圆锥曲线的相关公式
圆锥曲线公式大全

圆锥曲线公式大全(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即0:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式:(1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D )其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系 点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -=2212121()4k x x x x =+-- 3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程()222210x y a b a b+=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤2.双曲线顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 22焦点的位置焦点在x 轴上 焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a ,即21||||2MF MF a -=(2102||a F F <<) 第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=>【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y a x b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式 ) (消y x x x x k x x k l ]4))[(1(1212212212-++=-+=五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:图形标准方程 22y px = ()0p >22y px =- ()0p >22x py = ()0p >22x py =- ()0p >开口方向 向右 向左 向上 向下定义 与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)顶点 ()0,0离心率 1e =对称轴 x 轴y 轴范围0x ≥0x ≤0y ≥0y ≤焦点 ,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2px =2p y =-2p y =焦半径 0,0()M x y 02pMF x =+02pMF x =-+02pMF y =+02p MF y =-+通径 过抛物线的焦点且垂直于对称轴的弦称为通径:2HH p '=焦点弦长 公式 12AB x x p =++参数p几何意义参数p 表示焦点到准线的距离,p 越大,开口越阔直线与椭圆相交?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎨⎧y =kx +bx 2a 2+y2b 2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(b x x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;π;⑸112. ||||FA FB P+=⑷焦点F对A B、在准线上射影的张角为2。
圆锥曲线常用公式

7.双曲线的标准方程:
若焦点在X轴上:
x2 y 2 2 1 a 0, b 0 2 a b
焦点坐标为: 渐近线方程:
F1 c, 0 F2 c, 0
c a b
2 2
2
e
c a
b y x a
x2 y 2 若焦点在Y轴上: 2 2 1 a 0, b 0 b a
x2 y 2 6..弦长公式(椭圆与直线)设椭圆 2 2 1 a b 0 ,直线的斜率为 K , 其 a b
与椭圆有两个交点 A x1 , y1 B x2 , y2 ,则弦
AB 的长为
AB 1 K 2 x1 x2 1
1 y1 y2 2 K
焦点坐标为: F1 c, 0 F2 c, 0
a b c
2 22Biblioteka ec ax2 y 2 若焦点在Y轴上: 2 2 1 a b 0 b a
焦点坐标为: F1 0, c
F2 0, c
a 2 b2 c 2
e
c a
5.求两条曲线交点的坐标(联立方程组)
焦点坐标为: F1
0, c
a y x b
F2 0, c
c a b
2 2
2
e
c a
渐近线方程:
8.抛物线的标准方程: 若焦点在X轴上:
y 2 2 px p 0
焦点坐标为:
p ,0 2
2
若焦点在Y轴上: x 焦点坐标为:
2 py p 0
圆锥曲线常用知识
1.点到点的距离公式:设A
x1 , y1
, B x2 , y2 ,则A到B距离为:
圆锥曲线公式大全(高中珍藏版)

圆锥曲线公式大全1、椭圆的定义、椭圆的标准方程、椭圆的性质椭圆定义焦点位置椭圆的图象和性质若M 为椭圆上任意一点,则有|MF 1|+|MF 2|=2ax 轴y图形o xy 轴y o x标准方程焦点坐标焦距顶点坐标a ,b ,c 的关系式长、短轴对称轴离心率范围x 2y 2+2=12a b F 1(-c, 0 ), F 2( c, 0 )|F 1F 2| = 2c(±a , 0 ), ( 0,±b )a 2 =b 2 +c 2y 2x 2+2=12a b F 1(0,-c, ), F 2( 0, c )(0,±a ), (±b , 0 )长轴长=2a ,短轴长=2b ,长半轴长=a ,短半轴长=b 无论椭圆是x 型还是y 型,椭圆的焦点总是落在长轴上关于x 轴、y 轴和原点对称e =c ( 0 <e < 1),离心率越大,椭圆越扁,反之,越圆a-a ≤x ≤a ,-b ≤y ≤b 2-b ≤x ≤b ,-a ≤y ≤a22、判断椭圆是x 型还是y 型只要看x 对应的分母大还是y 对应的分母大,若x 对应的分母大则x 型,若y 对应的分母大则y 型.22x 2y 23、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为2+2=1,若为y a b y 2x 222型则可设为2+2=1,若不知什么型且椭圆过两点,则设为稀里糊涂型:mx +ny =1a b 4、双曲线的定义、双曲线的标准方程、椭圆的性质双曲线的图象和性质若M为双曲线上任意一点,则有MF1-MF2=2a(2a<2c)双曲线定义若MF1-MF2=2a=2c,则点M的轨迹为两条射线若MF1-MF2=2a>2c,则点M无轨迹焦点位置x轴y轴图形标准方程焦点坐标焦距顶点坐标(±a, 0 )x2y2-2=12a bF1(-c, 0 ), F2( c, 0 )|F1F2| = 2cy2x2-2=12a bF1(0,-c, ), F2( 0, c )(0,±a )a,b,c的关系式椭圆形状长的像a,所以a是老大,a2 = b2 + c2;双曲线形状长的像c,所以c是老大,c2 = a2 + b2实轴、虚轴对称轴离心率范围渐近线实轴长=2a,虚轴长=2b,实半轴长=a,虚半轴长=b无论双曲线是x型还是y型,双曲线的焦点总是落在实轴上关于x轴、y轴和原点对称e=c(e >1)aa≤x或x≤-a,y∈R a≤y或y≤-a,x∈Ry=±bxay=±axb2、判断双曲线是x 型还是y 型只要看x 前的符号是正还是y 前的符号是正,若x 前的符号为正则x 型,若y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为a 22222x 2y 23、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为2-2=1,若a b y 2x 2为y 型则可设为2-2=1,若不知什么型且双曲线过两点,则设为稀里糊涂型:a b mx 2-ny 2=1(mn <0)6、若已知双曲线一点坐标和渐近线方程y =mx ,则可设双曲线方程为y 2-m 2x 2=λ(λ≠0),而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线l :y =kx +b 的弦长公式:AB =(k 2+1)(x 1-x 2)2=(12+1)(y -y )122k 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理(3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l (F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线标准方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不标准,立即化为标准方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”,一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为y =ax (a ≠0),a>o,开口朝右;a<0,开口朝左;如果只知y 型,则设它为x =ay (a ≠0),a>o,开口朝上;a<0,开口朝下。
圆锥曲线全部公式及概念

1. 椭圆l τ + ∑- = i(a>b>O)的参数方程是V Cr Zr 2,2»2准线到中心的距离为L ,焦点到对应准线的距离(焦准距)p =—・通径的一半(焦参数):丄.C Ca2 22. 椭圆∆τ + l τ = l(rt >∕7>θ)焦半径公式及两焦半径与焦距构成三角形的面积: Cr Zr| PF l | = e(x + —) = a+ ex , ∖PF 21 = e(-— X) = U-ex ↑ S 斗严;=b 2 tan '丫 F22 223.椭圆的的内外部:(1)点PesyO)在椭圆丄v + L = l(α>b>0)的内部O⅛- + ⅛<l. Cr 泸Cr b'2 2 2 2(2)点 P(X o o to)在椭圆上τ +丄r = l(α>b>O)的外部 <≠>⅛ + ⅛>ι.Cr Zr Cr Zr的距离(焦准距)P = — •通径的一半(焦参数):— C a5. 双曲线的内外部:(1)点P(X o o tO)在双曲线=Cr Ir/2 2 2 2 ⑵点P(X (P y 0)在双曲线一一二~ = l(α > 0,b > 0)的外部o —⅛■-汙V1・Cr IrCr Zr6. 双曲线的方程与渐近线方程的关系:(1)若双曲线方程为二一二=1二>渐近线方程:Δ1-22 = O^> y = ±-χ・α~ Ir Cr 少a-> 2A χ∙ V r β,V*⑵若渐近线方程为y = ±-x<=>-±- = O=>¾曲线可设为r — — = λ・ a a b Cr Zr2 22 2⑶若双曲线与亠一亠=1有公共渐近线,可设为=T 一亠=λCr XCr Ir(λ>0,焦点在X 轴上;九<0,焦点在y 轴上)・ (4)焦点到渐近线的距离总是b ∙7. 抛物线y 2= 2px 的焦半径公式:拋物线y 2=2px(p>0)焦半径ICFI = X O + -^・ 过焦点弦长IcQl = “+上+心+ £ = “+“ + 〃 . 2 2 28. 拋物线y 2 = IPX JL 的动点可设为P(±-,儿)或P(2∕"[2p∕) P(x , V ),其中y 2= 2PX ・2 P '•、 b A ,ac — b~9. 二次函数y = ax 1 +bx + c = a(x + —)2+ ------------- (a ≠ 0)的图象是抛物线:(1 )顶点坐标为Ia 4aZb 4“C — b~ z. .. ... I . . h ^CIC — /?" +1、 Z -S Λ /V ∙ z t , CT^CIC — b~ — 1 ,—:——):(2)焦点的坐标为,——; ---------------- ):(3)准线万程是y = IABl = 5J(1+^2)(X 2 "ΛI )2 =I 比 _兀21 Vl +tan 2 a =I y l _y 21 √l + c^t 2ay = kx + b . .α(弦端点ACv 1,y 1X B(X^y 2),由方程<消去y 得到αL +bx + c = O 9 Δ>0, α为直线AB 的圆锥曲线X = Cl COS θ 亠 亠 C• 离心率£ =—= y = bs ∖nθ aV»*■ C 4. 双曲线亠一 — = 1(« > 0.Z? > 0)的离心^e =— a ∕Γa • 2ι2 「,准线到中心的距离为∙,焦点到对应准线 焦半径公式\PF }\ =I e(x + —) I=I a + <?xI, ∖PF 2∖ =I e(-^x) I=I a-ex ∖9 C 两焦半径与焦距构成三角形的面积S λj.ιp l .y = b 2 COt 'F'] F .2 22L = l(">0d>0)的内部 o ⅛-4>l. • - Cr Zr2a 4a2a 4a" 4a10. 以抛物线上的点为圆心,焦半径为半径的圆必与准线相切:以拋物线焦点弦为直径的圆,必与准线相切; 以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切・11. 直线与圆锥曲线相交的弦长公式:IABI = √(x 1-x 2)2+(y 1-y 2)2或F(x,y) = O倾斜角,&为直线的斜率,I召I= J(XI +心)‘ _4召心・12.圆锥曲线的两类对称问题:(1)曲线F(X,y) = O关于点P(X o,儿)成中心对称的曲线是F(2x0-x t2y0 -y)=0.(2)曲线F(X,y) = 0关于直线Av + Bv + C = O成轴对称的曲线是—2A(Ar + By+ C) 2B(Ax + By + C)x CFa ------ —R——、y --------- -V———)=0・√Γ+歹A" + B'特别地,曲线F(X9 y) = 0关于原点O成中心对称的曲线是F(-x,-y) = 0・曲线F(X9 y) = 0关于直线X轴对称的曲线是F(X^y) = 0.曲线F(X9 y) = 0关于直线y轴对称的曲线是F(-x, y) = 0・曲线F(X9 y) = 0关于直线y = x轴对称的曲线是F{y.x) = 0.曲线F(X,y) = 0关于直线y = -x轴对称的曲线是F(-y,-x) = 0・13 •圆锥曲线的第二定艾:动点M到定点F的距离与到定直线/的距离之比为常数£,若0 VfVl, M的轨迹为椭圆;若e = ∖9 M的轨迹为抛物线;若e>∖9 M的轨迹为双曲线.注意:J还记得圆锥曲线的两种定义吗解有关题是否会联想到这两个定狡2、还记得圆锥曲线方程中的:2(1)在椭圆中:α是长半轴,〃是短半轴,C是半焦距,其中b2 =a2-C29 f = (Ovwvl)是离心率,—a C• 2. 2是准心距,-L是准焦距,-L是半通径.C a2(2)在双曲线中:"是实半轴,b是虚半轴,C是半焦距,其中b2 =c2-a29 e = -∖e>l)是离心率,L是a C准心距,伫是准焦距,冬是半通径.C a(3)在抛物线中:0是准焦距,也是半通径.3、在利用圆锥曲线统一定狡解题吋,你是否注意到定艾中的定比的分子分母的顺序(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)等轴双曲线的离心率是多少(0 = √Σ)5、在用圖锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零判别式A 2 0的限制. (求交点,弦长,中点,斜率,对称,存在性问题都在Δ >0下进行).注意:尤其在求双曲线与直线的交点时:当A>0时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况):当A = O时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当AvO时,直线与双曲线没有交点.6、椭圆中,注意焦点.中心.短轴端点所组成的直角三角形•此时Cr =b2+c2・7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论)8、你知道椭圆、双曲线标准方程中aj∖c之间关系的差异吗9、如果直线与双曲线的渐近线平行吋,直线与双曲线相交,只有一个交点;如果直线与拋扬线的轴平行时,直线与抛物线相交,只有一个交点•此时两个方程联立,消元后为方程变为一次方程.椭圆练习1・过椭圆二+二=1 (a>b>O)的左焦点F I任做一条不与长轴重合的弦AB, F2为椭圆的右焦点,則AABA的周长是/ b^( )(A)2a (B)4a (C)2b (D) 4b2•设a,beR.a2+2b2 =6,则α + b 的最小值是( )(A) - 2√2 (B)-垃(0-3 (D)-2323. 椭圆的两个焦点和短轴的两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为( )(A)丄 (B)遇 (C)遇 (D)丄或遇2 23 2 24. 设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,則m 的值等于( )(A) 2(B) √2(C) 2 或丄 (D) √Σ 或空2 22 25. 过椭圆二+ L = l(°>b> 0)的左焦点片作X 轴的垂线交椭圆于点P,化为右焦点,若ZF i PF. = 60 ,则Cr "椭圆的离心率为()(A)^⑻迟 (C)I(D)I23236. 如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的() (A) 18 倍 (B) 12 倍 (C) 9 倍 (D) 4 倍7. 当关于X, y 的方程X 2Sin^ -y 2COSCr=I 表示的曲线为椭圆时,方程(x+cos α)'+(y+ Sinaf)Jl 所表示的圆的國心在()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限8. 已知椭圆的焦点为F b F 2,P 是椭圆上的一个动点,如果延长F 卩到Q,使得I PQ I=I PF 2I,那么动点Q 的轨迹是( )(A)圆 (B)椭圆 (C)直线 (D)其它9. 已知椭圆—÷-= 1与圆(χ-a)⅛Λ=9有公共点,则a 的取值范围是()9 4 (A)-6<a<6(B)0<a≤5(C)a 2<25(D) ∣a∣≤610•设椭圆的两个焦点分别为F-、F 2,过F?作椭圆长轴的垂线交椭圆于点P,若AFPFz 为等腰直角三角形,则椭 圆的离心率是()(A)YZ(B)幺二! (C) 2-√2(D) √2-l2 2SS11. 在椭圆—÷γ-≈ 1上取三点,其横坐标满足X I +×3=2X 2,三点依次与某一焦点连结的线段长为r b r 2, r 3,则有 α∙ b・I I 7()(A) r b r 2, r 3成等差数列 (B)丄+丄=二 (C) r b r 2,r 3^等比数列 (C)以上都不对 12•已知椭圆C ι- + y 2= 1的右焦点为F,右准线为/,点Ae/ ,线段4F 交C 于点B,若FA = 3FB, »■]2伍若椭圆之+「I 的离心率是、则W*16 •椭圆X 2COs 2 α +y 2=1 (0< a <ΛR, a≠ y )的半长轴= ------- ,半短轴= -------- ,半焦距= -------- ,离心率= ----------------- = --------- ,則该椭圆的离心率的取值范围为 ____________________ ・(A) (0.1)(B) (0.1)(0(0,#)(D)哼,1)13.已知片、耳是椭國的两个焦点,满足・"庁=0的点M 总在椭圆内部•则椭圆离心率的取值范围是()14. 一个椭圆中心在原点,焦点斤、C 在X 轴上,P (2, √J)是椭圆上一点,且1卩斤1、1斥巴I 、IP 耳I 成等差数列,則椭圆方程为()(A) ⅞4- ⑻护汀<C) ⅜÷⅞ = ∙ I 丽二()(A) √2 (B) 2 (C)^(D) 317.已知椭圆⅛4= ↑(a>b>O)的左、 右焦点分别为斤(一c,0),耳(c,0), 若椭圆上存在一点P 使Sin PI71F2 Sin PF l F X是椭圆二+ 2_ = i上的一A,F I,F2是椭圆的焦点,且ZF I MF2=9O o,则ZkFNF?的面积等于9 419•与圆(x+1)2+y2=1相外切,且与IS(X-I)2÷y2=9相内切的动圆圆心的轨迹方程是X = 4COSa , …Ir20•设椭圆( L (□为参数)上一点P与X轴正向所成角ZPOx=-, 点P的坐标是y = 2√3 Sin a 321.在平面直角坐标系.9y中,椭E)4÷4 = 1G∕>∕7>O)的焦距为2c,以0为圆心,为半径作圆M ,若过P(Qe) Cr Iy C作圆M的两条切线相互垂直,则椭圆的离心率为 _________________22•已知直线/ : y=mx+b,椭圆C: (A ^.I)÷y2=1,若对任意实数叫/与C总有公共点,則a, b应满足的条件“是 _________ •23•椭圆F=4cos0 (。
圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。
数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。
圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。
高中数学易错点及数学圆锥曲线公式大全

高中数学易错点及数学圆锥曲线公式大全在每年的高考中,有关圆锥曲线的试题约占全卷总分的13%,是相当重要的考点。
下面小编整理了《高中数学圆锥曲线公式大全》,欢迎阅读。
高中数学圆锥曲线公式大全1.焦半径公式,P为椭圆上任意一点,则│PF1│= a + eXo│PF2│= a - eXo(F1 F2分别为其左,右焦点)2.通径长 = 2b?/a3.焦点三角形面积公式S⊿PF1F2 = b?tan(θ/2) (θ为∠F1PF2)(这个可能有点难理解,不过结合第一定义可以较快的推,双曲线的也是同样方法)4.(左)准点Q (自己取的名字方便叙述,准线与X轴的焦点)过左焦点F1的任意一条线与椭圆交与A ,B 那么一定有:X轴平分∠AQB(在右边也是一样)1.通径就不说了2.焦半径公式(有8个,很难打符号的,不过可以根据极坐标方程来直接解答,比焦半径公式还快一些)3.焦点三角形面积公式S⊿PF1F2 =b?cot(θ/2) (左右支都是它)y?=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点1.│AB│=X1 + X2 + p =2p/sin?θ (θ为直线AB的倾斜角)2. Y1*Y2 = -p? , X1*X2 = p?/43.1/│FA│ + 1/│FB│ = 2/p4.结论:以AB 为直径的圆与抛物线的准线线切5.焦半径公式:│FA│= X1 + p/2 = p/(1-cosθ)直线与圆锥曲线 y= F(x) 相交于A ,B,则│AB│=√(1+k?) * [√Δ/│a│]圆锥曲线包括椭圆(圆为椭圆的特例),抛物线,双曲线。
圆锥曲线(二次曲线)的统一定义:到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。
当e>1时,为双曲线的一支,当e=1时,为抛物线,当0有途网小编建议还是先研究书本的基本概念,掌握相关公式,图形特点,利用这些概念解决题目,之后再做习题。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。
一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。
点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。
高中数学中的圆锥曲线知识点总结

高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。
在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。
一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
椭圆的离心率小于1。
- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。
3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。
- 焦点坐标公式:F1(-c,0),F2(c,0)。
- 离心率公式:e = c/a。
- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。
二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
双曲线的离心率大于1。
- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。
- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。
3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的相关公式
注:平面内到定点F(1,1)和到定直线l:x+2y=3距离相等的点的轨迹是?过定点F垂直直线l的一条直线
当A为短轴端点时,角最大,面积也最大,为bc,椭圆中焦点三角形的周长为2(a+c)
计算a,b,c相关值时,要对应标准方程,所以记得化为标准方程的形式
附录:定理1(椭圆中点弦的斜率公式):
y
x
M
F1F2
O
A
B
设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平行y 轴)的中点,则有:2
2AB OM b k k a
⋅=-
证明:设11(,)A x y ,22(,)B x y ,则有1212
AB
y y k x x -=-,22
1122
22
2222
11x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得:22221212220x x y y a b --+=整理得:22
21222
212y y b x x a -=--,即2
121221212()()()()y y y y b x x x x a
+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012
0012
22OM
y x y y k x y x x +===
+,所以22AB OM b k k a ⋅=-
定理2(双曲线中点弦的斜率公式):
设00(,)M x y 为双曲线22221x y a b -=弦AB (AB 不平行y 轴)的中点,则有2
2AB OM b k k a
⋅=
证明:设11(,)A x y ,22(,)B x y ,则有1212
AB
y y k x x -=-,22
1122
22
2222
11x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得:22221212220x x y y a b ---=整理得:22
2
1222
212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a
+-=+-,因为00(,)M x y 是弦AB 的中点,所以0012
0012
22OM
y x y y k x y x x +===
+,所以22AB OM b k k a ⋅= 定理3(抛物线中点弦斜率公式)
在抛物线)0(22
≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =⋅0.(斜率存在并有两个交点)
证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)
2(.2)
1(,222212
1 m x y m x y
)2()1(-,得).(2212
221x x m y y -=-
.2)(121
21
2m y y x x y y =+⋅--∴
又0121
21
22,y y y x x y y k MN =+--=
.
m y k MN =⋅∴0.
注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在.
同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则
m x k MN
=⋅01.
注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零.。