基于Matlab的卫星中继通信链路仿真

合集下载

基于matlab的信道编码仿真(可编辑)

基于matlab的信道编码仿真(可编辑)

基于matlab的信道编码仿真(可编辑)基于matlab的信道编码仿真海南大学毕业论文(设计)题目:基于matlab的信道编码仿真学号:姓名:年级:学院:信息科学技术学院系别:电子信息工程专业:电子信息工程指导教师: 完成日期:摘要通信技术的飞速发展,信道编码已经成功地应用于各种通信系统中。

以及各种传输方式对可靠性要求的不断提高,信道编码技术作为抗干扰技术的一种重要的手段,在数字通信技术领域和数字传输系统中显示出越来越重要的作用。

信道编码的目的是为了改善通信系统的传输质量。

由于实际信道存在噪声和干扰,使发送的码字与信道传输后所接收的码字之间存在差异,称这种差异为差错。

一般情况下,信道噪声、干扰越大,码字产生差错的概率也就越大。

本文利用matlab对二进制对称信道BSC,高斯白噪声信道AWGN两种信道的仿真,(7,4)Hamming码对信道的仿真,通过误码率的曲线图来了解信道的编码。

并利用matlab的simulink模块仿真,运用simulink里的卷积码viterbi译码器来对二进制对称信道和高斯白噪声信道的仿真,观察误码率的曲线图来了解2个信道的不同。

关键字:matlab,信道,编码,译码,Simulink。

AbstractWith the rapid development of communication technology, channelcoding has been successfully applied to various communications systems. And a variety of transmission of the continuous improvement ofreliability requirements, anti-jamming channel coding technology as an important means of technology in the field of digital communications technology and digital transmission systems in a more and more important role The purpose of channel coding is to improve the transmissionquality of communications systems. As the actual existence of thechannel noise and interference, the transmitted codewords and channel transmission received after the difference between code words, said this difference is wrong. Under normal circumstances, channel noise, the greater the interference, the code word generated the greater the probability of errorIn this paper, matlab binary symmetric channel BSC, Gaussian white noise channel AWGN two channel simulation, 7,4 Hamming code simulation of the channel, through the bit error rate curve to understand the channel coding. Using matlab to simulink block simulation, using simulink in the viterbi decoder to convolutional codes on the binary symmetric channel and Gaussian white noise channel simulation, observation error rategraphs to understand the two different channelsKeywords: matlab, channel, coding, decoding, Simulink.目录1引言 11.1选题的目的和意义 11.2本选题的理论依据、研究内容 12.信道编码以及其运行环境MATLAB的介绍 2 2.1 信道编码的概念及分类 22.2 信道编码定理及信道编码中所包含的各种码类的简介 22.2.1卷积码 22.2.2线性分组码 32.2.3循环码 32.3 MATLAB语言的简介 42.4 Simulink 53.信道 53.1二进制对称信道(BSC) 53.2二进制删除信道(BEC) 63.3高斯白噪声信道AWGN 64. Hamming码 74.1汉明码 74.2校验方法 74.3汉明码编码 94.3.1汉明码对高斯白噪声信道 94.3.2汉明码对二进制对称信道的仿真 115.卷积码 155.1卷积码定义与原理 155.2维特比译码原理 155.3卷积码译码器对高斯白噪声信道的设计与仿真 18 5.3.1卷积码译码器的设计与仿真 195.3.2简化维特比译码器的仿真 225.3.3卷积码译码器的误码率分析 245.4卷积编码器在二进制对称信道(BSC)中的性能 256.卷积码译码器对二进制对称信道和高斯白噪声信道仿真比较 307.总结 31致谢 32参考文献 33附录1: 34附录2: 37附录3: 40附录4: 411引言1.1选题的目的和意义数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。

基于MATLAB的MIMO-OFDM通信系统的仿真

基于MATLAB的MIMO-OFDM通信系统的仿真

基于MATLAB的MIMO-OFDM通信系统的仿真0 引言5G技术的逐步普及,使得我们对海量数据的存储交换,以及数据传输速率、质量提出了更高的要求。

信号的准确传播显得越发重要,随之而来的是对信道模型稳定性、抗噪声性能以及低误码率的要求。

本次研究通过构建结合空间分集和空间复用技术的MIMO信道,引入OFDM 技术搭建MIMO-OFDM 系统,在添加保护间隔的基础上探究其在降低误码率以及稳定性等方面的优异性能。

1 概述正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术通过将信道分成数个互相正交的子信道,再将高速传输的数据信号转换成并行的低速子数据流进行传输。

该技术充分利用信道的宽度从而大幅度提升频谱效率达到节省频谱资源的目的。

作为多载波调制技术之一的OFDM 技术目前已经在4G 中得到了广泛的应用,5G 技术作为新一代的无线通信技术,对其提出了更高的信道分布和抗干扰要求。

多输入多输出(Multi Input Multi Output,MIMO)技术通过在发射端口的发射机和接收端口的接收机处设计不同数量的天线在不增加频谱资源的基础上通过并行传输提升信道容量和传输空间。

常见的单天线发射和接收信号传输系统容量小、效率低且若出现任意码间干扰,整条链路都会被舍弃。

为了改善和提高系统性能,有学者提出了天线分集以及大规模集成天线的想法。

IEEE 806 16 系列是以MIMO-OFDM 为核心,其目前在欧洲的数字音频广播,北美洲的高速无线局域网系统等快速通信中得到了广泛应用。

多媒体和数据是现代通信的主要业务,所以快速化、智能化、准确化是市场向我们提出的高要求。

随着第五代移动通信5G 技术的快速发展,MIM-OFDM 技术已经开始得到更广泛的应用。

本次研究的MIMO-OFDM 系统模型是5G的关键技术,所以对其深入分析和学习,对于当下无线接入技术的发展有着重要的意义。

通信原理基于matlab的计算机仿真

通信原理基于matlab的计算机仿真

通信原理基于matlab的计算机仿真通信原理基于matlab的计算机仿真已经成为通信领域中一项重要的研究工具。

此类仿真软件通过模拟现实情形,能够极大地加快通信设备的开发进程,并且可以帮助工程师进行实验,发现并解决通讯中可能存在的问题。

同时,matlab的通信仿真功能也成为了相关教材和教学实验的首选,许多大学,尤其是通信工程专业的学生要通过matlab的仿真来更好地理解通信原理和通信设备的工作原理。

由于matlab的专业性,无论是对于传输介质的模型计算,还是信号的传输过程的计算仿真,都非常适合。

通信原理的matlab仿真可以有效地帮助工程师分析各种信号,包括模拟信号、数字信号及混合信号。

这种仿真可用于计算机网络、通信系统设计以及无线通信和移动通信等领域。

在matlab中,通信原理的仿真重点是信号的传输与接收。

目前,通信设备主要采用数字信号的传输方式,而matlab中也能够实现该方式的仿真。

通过模拟数字信号的传输过程,可以帮助工程师分析此类信号在不同媒介下的传输效果。

所以,在进行数字信号的仿真时,matlab会考虑到以下几个因素:1.噪声在数字通信中,噪声是一个常见的问题。

因此,在matlab 的仿真中也要考虑到噪声的影响因素。

matlab能够对噪声进行建模,模拟各种环境下的噪声对数字信号的影响程度。

2.数据传输速率数据传输速率也会影响数字信号的仿真结果。

matlab可以模拟数字信号传输的速率以及不同速率下的传输效果。

3.差错率差错率也是数字信号传输中的一个显著因素,matlab在通信原理仿真中也会进行模拟。

除数字信号外,模拟信号的仿真也是通信原理仿真领域的一项重要工作。

在matlab的仿真中,通常对模拟信号的传输和接收会更加复杂。

通信原理的matlab仿真的一个重要应用就是误码率和比特误差率测试。

误码率和比特误差率都是评估数字信号传输质量的指标。

通信系统的设计旨在在受到最小干扰时保持误差率的最小化。

matlab通信仿真实例

matlab通信仿真实例

matlab通信仿真实例在Matlab中进行通信系统的仿真,可以涉及到多种不同的通信技术和协议,包括调制解调、信道编码、多址接入等。

以下以OFDM系统为例,介绍Matlab 中通信仿真的实例。

OFDM(正交频分复用)是一种常用于现代通信系统中的技术,它将高速数据流分割成多个较低速的子流,并将每个子流分配到不同的子载波上。

优点是能够抵抗多径效应和频率选择性衰落,并提供高数据速率。

首先,我们需要创建一个包含OFDM系统参数的结构体。

例如:ofdmParam.M = 16; % 子载波数量ofdmParam.K = 4; % 用于混合多路复用的用户数量ofdmParam.N = ofdmParam.M * ofdmParam.K; % 总子载波数量ofdmParam.CP = 16; % 循环前缀长度接下来,我们可以生成用于OFDM仿真的数据流。

例如,我们可以使用随机整数生成器生成一系列整数,并将其转换为复数形式的调制符号:data = randi([0, ofdmParam.M-1], 1, ofdmParam.N);dataMod = qammod(data, ofdmParam.M);然后,我们可以创建一个包含OFDM信号的函数。

在OFDM系统中,生成的数据符号将分配到不同的子载波上,然后在时域中通过插入循环前缀进行叠加:function[ofdmSignal] = createOFDMSignal(dataMod, ofdmParam) ofdmSignal = [];for k = 0:ofdmParam.K-1% 提取相应的数据符号,并进行IFFTofdmData =ifft(dataMod(k*ofdmParam.M+1:(k+1)*ofdmParam.M));% 添加循环前缀ofdmDataWithCP = [ofdmData(end-ofdmParam.CP+1:end), ofdmData];% 将OFDM符号添加到OFDM信号中ofdmSignal = [ofdmSignal, ofdmDataWithCP];endend将OFDM信号传输到信道中,我们可以使用加性高斯白噪声(AWGN)信道模型来模拟实际通信环境:EbNo = 10; % 信噪比snr =10*log10(ofdmParam.N*ofdmParam.M/(ofdmParam.N*ofdmParam.M+1 )*(10^(EbNo/10)));ofdmSignalNoisy = awgn(ofdmSignal, snr, 'measured');最后,我们可以对接收到的OFDM信号进行解调和信号恢复。

无线通信原理-基于matlab的ofdm系统设计与仿真

无线通信原理-基于matlab的ofdm系统设计与仿真

无线通信原理-基于matlab的ofdm系统设计与仿真基于matlab的ofdm系统设计与仿真摘要OFDM即正交频分复用技术,实际上是多载波调制中的一种。

其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。

该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。

本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。

重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。

在仿真过程中对OFDM信号使用QPSK 调制,并在AWGN信道下传输,最后解调后得出误码率。

整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

- 1 -第一章 ODMF系统基本原理1.1多载波传输系统多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。

用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。

在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。

图1,1中给出了多载波系统的基本结构示意图。

图1-1多载波系统的基本结构多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM中,各子载波必须保持相互正交,而在MCM则不一定。

1.2正交频分复用OFDM就是在FDM的原理的基础上,子载波集采用两两正交的正弦或余弦函sinm,tcosn,t数集。

卫星通信信道的传输特性及vsat下行链路具体仿真模型的建立

卫星通信信道的传输特性及vsat下行链路具体仿真模型的建立
基本的信道模型有高斯白噪声信道模型、衰落信道模型(瑞利、莱斯、对数正态)等等,衰落信道模型根据时间长短又分为快衰落和慢衰落。做好信道分析和建模,首先要对各种信道模型进行收集整理,然后根据实际的情况提出模型假设,最后实地测量进行验证。对于那些非线性何时变的信道在仿真中可以通过相应的抽头滤波器系统来进行设计,如TDL等。
图1-1使用蒙特卡罗方法进行通信系统误码率仿真模型框图
如图1.1,使用MC方法进行仿真步骤如下:
(1)生成输入比特序列采样值A(k) k=1,2,3…….
(2)通过功能模块处理采样数据,并且产生输出序列Y(k)
(3)估计E(g(Y(k)); (1-2-1)
(4)与理论值BPSK和QPSK的误码率进行比较
中国的VSAT系统发展至今,已经形成种类齐全(话音、数据、单向、双向等),规模庞大(几千个用户站)和运行稳定可靠的专业服务体系。
利用Ka波段[1](30/20GHz)或更高频段构成卫星通信系统是未来的发展趋势。因此,研究和开发Ka频段的卫星通信系统对我国未来卫星通信事业的发展有着及其重要的意义。对于Ka频段的卫星通信系统,由降雨引起的电波衰减是影响卫星通信线路传输质量的一个重要因素,准确的把握降雨衰减特性和补偿降雨衰减的方法研究,成为实现该系统的关键性问题之一。
而另外一些模型中[3]认为固定卫星通信系统的乘性干扰的包络符合如下的随机分布:A和U分别表示等效低通雨衰信道的包络和相位,二者均为随机变量,其分布特性由天气条件决定,它们均服从高斯分布,其概率密度函数分别表示如下[7]:
(1-3-1)
其中 为信号包络的概率密度函数, 是信号相位的概率密度函数. 和 分别是信号包络和相位的标准差,而 和 分别为相应的均值.。不同天气条件下,认为卫星通信信道包络的乘性干扰符合高斯分布(幅度和相位都为高斯分布)。而本文着重对降雨和对流层闪烁等混合天气因素的影响进行了仿真研究。

基于MATLAB的模拟通信系统的仿真与实现

• 139•针对通信原理课程的教学特点和传统实验教学存在的问题,讨论了将Matlab软件引入到通信原理课程教学的必要性。

以模拟调制系统为例,利用Matlab的工具箱和Simulink界面对通信系统进行可视化教学,并给出了仿真结果。

实践证明,不仅在课堂教学中以更加直观的方式进行讲解,而且补充和完善传统实验的不足,提高学生学习积极性,教学效果得到较大提升。

随着5G通信的到来,通信技术在人们日常生活中是无处不在,现代通信技术取得了显著进展。

通信原理作为高校通信工程和电子信息等本科专业课程体系中重要的专业基础课,系统阐述了模拟和数字通信系统的基本概念、基本原理和基本分析方法,为学生学习后续课程储备专业素养(王海华,Matlab/Simulink仿真在“通信原理”教学中的应用研究:湖北理工学院学报,2015)。

然而这门课程理论内容丰富,系统模型抽象,数学公式多,推理过程繁琐,学生普遍感到枯燥难懂,抓不住重点,学习吃力,不能顺利学好本课程(基于Matlab_Simulink的通信原理虚拟仿真实验教学方法研究:现代电子技术,2015;邵玉斌,Matlab/Simulink通信系统建模与仿真实例分析:清华大学出版社,2008)。

为此,在教学过程中引入Matlab仿真技术,理论联系实践开展教学工作,通过simulink界面搭建系统模型,调整参数,观察通信系统性能,激发学生的学习积极性,提升教学质量,实现良好的教学模式。

1 Matlab软件介绍Matlab在工程数值运算和系统仿真方面具有强大的功能,主要包括数值分析、仿真建模、系统控制和优化等功能(牛磊,赵正平,郭博,Matlab仿真在通信原理教学中的应用:阜阳师范学院学报,2014)。

在Matlab的Communication Toolbox(通信工具箱)中提供了许多仿真函数和模块,用于对通信系统进行仿真和分析。

Simulink平台是Matlab中一种可视化仿真工具,提供了建立模型方框图的图形用户界面(GUI),可以将图形化的系统模块连接起来,从而建立直观、功能丰富的动态系统模型(黄琳,曹杉杉,熊旭辉.基于Matlab的通信原理实验课程设计:湖北师范大学学报,2017)。

MATLAB课件·第4章 通信系统的建模与仿真


B 这种典型的情况,带通采样定理所规定的采
样频率近似等于下界 2 B 。 对整个通信系统进行仿真开发时,选择对系统合适的采样频率是要做的一个基本决 定。除考虑上述信号带宽外,有许多因素影响所需的系统采样频率。具有反馈的系统、非 线性系统、多径信道等会导致更高的采样频率要求。对于无反馈的线性系统,必需的采样 频率可由可接受的混叠误差决定的,而这又有赖于发送滤波器成形脉冲的功率谱密度。成 形脉冲是假定时域有限的,因此不可能是带宽有限的,因而会产生在实际中不可能消除混 叠误差。为仿真选择合适的采样频率的一个策略就是在混叠误差和仿真时间之间达成一个 可以接受的折衷。目标是选择一个采样频率,使得混叠误差相对于仿真所考察的系统性能 的降低是可以忽略的。 有些要仿真的系统(如扩频通信系统)包含两个或多个不同信号带宽的子系统。扩频 通信系统同时包括窄带信号和宽带信号。如果使用单一的采样频率,那么这个采样频率必 须与宽带波形相适应,而用宽带信号所需的采样率对窄带信号进行采样,将导致仿真的时 间过大和效率降低。一般最有效的方法是对每个过程用它的奈奎斯特速率采样,对整个系 统而言采用多速率采样。系统中出现两个不同带宽时,可采用两个采样率:在窄带到宽带 的分界处提高采样频率(上采样),而在宽带到窄带的分界处降低采样频率(下采样)。 采样频率的提高是通过对在原始样点之间内插新的样点来完成;采样频率的降低是通过从 原样点每多个样点抽取一个来实现。 采样点的值在计算机中是用有限长的码字来量化,所以在仿真中都会出现量化误差。 计算机处理表示数字的方式可以分为定点和浮点两类。当用定点数表示时,字长每增加一 个比特,量化的信噪比增加 6dB 。在通用计算机上采用浮点数表示进行仿真操作时,由量 化导致的量化误差通常可以忽略不计。然而,这种噪声永远不会为零,在噪声累积的情况 过多时可能会严重地降低仿真结果的精度。 3. 信道编码器和译码器 信道编码器对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力。信 道编码的处理技术有差错控制码、交织编码器等。差错控制码有线性差错控制码(汉明 码、线性循环码等)、Reed-Solomon 码、卷积码、Turbo 码、LDPC 码等。信道译码器完 成信道编码的译码。交织编码技术可离散化并纠正信号衰落引起的突发性差错,改善信道

计算机仿真-Matlab通信系统链路级仿真

20
常用统计信号处理函数
BUPT Information Theory & Technology Education & Research Center
• xcov与其类似
21
BUPT Information Theory & Technology Education & Research Center
26
BUPT Information Theory & Technology Education & Research Center
常用变换函数
• ifft函数的使用方法与fft非常类似。 • 注意fft和ifft函数对于输出功率的影响。 • fft函数之后总功率为fft之前的N倍,ifft之 后总功率则减小到原来的1/N。
Re f c ( t ) jf s ( t ) cos c t j sin c t f c ( t )cos c t f s ( t )sin c t
9
BUPT Information Theory & Technology Education & Research Center
24
BUPT Information Theory & Technology Education & Research Center
常用变换函数
• fft函数当输入参数个数为1,且为一个向量时 ,执行该向量的DFT计算 • 当输入参数为一个矩阵时,计算每列的DFT。
• • • • • • • • • t = (0:1/100:10-1/100); x = sin(2*pi*15*t) + sin(2*pi*40*t); y = fft(x); % Compute DFT of x m = abs(y); p = unwrap(angle(y)); f = (0:length(y)-1)*99/length(y); % Frequency vector plot(f,m); title('Magnitude'); set(gca,'XTick',[15 40 60 85]); figure; plot(f,p*180/pi); title('Phase'); set(gca,'XTick',[15 40 60 85]);

微波与卫星通信链路仿真实验报告

基于Matlab的卫星中继通信链路仿真杨晶(西安交通大学电子与信息工程学院信通系,710049,陕西西安)摘要:卫星通信是地球上的无线电通信站利用卫星作为中继而进行的通信,其特点是:通信范围大、可靠性高等。

卫星通信系统由卫星和地球站两部分组成。

卫星在空中通过把地球站发来的电磁波进行放大再反送回另一地球站,从而起到中继站的作用,这样的转发方式称为透明转发。

本文基于matlab软件平台,仿真对地静止卫星通信系统中,卫星中继地球站发送数据的透明转发过程,并给出某一发送地球站的信息在接收地球站的BER曲线。

关键字:卫星中继;透明转发;Matlab仿真;BER曲线中图分类号:O121.8;G558Simulation of Communicaiton Links of Satellite Relay Systembased on MatlabYang Jing(School of Electronics and Information Engineering, Xi’an Jiao tong University, Xi’an 710049, China)Abstract: In satellite communication, the radio communicaiton stations on earth communicates with each other using the satellite as relay. Its characteristics arelarge range of communicaiton, high reliability and so on. Satellite communication system consists of satellite and earth stations. Satellite works as relay in the way that it ampilifies the electromagnetic waves from an earth station and then forwards to another earth station. This kind of forwarding is called transparent forwarding. Based on Matlab, this paper gives the simulation of the forwarding process, in which the satellite relays the transmitting data from earth stations, of the Geostationary Satellite Communicaiton System, and also surveys the BER curve, which shows the bit error rate when the earth station receives the data transmitting from a certain earth station.Keyword:satellite relay; transparent forwardingl; simulation based on Matlab; BER curve1 引言卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab的卫星中继通信链路仿真*****************摘要:卫星通信是地球上的无线电通信站利用卫星作为中继而进行的通信,卫星通信系统由卫星和地球站两部分组成。

卫星转发方式有透明转发和译码转发。

本文基于matlab软件平台,对地静止卫星通信系统中卫星中继地球站发送数据的转发过程仿真,并给出接收信息BER曲线。

关键字:卫星中继; Matlab仿真;BER曲线中图分类号:O121.8;G5581 引言卫星信道的特点是:可用频带宽、功率受限、干扰大、信噪比低。

所以要求采用可靠性高的信号调制方式,并要求有较强的信号纠错能力,对带宽要求不是特别高。

因此DVB-S采用前向纠错(FEC)(包括Viterbi编码、交织、RS编码及加扰等电路)、正交移相键控(QPSK)调制的信道处理方式,然后馈给卫星链路。

接收时进行相反的处理。

本文对卫星工作过程进行仿真,得到信号的BER曲线,从而知道可靠传输所需发射功率。

2 系统模型及仿真2.1 建模假设本文中所设计的卫星中继链路中中继卫星为GEO 同步轨道卫星,采用 Ku 频段,6个地球站采用FDMA。

通过卫星向另外一个地球站发送信息:上行载波中心频率为14253MHz,下行载波中心频率为12028MHz,载波间隔为10MHz。

•发送地球站与卫星之间的距离为:[39995 40000 40005 40010 40015 40020]km•卫星和接收地球站之间的距离是42000km•卫星的EIRP 是56dBW,天线增益为30dB•地球站的天线增益为32dB•信道模型采用AWGN基于以上条件,本文将给出对地静止卫星中继地球站发送信息的完整过程,并给出某个发送地球站的信息在接收地球站的BER 曲线。

2.2 系统模型及结果2.2.1 透明转发该通信链路设计思路为: 信源→比特流→调制(QPSK )→频分复用→上变频→AWGN 信道→卫星接收透明转发→AWGN 信道→下变频→判决→解调(DQPSK)→比特流。

得到某个发送地球站的信息在接收地球站的BER 曲线,如下图所示:为了更好描述零值,用以下曲线描述:00.51 1.522.533.510101010发射功率dbW 误码率B E R 透明转发BER 曲线2.2.2 译码转发该通信链路设计思路为: 信源→比特流→调制(QPSK )→频分复用→上变频→AWGN 信道→卫星接收译码转发→AWGN 信道→下变频→判决→解调(DQPSK)→比特流。

得到某个发送地球站的信息在接收地球站的BER 曲线,如下图所示-3发射功率dbW 误码率B E R 透明转发BER 曲线为了更好描述零值,用以下曲线描述:2.2.3 两种转发方式对比00.51 1.522.533.510101010发射功率dbW 误码率B E R 译码转发BER 曲线-3发射功率dbW 误码率B E R 译码转发BER 曲线透明转发与译码转发BER曲线00.51 1.52 2.53 3.54 4.5发射功率dbW3 结论由图可以看出,SNR越大,BER越低,通信的可靠性越高;译码转发比透明转发更可靠。

附录1:链路仿真源代码透明转发:p=[1 2 4 8 16 32 64 128 256 512 1024];%发射功率dup=40005;%上行距离fup=14253;%上行载波中心频率% dup=[39995 40000 40005 40010 40015 40020];% fup=[14228 14238 14248 14258 14268 14278];%数值差异很小忽略FSLup=32.4+20*log(dup)/log(10)+20*log(fup)/log(10);%上行自由空间损耗h1=sqrt(10^3.2*10^3.2/(10^(FSLup/10)));%增益ddo=42000;%下行距离fdo=12028;%下行载波中心频率FSLdo=32.4+20*log(ddo)/log(10)+20*log(fdo)/log(10);%下行自由空间损耗h2=sqrt(10^5.6*10^3.2/(10^(FSLdo/10)));%56dB增益N0=1.38*10^(-23)*80*60000000;%噪声功率BER=zeros(1,11);for kk=1:11num=500000;pt=p(kk);erro=0;while numnum=num-1;infor=randi([0 1],1,12);[d]=g2(infor,12);for k=1:6for t=1:120x(k,t)=d(k)*exp(j*2*pi*(14228+10*(k-1))*t/1200);endends1=x(1,:)+x(2,:)+x(3,:)+x(4,:)+x(5,:)+x(6,:);% 以上发射前的信号n1= wgn(1,120,10*log(N0)/log(10),'complex');y=sqrt(pt)*h1*s1+n1;% 以上卫星接收到的信号n2= wgn(1,120,10*log(N0)/log(10),'complex');for t=1:120 %上行载波频率变为下行载波频率yy(t)=y(t)*exp(j*2*pi*(fdo-fup)*t/1200)/sqrt(pt*h1^2+N0);ends2=h2*yy+n2;%以上地球站接收到的信号for t=1:120s3(t)=s2(t)*exp(-j*2*pi*12003*t/1200);endxxx=sum(s3(:));%选择性接收第一个地球站的信号%判决[shuzhi xiabiao]=min(abs(angle(xxx)-[pi/4 3*pi/4 -pi/4 -3*pi/4])); infor2=[fix((xiabiao-1)/2) mod((xiabiao-1),2)];%判决为infor2if infor2(1)~=infor(1)erro=erro+1;endif infor2(2)~=infor(2)erro=erro+1;endendBER(kk)=erro/1000000;endsemilogy(10*log(p)/log(10),BER,'b');hold on译码转发:p=[1 2 4 8 16 32 64 128 256 512 1024];%发射功率dup=40005;%上行距离fup=14253;%上行载波中心频率% dup=[39995 40000 40005 40010 40015 40020];% fup=[14228 14238 14248 14258 14268 14278];%数值差异很小忽略FSLup=32.4+20*log(dup)/log(10)+20*log(fup)/log(10);%上行自由空间损耗h1=sqrt(10^3.2/(10^(FSLup/10)));%增益ddo=42000;%下行距离fdo=12028;%下行载波中心频率FSLdo=32.4+20*log(ddo)/log(10)+20*log(fdo)/log(10);%下行自由空间损耗h2=sqrt(10^5.6/(10^(FSLdo/10)));%56dB增益N0=1.38*10^(-23)*80*60000;%噪声功率BER2=zeros(1,11);for kk=1:11num=500000;pt=p(kk);erro=0;while numnum=num-1;% infor1=randint(1,2);% infor2=randint(1,2);% infor3=randint(1,2);% infor4=randint(1,2);% infor5=randint(1,2);% infor6=randint(1,2);infor=randi([0 1],1,12);[d]=g2(infor,12);for k=1:6for t=1:120x(k,t)=d(k)*exp(j*2*pi*(14228+10*(k-1))*t/1200);ends1=x(1,:)+x(2,:)+x(3,:)+x(4,:)+x(5,:)+x(6,:);% 以上发射前的信号n1=wgn(1,120,10*log(N0)/log(10),'complex');y=sqrt(pt)*h1*s1+n1;% 以上卫星接收到的信号for t=1:120y2(t)=y(t)*exp(-j*2*pi*14228*t/1200);%下变频ends2=sum(y2(:));%选择性接收第一个地球站的信号%判决[shuzhi xiabiao]=min(abs(angle(s2)-[pi/4 3*pi/4 -pi/4 -3*pi/4])); informa=[fix((xiabiao-1)/2) mod((xiabiao-1),2)];aa=g2(informa,2);for t=1:120y3(t)=aa*exp(j*2*pi*12003*t/1200);endn2=wgn(1,120,10*log(N0)/log(10),'complex');y4=h2*y3+n2;%以上地球站接收到的信号for t=1:120y5(t)=y4(t)*exp(-j*2*pi*12003*t/1200);ends3=sum(y5(:));%选择性接收第一个地球站的信号%判决[shuzhi xiabiao]=min(abs(angle(s3)-[pi/4 3*pi/4 -pi/4 -3*pi/4])); infor2=[fix((xiabiao-1)/2) mod((xiabiao-1),2)];%判决为infor2if infor2(1)~=infor(1)erro=erro+1;endif infor2(2)~=infor(2)erro=erro+1;endendBER2(kk)=erro/1000000;endsemilogy(10*log(p)/log(10),BER2,'b');hold onQPSK源代码:function [d]=g2(bit,Nc)A=[exp(j*pi/4) 0 0;exp(j*3*pi/4) 0 1;exp(-j*3*pi/4) 1 1;exp(-j*pi/4) 1 0];for k=1:Nc/2if bit(2*k-1:2*k)==[0 0]d(k)=A(1,1);elseif bit(2*k-1:2*k)==[0 1]d(k)=A(2,1);elseif bit(2*k-1:2*k)==[1 1]d(k)=A(3,1);elseif bit(2*k-1:2*k)==[1 0]d(k)=A(4,1);endend致谢时间如白驹过隙,在大学能够上课的最后一个学期中,有幸在卫星选修课上与高师一同度过。

相关文档
最新文档