第十五章羧酸、羧酸衍生物
15 第十四章 羧酸衍生物

+ H O C R'
O 'R C
O 'R C NH2
+
OR'
30
用途:① 酰氯在吡啶存在下酸解可以制备单酐
O
O
例:Cl
CCl
+ Cl
C5H5N
COH
O Cl C 2 O
+
HCl
96%~98%
酰氯和羧酸盐反应可以制备混合酐:
O R C Cl
O O
+
R'COONa
R C O C R'
O R O R'
13
碱性水解: BAc2:碱性双分子酰氧断裂
O R
O R C 'RO OH
OR'
+
OH
慢
R
O C 'RO OH
快
R
O
+
OH
OR'
O
+
R OH
OR'
快
O
+
R O
HOR'
注意:酯的碱性水解是不可逆的;碱既是催化剂又是试剂。
14
酸性水解:
AAc2:酸性双分子酰氧断裂
O
+
R OR'
OH R
OH R C OR' OH2
H
快
OH R OR'
OH R C OR' OH2
+ H2O
慢
OR'
快
R OH
C OR' + OH
H
15
OH R C OR' OH
第十五章羧酸、羧酸衍生物(一)

第十五章羧酸、羧酸衍生物(一)一、羧酸[教学目的]:1、熟悉羧酸的命名和分类2、掌握羧酸的物理性质和化学性质[教学重点和难点]:酸的化学性质羧酸衍生物的生成脱羧反应羧酸的酸性[课堂组织]:羧酸(carboxylic acids)的官能团是羧基(carboxyl group),,简写为-COOH 或-CO2H。
羧酸结构中最简单的是一元羧酸,其它羧酸的结构与其相似。
一元羧酸的通式为RCO2H,其中R为氢或烃基。
两分子羧酸容易通过氢键缔合成二缔合体:在固态、液态和中等压力的气态下一元羧酸主要以二缔合体的形式存在,在稀溶液中或高温蒸汽中二缔合体离解。
一元羧酸二缔合体用物理方法测定的键长、键角平均值为:C=O 123pm,∠OCO 122-123°,C-O 136pm,O-H…O 260-270pm在甲酸()分子中,所有的原子在同一平面内。
可以认为羧基碳原子为杂化。
一元羧酸的分子轨道模型见图(a)羧酸在水溶液中电离成羧酸根负离子:羧酸根中两个C-O键是等同的,其键长在126pm左右(用羧酸盐测定)。
因此,在羧酸根中羧基碳原子P电子和两个氧原子上的p电子是共轭的,可用共振式表示:羧酸根中的负电荷平均分配在两个氧原子上。
羧酸根的分子轨道模型见图(b)。
羧酸分子中羟基氧原子上的孤电子对也与羰基上的电子共轭,其结构可用共振式表示:几个经典结构式中正负电荷分离的能量较高,在共振杂化体中的贡献较小。
羧酸分子中碳-氧双键的键长与醛酮分子中的碳-氧双键相近。
15.1羧酸15.1.1命名根据羧酸分子中所含羧基的数目可分为一元羧酸(monocarboxylic acids)、二元羧酸(dicarboxylic acids)等;根据烃基的结构不同,又可分为饱和羧酸、不饱和羧酸或芳香酸;根据不饱和羧酸中不饱和键与羧基的位置不同,又可分为共轭羧酸和非共轭羧酸等。
在系统命名法中含碳链的羧酸是以含羧基的最长碳链为主链,从羧基碳原子开始进行编号,根据主链上碳原子的数目称为某酸,以此作为母体,然后在母体名称的前面加上取代基的名称和位置。
羧酸衍生物知识点

羧酸衍生物知识点羧酸衍生物是一类化合物,它们在化学反应和有机合成中有着广泛的应用。
羧酸衍生物的结构中包含一个羧酸基团,它们的化学性质也与羧酸有关。
本文将从羧酸衍生物的性质、合成和应用三个方面进行阐述。
一、羧酸衍生物的性质羧酸衍生物中含有一个羧酸基团(-COOH),这个基团可以参与许多化学反应。
例如,在碱性条件下,羧酸基团会失去一个质子,形成相应的负离子,即羧酸盐,这种反应叫做羧化反应。
除此之外,羧酸衍生物还能与醇、胺等反应,生成相应的酯、酰胺等衍生物。
二、羧酸衍生物的合成羧酸衍生物的合成方法非常多,下面介绍两种常用的方法:1.羧化反应羧化反应是一种重要的合成羧酸衍生物的方法。
在这种反应中,通常使用羧酸和一定量的碱反应,生成相应的羧酸盐。
羧酸盐再与酸反应,失去一个水分子,形成相应的酯。
这种反应常用的催化剂有酸性离子交换树脂、三氧化硫等。
2.加成反应加成反应是另一种合成羧酸衍生物的方法。
在这种反应中,羧酸衍生物的反应物通常是烯烃或炔烃。
它们与羧酸在催化剂的存在下发生加成反应,生成相应的羧酸衍生物。
加成反应的催化剂有酸性离子交换树脂、钯等。
三、羧酸衍生物的应用羧酸衍生物在有机合成、材料科学、生物化学等领域有着广泛的应用。
1.有机合成羧酸衍生物是有机合成中常用的反应物和中间体。
它们可以通过羧化反应、加成反应等多种方法进行合成。
羧酸衍生物可以与醇、胺等反应,生成相应的酯、酰胺等衍生物。
2.材料科学羧酸衍生物可以与金属离子、聚合物等反应,形成新的材料。
例如,聚丙烯酸可以与铁离子反应,生成Fe3O4/聚丙烯酸复合材料。
这种材料具有磁性,可以应用于磁性材料、制备催化剂等领域。
3.生物化学羧酸衍生物在生物化学中也有着重要的应用。
例如,羧酸基团是许多生物分子的一部分,例如脂肪酸、氨基酸等。
羧酸衍生物还可以用于制备生物活性分子,例如药物、抗生素等。
羧酸衍生物是一类重要的化合物,在化学反应和有机合成中有着广泛的应用。
通过羧化反应、加成反应等方法可以合成羧酸衍生物。
兰州大学化学化工学院有机化学课件 第15章 羧酸衍生物 酰基的亲核取代和酯缩合反应

NH O
KOH 酸碱反应
N -K+ + H2O O
丁二酰亚胺
丁二酰亚胺 钾盐
15.6 羧酸衍生物与有机金属化合物的反应
O RCW + R'MgX OMgX
R'MgX
OMgX R C W R' OH
H2O -WM gX
O RCR'
R C R' R'
R C R' R'
例1:
MgX + CH3O O O O H2O
CH3COCCH3 + HCOH
O O CH3COCCH3
O 2C6H5COH
O O O C6H5COCC6H5 + 2 CH3COH
15.5 羧酸衍生物的氨解反应
O CH3CW + NH3 O CH3CNH2 + HW
(1) 反应只能碱催化,不能酸催化。 (2) 3o胺不能发生氨解反应。
O O CH3CCl + (C2H5)3N O CH3CN(C2H5)3ClROH
+
OH C(CH3)3
CH3C O18
CH3CO18OH + (CH3)3C+
H2O
(CH3)3COH + H
+
(CH3)C 3COH2
+
关 键 中 间 体
通过同位素跟踪可以证明上述反应机制
6. AAc1酸性水解
具体实例:
CH3 H3C O C OCH3 + H+ CH3 H3C CH3 O C OH + CH3OH CH3
3. 酸性水解(AAc2)
O CH3CO C2H5 + H2O
有机化学——羧酸衍生物

CH 3COCC H 3
O CH 3COC 2H 5 + H 2O O CH 3COH + C 2H 5OH
HCl
O
CH 3 COH
}
}
室温
加热 长时间回流
O CH 3CNH 2
CH 3 C N
NH3 NH3
请同学考虑:
反应是否需要催化剂?需要什么催化剂?为什么?
亚硝酸在酰胺制酸中的作用
CH 3C SN1
O
18
C(CH 3)3
CH 3CO 18OH
关键 中间 体
(CH 3)3COH + H
+
(CH 3)C 3COH 2
+
通过同位素跟踪可以证明上述反应机制
*5 酯水解的应用
A 制备羧酸和醇 B 测定酯的结构
CH 2OOCR CHOOCR' CH 2OOCR'' NaOH H+ CH 2OH CHOH CH 2OH + RCOOH R'COOH R''COOH
RCW
-W -
-H + RCNu
OH
O RCNu
O O
这是一个可逆反应,要使反应向右方进行,其条件是: (1)羰基的活性
RCW > RCNu
(2)离去基团的活性
W -> Nu -
(3)改变影响平衡移 动的其它因素。
二 羧酸及其衍生物的转换关系概貌
芳烃 氧化 酸酐
羧酸
酰卤 RX + NaCN
H2O
酸酐 酯 酯 酰胺
*2. 酸性水解
O CH 3CO 18C 2H 5 + H 2O
羧酸及其衍生物

羧酸及其衍生物羧酸及其衍生物Ⅰ 目的要求羧酸是含有羧基(―COOH)的含氧有机化合物,我们平常所说的有机酸就是指的这类化合物。
所谓羧酸衍生物,包括的化合物种类很多,诸如羧酸盐类、酰卤类、酯类(包括内酯、交酯、聚酯等)、酸酐类、酰胺类(包括酰亚胺、内酰胺)等都是羧酸衍生物,有人甚至把腈类也包括在羧酸衍生物的范围之内。
其实,比较常见的而又比较重要的是酰卤、酸酐、酯和酰胺这四类化合物。
羧酸盐与一般无机酸盐在键价类型上没大区别,不作专门介绍。
至于腈类,将放在含氮化合物中加以介绍。
这四类化合物都是羧酸分子中,因酰基转移而产生的衍生物,所以又叫羧酸的酰基衍生物。
羧酸及其衍生物RCOL(L:-OH、-X、-OOCR′、-OR′、-NH2)在许多重要天然产物的构成以及在生物代谢过程中均占有重要地位。
本章将以饱和一元脂肪酸为重点,讨论羧酸及其衍生物的结构和性质。
鉴于乙酰乙酸乙酯和丙二酸二乙酯在有机合成上的重要地位,本章作概括介绍。
希望学生在此基础上,探讨设计合成路线的一般方法。
本章学习的具体要求1、掌握羧酸的结构与性质之间的关系。
2、掌握羧酸衍生物的主要化学性质。
3、了解羧酸衍生物的亲核取代反应机理。
4、掌握羧酸与羧酸衍生物之间相互转变条件。
5、了解卤代酸、羟基酸的特性。
6、掌握乙酰乙酸乙酯和丙二酸二乙酯的制法、性质和在有机合成上的应用。
这也是本章的重点之一。
Ⅱ 学习提要(一)羧酸一、概述羧酸往往有俗名,希望学生有所了解,尽可能记忆一些,脂肪酸的系统命名原则和醛相β α同。
γCH3-CH-CH2-COOH2 14 3 OH 芳香酸命名是把芳环视作取代基。
76羧酸的沸点比分子量相近的其它有机物高,这是由于羧酸能以氢键缔合。
同时,即使在气态时,羧酸也是双分子缔合的,所以羧酸的沸点比分子量相近的醇还要高。
二、羧酸结构和化学性质亲核取代O 还原R-C-C-O-H α-H反应H 脱羧酸性1、酸性?E O O O +?R-C H + R-C R-C E EO-H O OO O NaOH/Na2CO3/ NaHCO3H2O + R-C E R-C EH+ O-Na O-H应用:①鉴别:与酚不同,与非酸性物质不同。
羧酸的衍生物

羧酸的衍生物
工业上,在合成纤维“涤纶”的生产中就利用了酯交换反应。 通过酯交换反应可以从廉价的低级醇来制备高级醇。例如: 酰胺的醇解反应是可逆的,需要过量的醇才能生成酯并释放出氨。
羧酸的衍生物
3. 溶解性
所有羧酸衍生物均能溶于乙醚、氯仿、丙酮、苯等有机 溶剂。酰卤和酸酐遇水就分解,酯在水中的溶解性很低,但 低级的酰胺(如N,N-二甲基甲酰胺)能与水混溶,是优良的 非质子极性溶剂。
部分羧酸衍生物的物理常数列于表11-4。
羧酸的衍生物
表11-4 部分羧酸衍生物的物理常数
羧酸的衍生物
羧酸的衍生物
(2)酸酐的命名
酸酐的名称是由两个羧酸的名称加上“酐”字来命名。相 同羧酸形成的酸酐称为单酐;不同羧酸形成的酸酐称为混酐。 混酐命名时,通常将简单的羧酸写在前面,复杂的羧酸写在 后面。例如:
羧酸的衍生物
(3)酯的命名
酯的名称是由相应的羧酸和醇中的烃基名称组合后加“酯” 字来命名的。例如:
羧酸的衍生物
4. 还原反应
(1)催化加氢
羧酸衍生物在催化加氢条件下都可以被还原,但一般具有制备意 义的是酰卤的选择性还原和酯的还原。
酰卤选择性加氢的催化体系是Pd/BaSO4-硫-喹啉(或硫脲),此 催化体系可使酰卤的加氢反应停止在生成醛的阶段,称为罗森门德 (Rosenmund)反应,这是一种制备醛的方法。
的杂原子(X、O、N)上都具有未共用电子对,它们所占据的p轨道
与羰基的π轨道形成p-π共轭体系,未共用电子对向羰基离域,使C-L
键具有部分双键的性质。因此,羧酸衍生物的C-L键较典型的单键C-L
《羧酸衍生物 》课件

羧酸衍生物可以与醇反应,生成酯类物质,常用于酯化反应的有机合成。
3 加成反应
羧酸衍生物可通过加成反应与其他有机物发生化学反应,生成功能化的有机化合物。
羧酸衍生物的应用领域
1
染料领域
2
羧酸衍生物在染料的合成和染色工艺中
起到重要的作用,用于改善染料的染色
性能和稳定性。
3
食品工业
4
羧酸衍生物在食品工业中可以作为调味 剂、增酸剂和防腐剂等添加剂。
医药领域
羧酸衍生物广泛应用于药物研发领域, 用于合成医药品、制药工艺中的反应催 化剂等。
聚合物领域
羧酸衍生物可作为聚合物的功能单体, 用于合成具有特定性能的聚合物材料。
羧酸衍生物的市场前景
市场需求增长 技术创新推动 环境友好性
羧酸衍生物的应用领域广泛,市场需求稳步增长, 尤其是在医药、染料和聚合物等领域。
酯化反应是将羧酸与醇反应生成酯类产物的方法, 常用酯化剂包括酸、酸酐等。
羰基化反应
羰基化反应是将羧酸与羰基化试剂反应生成酮类产 物的方法,常用羰基化试剂包括酰氯、酸酐等。
特殊制备方法
特定的有机化学反应可用于制备特定的羧酸衍生物, 例如将邻羟基苯甲酸酰化得到苯甲酸。
羧酸衍生物的化学性质
1 酸性性质
羧酸衍生物具有酸性,可以与碱发生中和反应,生成相应的盐和水。
随着科学技术的进步,对羧酸衍生物性能的研究 和改良不断推动着羧酸衍生物市场的发展。
羧酸衍生物具有较好的环境友好性,符合环保趋 势,因此在绿色化学领域具有广阔的市场前景。
总结
通过本课件的学习,我们了解了羧酸衍生物的定义、结构特点、制备方法、 化学性质、应用领域以及市场前景。希望这些知识能够对大家有所启发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章羧酸、羧酸衍生物(一)
一、羧酸
[教学目的]:
1、熟悉羧酸的命名和分类
2、掌握羧酸的物理性质和化学性质
[教学重点和难点]:
酸的化学性质
羧酸衍生物的生成
脱羧反应
羧酸的酸性
[课堂组织]:羧酸(carboxylic acids)的官能团是羧基(carboxyl group),
,简写为-COOH 或-CO2H。
羧酸结构中最简单的是一元羧酸,其它
羧酸的结构与其相似。
一元羧酸的通式为RCO2H,其中R为氢或烃基。
两分子羧酸容易通过氢键缔合成二缔合体:
在固态、液态和中等压力的气态下一元羧酸主要以二缔合体的形式存在,在稀溶液中或高温蒸汽中二缔合体离解。
一元羧酸二缔合体用物理方法测定的键长、键角平均值为:
C=O 123pm,∠OCO 122-123°,
C-O 136pm,
O-H…O 260-270pm
在甲酸()分子中,所有的原子在同一平面内。
可以认为羧基碳原子为杂化。
一元羧酸的分子轨道模型见图(a)
羧酸在水溶液中电离成羧酸根负离子:
羧酸根中两个C-O键是等同的,其键长在126pm左右(用羧酸盐测定)。
因此,在羧酸根中羧基碳原子P电子和两个氧原子上的p电子是共轭的,可用共振式表示:
羧酸根中的负电荷平均分配在两个氧原子上。
羧酸根的分子轨道模型见图(b)。
羧酸分子中羟基氧原子上的孤电子对也与羰基上的电子共轭,其结构可用共振式表示:
几个经典结构式中正负电荷分离的能量较高,在共振杂化体中的贡献较小。
羧酸分子中碳-氧双键的键长与醛酮分子中的碳-氧双键相近。
15.1羧酸
15.1.1命名
根据羧酸分子中所含羧基的数目可分为一元羧酸(monocarboxylic acids)、二元羧酸(dicarboxylic acids)等;根据烃基的结构不同,又可分为饱和羧酸、不饱和羧酸或芳香酸;根据不饱和羧酸中不饱和键与羧基的位置不同,又可分为共轭羧酸和非共轭羧酸等。
在系统命名法中含碳链的羧酸是以含羧基的最长碳链为主链,从羧基碳原子开始进行编号,根据主链上碳原子的数目称为某酸,以此作为母体,然后在母体名称的前面加上取代基的名称和位置。
例如:
含碳环的羧酸则是将环作为取代基命名。
例如:
许多羧酸存在于天然产物中,因此,还有历史上流传下来的反映其来源的习惯名。
例如:甲酸、乙酸和苯甲酸又分别称为蚁酸、醋酸和安息酸。
在习惯名中,支链羧酸的碳链是从与羧基相邻的碳原子开始,依次用希腊字母α,β,γ,δ……等进行编号。
例如:
二元酸则依据连接两个羧基碳链的长度称为某二酸,取代基应让其编号尽可能小,例如:
按羧基的数目分
按烷基的结构分
按羟基的位置分
15.1.2物理性质
低级脂肪酸是液体,可溶于水,具有刺鼻的气味;中级脂肪酸也是液体,部分地溶于水,具有难闻的气味;高级脂肪酸是蜡状固体,无味,不溶于水。
芳香酸是结晶固体,在水中溶解度不大。
羧酸的沸点比分子量相当的烷烃、卤代烃的沸点要高,甚至比相近分子量的醇的沸点还高,这是因为羧酸中羰基氧的电负性较强,使电子偏移氧,可以接近质子,形成二缔合体:
二缔合体有较高的稳定性。
在固态及液态时,羧酸以二缔合的形式存在,甚至在气态,分子量较小的羧酸如甲酸、乙酸亦以二缔合体存在,这些均已通过冰点降低法测定了分子量以及从X光衍射得到证明。
所有二元酸都是结晶化合物,低级的溶于水,随分子量增加,在水中的溶解度减少,在脂肪二元酸系列中有这样一个规律,单数碳原子的二元酸比少一个碳的双数碳原子的二元酸溶解度大,熔点低。
15.1.3化学性质
羧酸是由羟基和羰基组成的,羧基是羧酸的官能团,因此要讨论羧酸的性质,必须先剖析羧基的结构。
故羧基的结构为一 P-π共轭体系。
当羧基电离成负离子后,氧原子上带一个负电荷,更有利于共轭,故羧酸易离解成负离子。
例如:
由于共轭作用,使得羧基不是羰基和羟基的简单加合,所以羧基中既不存在典型的羰基,也不存在着典型的羟基,而是两者互相影响的统一体。
羧酸的性质可从结构上预测,有以下几类: 1、酸性
羧酸具有弱酸性,在水溶液中存在着如下平衡:
乙酸的离解常数K a 为1.75×10-5 甲酸的K a =2.1×10-4 , p Ka =3.75
其他一元酸的K a 在1.1~1.8×10-5之间, p Ka 在4.7~5之间。
可见羧酸的酸性小于无机酸而大于碳酸(H 2CO 3 p Ka1=6.73)。
C
形式上看羧基是由一个 和一个 组成实质上并非两者的简单组合OH
O H 醛酮中
醇中
键长键长(甲酸)电子衍射实验证明0.122nm 0.143nm
0.1245nm
0.1312nm R sp 2共轭体系
P-
πR C O OH R C O O R
H C O OH H H 0.127nm
R C H 羟基被取代的反应的反应αH 羟基断裂呈酸性
RCOOH
RCOO + H +
故羧酸能与碱作用成盐,也可分解碳酸盐。
此性质可用于醇、酚、酸的鉴别和分离,不溶于水的羧酸既溶于NaOH 也溶于NaHCO 3,不溶于水的酚能溶于NaOH 不溶于NaHCO 3,不溶于水的醇既不溶于NaOH 也溶于NaHCO 3。
RCOOH + NH 4
OH RCOONH 4 + H 2O
高级脂肪酸高级脂肪酸钠是肥皂的主要成分,高级脂肪酸铵是雪花膏的主要成分。
2.羧基中羟基的取代反应
羧基上的OH 原子团可被一系列原子或原子团取代生成羧酸的衍生物。
羧酸分子中消去OH 基后的剩下的部分(
)称为酰基。
(1)酸酐的生成
酸酐在脱水剂作用下加热,脱水生成酸酐。
因乙酐能较迅速的与水反应,且价格便宜,生成的乙酸有易除去,因此,常用乙酐作为制备酸酐的脱水剂。
1,4和1,5二元酸不需要任何脱水剂,加热就能脱手生成环状(五元或六元)酸酐。
例如:
RCOOH + NaOH
RCOONa + H 2
O
RCOOH + Na 2CO 32O NaHCO 3RCOOH
用于区别酸和其它化合物2O C R'O 酯酰胺酰卤酸酐R O R C O OH
+R C O OH R C O
O C R O + H 2O 2COOH + (CH 3CO)2O CO ( )2O + CH 3COOH
乙酐(脱水剂)
C C O OH
O OH 150℃C
C O O + H 2O COOH COOH
C C O
O
℃顺丁烯二酸酐95%邻苯二甲酸酐~100%
+ H 2O。