实验中,数据拟合与曲线拟合是一项非常重要的技术。
通过对实验数据进行拟合,我们可以得到更准确的实验结果,进一步理解和解释实验现象。
本文将介绍物理实验中如何进行数据拟合与曲线拟合的常用方法和技巧。
一、数据拟合的基本概念与方法数据拟合是指根据一组离散的实验数据点,找到能够最好地描述这些数据点的某种函数形式。
常用的数据拟合方法有最小二乘法和非线性最小二乘法。
1. 最小二乘法最小二乘法是一种最常用的线性数据拟合方法。
它通过寻找最小化残差平方和的参数值,来确定拟合函数的参数。
残差是指实验数据和拟合函数值之间的差异。
在使用最小二乘法进行数据拟合时,首先需要确定拟合函数的形式。
然后,将实验数据代入拟合函数,并计算残差平方和。
通过对残差平方和进行最小化,可以得到最佳的拟合参数。
2. 非线性最小二乘法非线性最小二乘法是适用于非线性拟合问题的方法。
在非线性拟合中,拟合函数的形式一般是已知的,但是函数参数的确定需要通过拟合实验数据来进行。
非线性最小二乘法通过迭代寻找最小化残差平方和的参数值。
首先,假设初始参数值,代入拟合函数,并计算残差。
然后,根据残差的大小,调整参数值,直到残差平方和最小化。
二、曲线拟合的常用方法与技巧曲线拟合是一种在实验中常见的数据处理方法。
例如,在光谱实验中,我们常常需要对谱线进行拟合,来确定峰的位置、宽度等参数。
1. 多项式拟合多项式拟合是一种常用的曲线拟合方法。
多项式可以近似任何函数形式,因此可以适用于不同形状的实验数据曲线。
在多项式拟合中,我们根据实验数据点的分布情况,选择适当的多项式次数。
通过最小二乘法,确定多项式的系数,从而得到拟合曲线。
2. 非线性曲线拟合非线性曲线拟合适用于实验数据具有复杂形状的情况。
拟合函数的形式一般是已知的,但是参数的确定需要通过拟合实验数据来进行。
非线性曲线拟合的方法类似于非线性最小二乘法。
通过寻找最小化残差平方和的参数值,可以得到拟合曲线的形状和特征。
计算方法实验三 不同曲线拟合比较讲解

计算方法C(2014-2015-2)【不同拟合曲线的比较】实验报告学号:******* 姓名:*****8课程教师:戴克俭教学班级:无实验三 不同拟合曲线的比较实验目的:掌握曲线拟合和最小二乘法的思想,比较不同拟合曲线的精度。
实验题目:下表给出了我国1949~1984年间的一些人口数据,分别按下述方案求最小二乘拟合函数及其偏差平方和Q ,求1969年人口并预测方案I 拟合函数取如下形式的三次多项式3322101)(x a x a x a a x F +++=方案II 用离散正交多项式求三次拟合多项式)(2x F 方案III 用离散正交多项式求四次拟合多项式)(3x F 方案IV 拟合函数为如下形式的函数10sin)(4xb a x F π+=算法流程图如下:i、方案1 ii、方案2iii、方案3iv、方案4源程序清单如下:i、方案1图1:求3次多项式图2:求偏差ii、方案2图3:求3次多项式iii、方案3图4:求4次多项式图5:求sin(π*X/10)图6:nafit函数M文件图7:命令行输入运算结果如下:⑴、方案1P(X)=745181.85611415-1135.160413656X+0.576328328X^2-0.000097520X^3 P(1969)= 11.4973750142380600 亿P(2000)=14.3408021503128110亿图8 拟合曲线:蓝色线表示拟合曲线P(X),红色线表示真实数据误差很大⑵、方案2P(X)=732370.3125-1115.615844727X+0.566389024X^2-0.000095836X^3P(1969)= 4.1277828774182126亿P(2000)= 6.7190460005076602亿图9 拟合曲线:蓝色线表示拟合曲线P(X),红色线表示真实数据误差很大⑶、方案3P(X)=30212.5+320.9404296875X-0.5357236862X^2+0.0002799341X^3-0.000000048X^4P(1969)= 627.7665998683078200 亿P(2000)= 671.4145749998278900 亿图10 拟合曲线:蓝色线表示拟合曲线P(X),红色线表示真实数据蓝色线的数值全是上百亿与实际严重不符误差巨大⑷、方案4P(X)=0.2414+7.7753sin(π*X/10)P(1969)= 2.6441006951177228 亿P(2000)= 0.2413990828363674 亿图11 拟合曲线:蓝色线表示拟合曲线P(X),整体看该曲线具有和sin近似的周期性质,与实际数据不是很符合。
计算方法 第三章 最小二乘法与曲线拟合

j1 i1
i1
称(2)为(1)的正规方程组(法方程组)。 (2)的解即为(1)的解,称此方法为最小二乘法。
例:利用最小二乘法求矛盾方程组:
2x+4y=11
3x 5y 3 x 2 y 6
4x 2 y 14
解:将原方程组改写为
4
1 2x 4 y 11 2 3x 5y 3 3 x 2 y 6
记
Q
n
i2
n
m
2
(aij x j bi ) (求Q的最小值)
i 1
i1 j1
Q
xk
n i 1
2
m
(aij x j
j 1
bi )aik
n
2
i 1
m
(aij x j
j 1
bi )aik
0
即
m
n
aij aik
x
j
n
aik bi
(k 1, 2,
, m)
——(2)
注:拟合时尽量使i 0
2. 常用方法:
m
m
(1)使偏差绝对值之和最小,即 | i | | (xi ) yi |最小。
i 1
i 1
(2)
使偏差最大绝对值最小,即max 1im
|
i
|
max
1im
|
( xi
)
yi
|
最小。
m
m
(3)使偏差平方和最小,即 i2 [(xi ) yi]2最小。
解得:x 2.977,y 1.226
§3.2 曲线拟合
一、已知 x x1 x2 xn
y y1 y2
yn
n-1的多项式 Q(x) a0 a1x
计算方法离散数据曲线拟合

第三章数据拟合知识点:曲线拟合概念,最小二乘法。
1 .背景已知一些离散点值时,可以通过构造插值函数来近似描述这些离散点的运动规律或表现这些点的隐藏函数观测到的数据信息• •*■*曲线拟合方法也可以实现这个目标,不同的是构造拟合函数。
两种方法的一个重要区别是:由插值方法构造的插值函数必须经过所有给定离散点,而曲线拟合方法则没有这个要求,只要求拟合函数(曲线)能“最好”靠近这些离散点就好。
2.曲线拟合概念实践活动中,若能观测到函数y=f(x)的一组离散的实验数据(样点):(x i,y),i=1,2…,n。
就可以采用插值的方法构造一个插值函数x),用「x)逼近f(x)。
插值方法要求满足插值原则xj=y i,蕴涵插值函数必须通过所有样点。
另外一个解决逼近问题的方法是考虑构造一个函数X)最优靠近样点,而不必通过所有样点。
如图。
即向量T= (「X1),X2),•••「x n))与丫= (y1, y2, )的某种误差达到最小。
按T和丫之间误差最小的原则作为标准构造的逼近函数称拟合函数。
曲线拟合问题:如何为f(x)找到一个既简单又合理的逼近函数X)。
曲线拟合:构造近似函数x),在包含全部基节点x<i=1 , 2…,n)的区间上能“最好”逼近f(x)(不必满足插值原则)。
逼近/近似函数y=「x)称经验公式或拟合函数/曲线。
拟合法则:根据数据点或样点(xy), i=1 , 2…,n,构造出一条反映这些给定数据一般变化趋势的逼近函数y=「x),不要求曲线■- x)经过所有样点,但要求曲线x)尽可能靠近这些样点,即各点误差S i= x i)-y i按某种标准达到最小。
均方误差/误差平方和/误差的2-范数平方:n卜||2八1i 4常用误差的2-范数平方作为总体误差的度量,以误差平方和达到最小作为最优标准构造拟合曲线的方法称为曲线拟合的最小二乘法(最小二乘原理)。
3.多项式拟合2012〜2013学年第2学期计算方法 教案 计1101/02 , 1181 开课时间:2012-02年4月第三版 第三章数据拟合 2h 3(1) 线性拟合给定一组(x i ,y i ), i=1 , 2…,n 。
曲线拟合优度计算

拟合优度(Goodness of Fit)是用于评估观测数据与统计模型预期值的吻合程度。
度量这一程度的主要统计量是可决系数(Coefficient of Determination),通常简称为R²。
具体来说,R²的值位于0至1之间。
如果R²的值接近1,则表示回归曲线对观测值的拟合程度较好;反之,若R²的值较小,则说明回归曲线对观测值的拟合程度较差。
在实际应用中,一般认为当R²达到0.8以上时,该模型的拟合效果可以认为是不错的。
至于R²的计算方法,假设y为我们待拟合的数据,y的均值为y',而拟合的数据为y,则可以通过以下公式进行计算:
\[ R² = 1 - \frac{SST}{SSR + SSE} \]
其中,SST代表总平方和(total sum of squares),计算公式为:
\[ SST = \sum_{i=1}^{n} (yi - \bar{y})^{2} \]
SSR代表回归平方和(regression sum of squares),计算公式为:
\[ SSR = \sum_{i=1}^{n} (ŷi - \bar{y}')^{2} ]
SSE代表残差平方和(residual sum of squares),计算公式为:
\[ SSE = \sum_{i=1}^{n} (yi - ŷi)^{2} ]
在此,\(\bar{y}\) 是y的平均值,\(bar{y}'\) 是y'的平均值,ŷi是通过模型预测得到的y值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB(cn)
曲线拟合问题最常用的解法——线性最小二乘法的基本思路
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令 f(x)=a1r1(x)+a2r2(x)+ …+amrm(x) 其中 a1,a2, …am 为待定系数。 第二步: 确定a1,a2, …am 的准则(最小二乘准则): (1)
线性最小二乘法的求解 所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。 Ra=y (3) r a1 y1 1 ( x1 ) rm ( x1 ) , a , y R 1 ( xn ) rm ( xn ) am yn r
比如对方程 y=a e b x 取对数,得l n y=l n a+b x, 令 Y=lny, A= l n a, B=b 则问题转化为解 Y=A+Bx的线 性问题。 类似的再如,对y=a+ b/ x拟和可对此方程取倒数,则 新变量1/y于x成线性关系。
主页
拟合与插值的关系
问题:给定一批数据点,需确定满足特定要求的曲线或曲面
f=a1+a2/x + + +
f=aebx +
+
-bx f=ae + +
+ +
+ + +
+
+ +
实例讲解
某种合成纤维的强度与其拉伸倍数有直接 关系,下表是实际测定的24个纤维样品的 强度与相应拉伸倍数的记录。
提示:将拉伸倍数作为x, 强度作为y,在座标 纸上标出各点,可以发现什么?
数据表格
编号 1 2 3 4 5 6 7 8 9 10 11 12 拉伸倍数 1.9 2.0 2.1 2.5 2.7 2.7 3.5 3.5 4.0 4.0 4.5 4.6 强度 kg/mm2 1.4 1.3 1.8 2.5 2.8 2.5 3.0 2.7 4.0 3.5 4.2 3.5 编号 13 14 15 16 17 18 19 20 21 22 23 24 拉伸倍数 5.0 5.2 6.0 6.3 6.5 7.1 8.0 8.0 8.9 9.0 9.5 10.0 强度 kg/mm2 5.5 5.0 5.5 6.4 6.0 5.3 6.5 7.0 8.5 8.0 8.1 8.1
9 8 7 6 5 4 3 2 1 0 0 2 4 6 8 10 12
从上图中可以看出强度与拉伸倍数大致成线形关系, 可用一条直线来表示两者之间的关系。 解:设 y*=a+bxi ,令δ =yi-y*i=yi-a-bxi,根据最 小二乘原理,即使误差的平方和达到最小,也就是令 Q=∑δ i
i=1 n 2
曲线拟合问题的提法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所有 数据点最为接近,即曲线拟合得最好。 y + +
+
+
+ i (x+ i,yi)来自+ +
+
y=f(x)
x
i 为点(xi,yi) 与曲线 y=f(x) 的距离
解决方案: •若要求所求曲线(面)通过所给所有数据点,就是插值问题; •若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。
函数插值与曲线拟合都是要根据一组数据构造一个函数作 为近似,由于近似的要求不同,二者的数学方法上是完全不同 的。
实例:下面数据是某次实验所得,希望得到X和 f之间的关系?
为最小 ,即求使
(a,b)=
24 i 1
2 i
( yi a b xi )
i 1
24
2
有最小值的a和b的值。
计算出它的正规方程得
24a 127.5b 113.1 127.5a 829.61b 731.60
解得: a=0.15 , b=0.859 直线方程为:y*=0.15+0.859x
其中
定理:当RTR可逆时,超定方程组(3)存在最小二乘解, 且即为方程组
RTRa=RTy
的解:a=(RTR)-1RTy
线性最小二乘拟合 f(x)=a1r1(x)+ …+amrm(x)中 函数{r1(x), …rm(x)}的选取 1. 通过机理分析建立数学模型来确定 f(x); 2. 将数据 (xi,yi) i=1, …n 作图,通过直观判断确定 f(x): f=a1+a2x + + + + + f=a1+a2x+a3x2 + + + + + f=a1+a2x+a3x2 + + + + +
多项式的最小二乘拟合的MATLAB函数文件agui_fit.m如下:
Fu n ctionp agu i_fit(x , y, m )(x,y为 数 据 向 量 , m为 多 项 式 的 次 数 , p返 回 多 项 式 的升幂排列的系数 ) A z e ros(m 1,m 1); fori 0 : m forj 0 : m A(i 1, j 1) su m (x.^ (i j)); end b(i 1) su m (x.^ i .* y); end c A \ b' ; P c'; 在matlab命 令 窗 口 求 解 x [2,4,6,8] y [2,11,28,40] p agui _ fit ( x , y ,1)
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
记
J (a1 , a2 , am ) i2 [ f ( xi ) yi ]2
i 1 n i 1
n
n
[ ak rk ( xi ) yi ]2
i 1 k 1
m
(2)
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
直线拟合
直线拟合
多项式拟合
一般最小二乘法的拟合
(k , j ) k ( x j ) j ( xi ), ( y, j ) yi j ( xi )
i 1 i 1
n
n
应用
线性模型引深及推广
由上述我 们已经知到上述线性模型实际上是最小二乘 法的推广,实际上也就是多项式逼近函数的问题。它 不仅可以解决一元问题还可用于多元问题。除此外还 可求解某些非线性问题。求解方法是将其通过一定的 代数变换转换为可用线性模型求解的问题。