数学中考复习专题【图形的全等2】

合集下载

全等三角形的基本模型复习(正式经典)PPT课件

全等三角形的基本模型复习(正式经典)PPT课件

2021
10
模型四 一线三垂直型 模型解读:基本图形如下:此类图形 通常告诉 BD⊥DE,AB⊥AC, CE⊥DE,那么一定有∠B=∠CAE.(常用到同(等)角的余角相等)
2021
11
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD=CE. 求证:AB=AD+BE.
2021
2021
3
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
2021
4
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF, ∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F, 在△ABC 与△DEF 中 ∠B=∠DEF, BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA) ∴AB=DE
2021
8
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
2021
9
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
12
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
2021
5
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件, 即公共边或公共角相等.

中考数学专题复习全攻略:第二节 三角形的基础知识与全等三角形

中考数学专题复习全攻略:第二节 三角形的基础知识与全等三角形

第二节 三角形的基础知识与全等三角形知识点一:三角形的分类及性质 1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段(2)三条线段不在同一直线上, 三角形是封闭图形 (3)首尾顺次相接三角形用符号“∆”表示,顶点是A 、B 、C 的三角形记作“∆ABC ”,读作“三角形ABC ”。

5.三角形的分类(1)按角的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形(2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形6.三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

.变式练习1:等腰三角形两边长分别是3和6,则该三角形的周长为15.[变式练习2:已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5B. 6C. 11D. 16【解析】C组成三角形的三条线段长度须满足“两边之和大于第三边,两边之差小于第三边”.此三角形的两边之和为14,两边之差为6,所以此三角形第三边的长可能是11.变式练习3:下列长度的三根小木棒能构成三角形的是( D )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm7.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余.变式练习:在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为( C ) A.35°B.40°C.45°D.50°(2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和.②三角形的任意一个外角大于任何和它不相邻的内角.8.三角形中的重要线段8.三角形中的重要线段四线性质角平分线(1)角平线上的点到角两边的距离相等(2)三角形的三条角平分线的相交于一点(内心)中线(1)将三角形的面积等分(2)直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部中位线平行于第三边,且等于第三边的一半注意:在运用分类讨论思想计算等腰三角形周长时,必须考虑三角形三边关系注意:(1)在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。

中考数学专题复习教案:共顶点的等腰三角形与全等

中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。

中考数学专题复习全等三角形之辅助线补全图形法

中考数学专题复习全等三角形之辅助线补全图形法

中考数学专题复习全等三角形(辅助线补全图形法)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE∠AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断BEG的形状,并说明理由.2.如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于(,0) ,(0,)A aB b两点,且,a b满足2()|4|0a b a t,且0,t t>是常数,直线BD平分OBA∠,交x轴于点D.(1)若AB的中点为M,连接OM交BD于点N,求证:ON OD=;(2)如图2,过点A作AE BD⊥,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想.3.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE∠AE点F在AB上,且BF=DE(1)求证:四边形BDEF是平行四边形(2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论4.已知,如图ABC∆中,AB AC=,90A∠=︒,ACB∠的平分线CD交AB于点E,90BDC∠=︒,求证:2CE BD=.5.在∠ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD . (1)如图1,当∠BAC=100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC=100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.6.(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC ∠,180A C ∠+∠=︒.求证:DA DC =. 思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题; 方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种....,添加辅助线并完成证明. (2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC ∠=︒时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C ∠+∠=︒,DA DC =,过点D 作DE BC ⊥,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.参考答案:1.(1)BE =12AD ,见解析;(2)BEG 是等腰直角三角形,见解析【解析】【分析】(1)延长BE 、AC 交于点H ,先证明△BAE ∠∠HAE ,得BE =HE =12BH ,再证明△BCH ∠∠ACD ,得BH =AD ,则BE =12AD ;(2)先证明CF 垂直平分AB ,则AG =BG ,再证明∠CAB =∠CBA =45°,则∠GAB =∠GBA =22.5°,于是∠EGB =∠GAB +∠GBA =45°,可证明△BEG 是等腰直角三角形.【详解】证:(1)BE =12AD ,理由如下:如图,延长BE 、AC 交于点H ,∠BE ∠AD ,∠∠AEB =∠AEH =90°,∠AD 平分∠BAC ,∠∠BAE =∠HAE ,在△BAE 和△HAE 中,AEB AEH AE AEBAE HAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠BAE ∠∠HAE (ASA ),∠BE =HE =12BH ,∠∠ACB =90°,∠∠BCH =180°﹣∠ACB =90°=∠ACD ,∠∠CBH =90°﹣∠H =∠CAD ,在△BCH 和△ACD 中,BCH ACD BC ACCBH CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠BCH ∠∠ACD (ASA ),∠BH =AD ,∠BE =12AD . (2)△BEG 是等腰直角三角形,理由如下:∠AC =BC ,AF =BF ,∠CF ∠AB ,∠AG =BG ,∠∠GAB =∠GBA ,∠AC =BC ,∠ACB =90°,∠∠CAB =∠CBA =45°,∠∠GAB =12∠CAB =22.5°,∠∠GAB =∠GBA =22.5°, ∠∠EGB =∠GAB +∠GBA =45°,∠∠BEG =90°,∠∠EBG =∠EGB =45°,∠EG =EB ,∠∠BEG 是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.2.(1)见解析;(2)2BD AE =,证明见解析.【解析】【分析】(1)由已知条件可得AO BO =,进而得OBA OAB ∠=∠,由直线BD 平分OBA ∠及直角三角形斜边上中线的性质得BOM OAB ∠=∠,再由三角形的外角定理,分别求得,ODN OND ∠∠,根据角度的等量代换,即可得ODN OND ∠=∠,最后由等角对等边的性质即可得证;(2)如图,延长AE 交y 轴于点C ,先证明BCE BAE △≌△,得AE EC =,再证明DOB COA ∠≌△,即可得2BD AC AE ==.【详解】(1)2()|4|0a b a t ,4a b t ∴==,AO BO ∴=,∴OBA OAB ∠=∠,直线BD 平分OBA ∠,ABD OBD ∴∠=∠,M 为AB 的中点,∴12OM AB BM AM ===, BOM OBA ∴∠=∠,OBA OAB ∠=∠,BOM OAB ∴∠=∠,OND OBD BOM ∠=∠+∠,ODN OAB ABD ∠=∠+∠,OND ODN ∴∠=∠,ON OD ∴=. (2)2BD AE =,证明:如图,延长AE 交y 轴于点C ,直线BD 平分OBA ∠,AE BD ⊥,ABD OBD ∴∠=∠,AEB CEB ∠=∠,又BE BE =,∴BCE BAE △≌△(ASA ),∴AE CE =1=2AC , AO BC ⊥,∴DOB COA ∠=∠,即90OAC OCA OCA CBE ∠+∠=∠+∠=︒, OAC OBD ∴∠=∠,又OB OA =,∴DOB COA ∠≌△(ASA ),2BD AC AE ∴==,即2BD AE =.【点睛】本题考查了平面直角坐标系的定义,非负数之和为零,三角形角平分线的定义,三角形中线的性质,三角形外角定理,三角形全等的性质与判定,等角对等边,熟练掌握以上知识,添加辅助线是解题的关键.3.(1)见解析;(2)1()2BF AB AC =-,理由见解析 【解析】【分析】(1)延长CE交AB于点G,证明AEG∆≅AEC∆,得E为中点,通过中位线证明DE// AB,结合BF=DE,证明BDEF是平行四边形(2)通过BDEF为平行四边形,证得BF=DE=12BG,再根据AEG∆≅AEC∆,得AC=AG,用AB-AG=BG,可证1()2BF AB AC=-【详解】(1)证明:延长CE交AB于点G∠AE⊥CE∠90AEG AEC︒∠=∠=在AEG∆和AEC∆GAE CAEAE AEAEG AEC∠=∠⎧⎪=⎨⎪∠=∠⎩∠AEG∆≅AEC∆∠GE=EC∠BD=CD∠DE为CGB∆的中位线∠DE//AB∠DE=BF∠四边形BDEF是平行四边形(2)1()2BF AB AC=-理由如下:∠四边形BDEF是平行四边形∠BF=DE∠D,E分别是BC,GC的中点∠BF=DE=12BG∠AEG∆≅AEC∆∠AG=ACBF=12(AB-AG)=12(AB-AC).【点睛】本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.4.见解析.【解析】【分析】延长BD交CA的延长线于F,先证得∠ACE∠∠ABF,得出CE=BF;再证∠CBD∠∠CFD,得出BD=DF;由此得出结论即可.【详解】证明:如图,延长BD交CA的延长线于F,90BAC︒∠=90,90BAF BAC ACE AEC︒︒∴∠=∠=∠+∠=90BDC︒∠=90BDC FDC︒∴∠=∠=90ABF BED︒∴∠+∠=AEC BED∠=∠ACE ABF∴∠=∠AB AC=()ACE ABF ASA∴∆∆≌CE BF ∴=CD 平分ACB ∠ACD BCD ∴∠=∠CD CD =()CBD CFD ASA ∴∆∆≌12BD FD BF ∴== 12BD CE ∴= 2CE BD ∴=【点睛】此题考查三角形全等的判定与性质,角平分线的性质,根据已知条件,作出辅助线是解决问题的关键.5.(1)30°;(2)30°;(3)α为60︒或120m ︒-或240m ︒-.【解析】【分析】(1)由100BAC ∠=︒,AB AC =,可以确定40ABC ACB ∠=∠=︒,旋转角为α,60α=︒时ACD ∆是等边三角形,且AC AD AB CD ===,知道BAD ∠的度数,进而求得CBD ∠的大小;(2)由100BAC ∠=︒,AB AC =,可以确定40ABC ACB ∠=∠=︒,连接DF 、BF .AF FC AC ==,60FAC AFC ∠=∠=︒,20ACD ∠=︒,由20DCB ∠=︒案.依次证明DCB FCB ∆≅∆,DAB DAF ∆≅∆.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,ACD ∆是等边三角形时,CD 在ABC ∆内部时,CD 在ABC ∆外部时,求得答案.【详解】解:(1)解(1)∠AB AC =,100BAC ∠=︒,∠40ABC ∠=︒,∠AC CD =,60ACD α=∠=︒,∠ACD △为等边三角形,∠40BAD BAC DAC ∠=∠-∠=︒.又∠AD AC AB ==,∠ABD △为等腰三角形,∠180702BAD ABD ︒-∠∠==︒, ∠30CBD ABD ABC ∠=∠-∠=︒.(2)方法1:如图作等边AFC △,连接DF 、BF .AF FC AC ∴==,60FAC AFC ∠=∠=︒.100BAC ∠=︒,AB AC =,40ABC BCA ∴∠=∠=︒.20ACD ∠=︒,20DCB ∴∠=︒.20DCB FCB ∴∠=∠=︒.∠AC CD =,AC FC =,DC FC ∴=.∠ BC BC =,∠∴由∠∠∠,得DCB FCB ≅,DB BF ∴=,DBC FBC ∠=∠.100BAC ∠=︒,60FAC ∠=︒,40BAF ∴∠=︒.20ACD ∠=︒,AC CD =,80CAD ∴∠=︒.20DAF ∴∠=︒.20BAD FAD ∴∠=∠=︒.∠AB AC =,AC AF =,AB AF ∴=.∠AD AD =,∠∴由∠∠∠,得DAB DAF ≅.FD BD ∴=.FD BD FB ∴==.60DBF ∴∠=︒.30CBD ∴∠=︒.方法2 如下图所示,构造等边三角形ADE ,连接CE .∠在等腰三角形ACD 中,20ACD ∠=︒,∠80CAD CDA ∠=∠=︒,∠100BAC ∠=︒,∠20BAD ∠=︒.可证ACE DCE ≌.结合角度,可得20CAE CDE ∠=∠=︒,10ACE DCE ∠=∠=︒.在ADB △和ACE 中,20AB AC BAD CAE AD AE =⎧⎪∠=∠=︒⎨⎪=⎩,∠△≌△ADB AEC ,∠10ABD ACE ∠=∠=︒.∠40ABC ∠=︒,∠30CBD ABC ABD ∠=∠-∠=︒.方法3 如下图所示,平移CD 至AE ,连接ED ,EB ,则四边形ACDE 是平行四边形.∠AC DC =,∠四边形ACDE 是菱形,∠20AED ACD ∠=∠=︒,180EAC ACD ∠+∠=︒.∠160EAC ∠=︒,∠60EAB ∠=︒,∠ABE △是等边三角形,EBD △是等腰三角形,∠40BED ∠=︒,70EBD ∠=︒,∠10ABD ∠=︒.∠30CBD ABC ABD ∠=∠-∠=︒.(3)由(1)知道,若100BAC ∠=︒,60α=︒时,则30CBD ∠=︒;∠由(1)可知,设60α∠=︒时可得60BAD m ∠=-︒,902m ABC ACB ∠=∠=︒-, 19012022m ABD BAD ∠=︒-∠=︒-, 30CBD ABD ABC ∠=∠-∠=︒.∠由(2)可知,翻折BDC ∆到△1BD C ,则此时130CBD ∠=︒,60302m BCD ACB ∠=︒-∠=-︒, 190(30)12022m m ACB BCD ACB BCD m α∠=∠-∠=∠-∠=︒---︒=︒-, ∠以C 为圆心CD 为半径画圆弧交BD 的延长线于点2D ,连接2CD ,2303022m m CDD CBD BCD ∠=∠+∠=︒+-︒=, 221802180DCD CDD m ∠=︒-∠=︒-260240DCD m α∠=︒+∠=︒-.综上所述,α为60︒或120m ︒-或240m ︒-时,30CBD ∠=︒.【点睛】本题是一道几何结论探究题,解答这类题目的关键是要善于从探究特殊结论中归纳出一般性解题方法,并灵活运用这种方法解答一般性的问题,真正达到举一反三的目的. 6.(1)证明见解析;(2)AB BC BD +=;理由见解析;(3)2BC AB CE -=.【解析】【分析】(1)方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题; (2)延长CB 到点P ,使BP BA =,连接AP ,证明ΔΔPAC BAD ≌,可得PC BD =,即PC BP BC AB BC =+=+(3)连接BD ,过点D 作DF AC ⊥于F ,证明ΔΔDFA DEC ≌,Rt ΔRt ΔBDF BDE ≌,进而根据2BC BE CE BA AF CE BA CE =+=++=+即可得出结论.【详解】解:(1)方法1:在BC 上截BM BA =,连接DM ,如图.BD 平分ABC ∠,ABD CBD ∴∠=∠.在ΔABD 和ΔMBD 中,BD BD ABD MBD BA BM =⎧⎪∠=∠⎨⎪=⎩,ΔΔABD MBD ∴≌,A BMD ∴∠=∠,AD MD =.180BMD CMD ︒∠+∠=,180C A ︒∠+∠=.C CMD ∴∠=∠.DM DC ∴=,DA DC ∴=.方法2:延长BA 到点N ,使得BN BC =,连接DN ,如图.BD平分ABC∠,NBD CBD∴∠=∠.在ΔNBD和ΔCBD中,BD BDNBD CBDBN BC=⎧⎪∠=∠⎨⎪=⎩,ΔΔNBD CBD∴≌.BND C∴∠=∠,ND CD=.180NAD BAD︒∠+∠=,180C BAD︒∠+∠=.BND NAD∴∠=∠,DN DA∴=,DA DC∴=.(2)AB、BC、BD之间的数量关系为:AB BC BD+=.(或者:BD CB AB-=,BD AB CB-=).延长CB到点P,使BP BA=,连接AP,如图2所示.由(1)可知AD CD =,60DAC ︒∠=.ΔADC ∴为等边三角形.AC AD ∴=,60ADC ︒∠=.180BCD BAD ︒∠+∠=,36018060120ABC ︒︒︒︒∴∠=--=.18060PBA ABC ︒︒∴∠=-∠=.BP BA =,ΔABP ∴为等边三角形.60PAB ︒∴∠=,AB AP =.60DAC ︒∠=,PAB BAC DAC BAC ∴∠+∠=∠+∠,即PAC BAD ∠=∠.在ΔPAC 和ΔBAD 中,PA BA PAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,ΔΔPAC BAD ∴≌. PC BD ∴=, PC BP BC AB BC =+=+,AB BC BD ∴+=.(3)AB ,CE ,BC 之间的数量关系为:2BC AB CE -=.(或者:2BC CE AB -=,2AB CE BC +=)解:连接BD ,过点D 作DF AC⊥于F ,如图3所示.180BAD C ︒∠+∠=,180BAD FAD ︒∠+∠=.FAD C ∴∠=∠.在ΔDFA 和ΔDEC 中,DFA DEC FAD C DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ΔΔDFA DEC ∴≌,DF DE ∴=,AF CE =.在Rt ΔBDF 和Rt ΔBDE 中,BD BD DF DE =⎧⎨=⎩, Rt ΔRt ΔBDF BDE ∴≌.BF BE ∴=,2BC BE CE BA AF CE BA CE ∴=+=++=+,2BC BA CE ∴-=.【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.。

专题02 全等三角形模型解题九年级数学中考复习专题训练模型解题高分攻略(教师版)

专题02 全等三角形模型解题九年级数学中考复习专题训练模型解题高分攻略(教师版)

专题二全等三角形模型解题解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.解题模型二对称模型针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.图示:图示:4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.5.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.6.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.解题模型三旋转模型针对训练8.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.10.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.图示:12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.14.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.15.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.图示:16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.图示:解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.图示:解题模型一平移模型针对训练1.(2018•桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应角相等.解题模型二对称模型图示:针对训练2.(2018•南充)如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.【分析】由∠BAE=∠DAC可得到∠BAC=∠DAE,再根据“SAS”可判断△BAC≌△DAE,根据全等的性质即可得到∠C=∠E.【点睛】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.图示:3.(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用S AS证明△ADE≌△CBE即可.【解答】证明:在△AED和△CEB中,,∴△AED≌△CEB(SAS).∴∠A=∠C(全等三角形对应角相等).【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.4.(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【点睛】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.5.(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.【分析】由∠ABC=∠ACB可得AB=AC,又点D、E分别是AB、AC的中点.得到AD=AE,通过△ABE≌△ACD,即可得到结果.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.6.(2018•武汉)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF.∴BF=CE.在△ABF和△DCE中,[来源:]∴△ABF≌△DCE(SAS).∴∠GEF=∠GFE.∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.7.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以AB=CD,证明△ABO 与△CDO全等,所以有OB=OC.【点睛】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.8.(2018•镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=75°.【分析】(1)要证明△ABE≌△ACF,由题意可得AB=AC,∠B=∠ACF,BE=CF,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC的度数.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.¥解题模型三旋转模型针对训练9.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,图示:,∴△ABC≌△EDC(ASA).【点睛】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.10.(2018•昆明)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求证:BC=DE.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.11.(2017•常州)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【分析】(1)根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论;(2)根据∠ACD=90°,AC=CD,得到∠2=∠D=45°,根据等腰三角形的性质得到∠4=∠6=67.5°,由平角的定义得到∠DEC=180°﹣∠6=112.5°.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.12.(2017•恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.【分析】利用“边角边”证明△ACD和△BCE全等,可得可得∠CAE=∠CBD,根据“八字型”证明∠AOP=∠PCB=60°即可.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.解题模型四平移+旋转模型针对训练13.(2018•菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.【分析】结论:DF=AE.只要证明△CDF≌△BAE即可;【解答】解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B.∵CE=BF,图示:∴CF=BE.又∵CD=AB,∴△CDF≌△BAE(SAS).∴DF=AE.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.14.(2017•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.[来源:Z|xx|]【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【点睛】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.15.(2018•铜仁)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥FB.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【点睛】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是SSS证明△ACE≌△BDF.16.(2018•怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C.在△ABE与△CDF中,,∴△ABE≌△CDF(ASA).(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD.∵EG=5,∴CD=10.∵△ABE≌△CDF,∴AB=CD=10.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.解题模型五角平分线模型针对训练17.(2016•咸宁)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【点睛】本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解图示:答此题的关键.解题模型六三垂直模型针对训练18.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.【分析】先证明∠BCE=∠CAD,再证明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代换,可得出DE=AD+BE.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明两线段的和等于一条线段常常借助三角形全等来证明,要注意运用这种方法图示:19.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【分析】分析图可知,全等三角形为:△ACD≌△CBE.根据这两个三角形中的数量关系选择ASA证明全等.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

2022年全国中考数学真题分项汇编专题2:专题02 整式与因式分解(含解析)

专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.3.(2022·陕西)计算:()A.B.C.D.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a35.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.6.(2022·江西)下列计算正确的是()A. B. C. D.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积8.(2022·浙江温州)化简的结果是()A.B.C.D.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.1210.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.913.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.14.(2022·四川成都)下列计算正确的是()A. B. C. D.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.4117.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题20.(2022·江苏苏州)已知,,则______.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.22.(2022·四川乐山)已知,则______.23.(2022·湖南邵阳)已知,则_________.24.(2022·天津)计算的结果等于___________.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.28.(2022·山东滨州)若,,则的值为_______.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.31.(2022·浙江嘉兴)分解因式:m2-1=_____.32.(2022·湖南怀化)因式分解:_____.33.(2022·浙江绍兴)分解因式:= ______.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,24 68 10 1214 16 18 20……则第27行的第21个数是______.三.解答题39.(2022·江苏苏州)已知,求的值.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?41.(2022·湖南衡阳)先化简,再求值:,其中,.42.(2022·浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形. (1)用关于a的代数式表示图2中小正方形的边长.(2)当时,该小正方形的面积是多少?43.(2022·安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.44.(2022·浙江丽水)先化简,再求值:,其中.45.(2022·重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”.例如:,∵,∴2543是“勾股和数”;又如:,∵,,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,.当,均是整数时,求出所有满足条件的.46.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵,∴247是13的“和倍数”.又如:∵,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且.在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A.47.(2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.【答案】A【分析】根据有理数的加法法则计算即可.【详解】解:.故选:A.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.【答案】C【分析】由合并同类项可判断A,由同底数幂的乘法可判断B,由积的乘方运算可判断C,由幂的乘方运算可判断D,从而可得答案.【详解】解:,故A不符合题意;,故B不符合题意;,故C符合题意;,故D不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.3.(2022·陕西)计算:()A.B.C.D.【答案】C【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:.故选:C.【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是()A. B. C. D.【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意.故选:B.【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积【答案】C【分析】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH是正方形,设正方形纸片边长为x,正方形EFGH边长为y,则长方形的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2S△AEH+2S△DHG==2xy,所以根据题意,已知条件为xy的值,A.正方形纸片的面积=x2,根据条件无法求出,不符合题意;B.四边形EFGH的面积=y2,根据条件无法求出,不符合题意;C.的面积=,根据条件可以求出,符合题意;D.的面积=,根据条件无法求出,不符合题意;故选 C.【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简的结果是()A.B.C.D.【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:,故选:D.【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.10.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A.【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【分析】根据第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,∴则第⑥个图案中菱形的个数为:,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.,不是同类项,不能合并在一起,故选项A不合题意;B.,符合题意;C.,不是同类项,不能合并在一起,故选项C不合题意;D.,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是()A. B. C. D.【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意;B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意;D.,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.【详解】A. ,故A不正确;B. ,故B正确;C. ,故C不正确;D. ,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵∴①说法正确∵又∵无论如何添加括号,无法使得的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是、、、;当括号中有三个字母,共有3种情况,分别是、、;当括号中有四个字母,共有1种情况,∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.20.(2022·江苏苏州)已知,,则______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵,,∴,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.【答案】5【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=c,∴d=2b+c=c,则c=d,∴4d+d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知,则______.【答案】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解.【详解】解:,,即,,,故答案为:.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知,则_________.【答案】2【分析】将变形为即可计算出答案.【详解】∵∴故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算的结果等于___________.【答案】【分析】根据同底数幂的乘法即可求得答案.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量与震级的关系为(其中为大于0的常数)可得到,当震级为8级的地震所释放的能量为:,当震级为6级的地震所释放的能量为:,,震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=;n=2时,“○”的个数是,n=3时,“○”的个数是,n=4时,“○”的个数是,……∴第n个“○”的个数是,由图形中的“○”的个数和“.”个数差为2022①,②解①得:无解解②得:故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.28.(2022·山东滨州)若,,则的值为_______.【答案】90【分析】将变形得到,再把,代入进行计算求解.【详解】解:∵,,∴.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.【答案】4【分析】根据完全平方公式的运算即可.【详解】∵,∵+=4=16,∴=4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m2-1=_____.【答案】【分析】利用平方差公式进行因式分解即可.【详解】解:m2-1=故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.32.(2022·湖南怀化)因式分解:_____.【答案】【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:,故答案为:【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:= ______.【答案】【分析】利用提公因式法即可分解.【详解】,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.【答案】(x-1)2【详解】由完全平方公式可得:故答案为.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.【答案】1【分析】根据一元二次方程解的定义把代入到进行求解即可.【详解】∵关于x的一元二次方程的一个解是,∴,∴,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.【答案】【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得。

中考数学常见几何模型专题02 全等模型-半角模型(解析版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,30A ∴∠=︒,90E ∠=︒,100DC DM ==DCM ∴是等边三角形,60DCM ∴∠=︒,90BCM ∴∠=︒,在Rt BCE 中,100BC =,18030ECB BCD ∠=︒-∠=︒,1502EB BC ==,EC ==100DE DC EC ∴=+=+Rt ADE △中,2200AD DE ==+150AE ==,∴200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN ∴+=+=+Rt CMB △中,BM =)50501EN EB BN EC =+=+==ECN ∴是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB ∴∠=∠-∠=∠-∠-∠=︒=∠由阅读材料可得))100501501MN DM BN =+=+=,∴路线M N →的长比路线M A N →→的长少)250501200370+=+≈m .答案:370. 【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系. ADE ,证明∠AEF EAF ='E AF ∠先利用圆内接四边形的性质证明为等腰直角三角形,等量代换即得结论.AD 重合,点ADE=180°知,BAD,∠∠BAF=∠EAF=∠,∠EF=E F'∠ABE绕点【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明) ②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.180ADF ADG ∴∠+∠=︒,F ∴,D ,G 三点共线,45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,AN AF ∴=,90NAF ∠=︒,45EAF ∠=︒,45NAE ∴∠=︒,NAE FAE ∴∠=∠,AE AE =,()AFE ANE SAS ∴∆≅∆,EF EN ∴=,BE BN NE DF EF ∴=+=+.正方形Rt EFC中,2CF CE+解得:2x=.2DF∴=,226AF AD DF=+=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.又AH=AN,AB=AD,∠∠ABH∠∠ADN(SAS),∠DN=BH,∠ABH=∠ADN,∠∠B=60°,且∠EAF=60°.∠∠BAD=120°,∠∠DAF+∠BAE=∠EAF=60°,∠∠BAG+∠BAE=∠EAF,即∠MAH=∠MAN,而AH=AN,AM=AM,∠∠AMH∠∠AMN(SAS),∠MN=MH,∠AMN=∠AMH,∠菱形ABCD,∠B=60°,∠∠ABD=∠ADB=30°,∠∠HBD=∠ABH+∠ABD=60°,∠∠DAF=15°,∠EAF=60°,∠∠ADM中,∠DAM=∠AMD=75°,∠∠AMN=∠AMH=75°,∠∠HMB=180°-∠AMN-∠AMH=30°,∠∠BHM=90°,∠BH2+MH2=BM2,∠DN2+MN2=BM2.【点睛】本题是四边形综合题,主要考查了旋转的性质、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE∠∠ADG,再证明△AEF∠∠AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.证得ABE ADG ≌,得出证得AEF AGF ≌,之间的数量关系;(2)同(1)②即可得出,证得ABD ACM ≌,同(证得AEF AGF ≌,在Rt ECM 中,由勾股定理可解得90BAD B D =∠=∠=︒,ABCD 是矩形,又∠AB AD ,∠矩形CD 至点G ,使得DG=BE 90ADG ADF =∠=︒,∠∠,∠ABE ADG ≌,DG ,BAE DAG ∠=∠BAD ∠,∠BAE DAF ∠+∠∠AEF AGF ≌,∠EF DG EF =∠BE FD +在ABC 中,B ACB ∠=∠∠ABD ACM ≌,同(1)②的证明方法得DE ME =, 2BD =,22+BC AB AC ==DE ME =x -,Rt ECM 中,2EM ,2(2)(32+【点睛】本题考查了特殊的平行四边形的判定、全等三角形的性质和判定及勾股定理的应用,熟练应用相关定理和性质是解决本题的关键.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.AB AD =∠ADC =∠B =90°∠则DAG ∠∠F AG =∠F AD理由:AB AD==∠BAE DAG∠=︒,BAD90∠+∠=ADC B在∠AFE和∠AFG∴=EF FG()3将∠ACE∠=BAC又∠∠F AB=∠则在∠ADF∠∠ADF∠∠∠∠C+∠ABD4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时,(如图1),易证BM+DN=MN.(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想. 【答案】(1)BM DN MN +=,理由见解析;(2)DN BMMN -=,理由见解析【分析】(1)把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,然后证明得到AEM ANM ∆∆≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM ∆∆≌,得DQ BM =,再证明AMN AQN ∆∆≌,得MN QN =,可得结论; (1)解:BM DN MN +=.理由如下:如图2,把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,90ABE ADN ∴∠=∠=︒,AE AN =,BE DN =,180ABE ABC ∴∠+∠=︒,∴点E ,点B ,点C 三点共线,90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM ∆与ANM ∆中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ANM ∴∆∆≌(SAS ),ME MN ∴=, ME BE BM DN BM =+=+,DN BM MN ∴+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ ∆与ABM ∆中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ABM ∴∆∆≌(SAS ),DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN ∆和AQN ∆中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN AQN ∴∆∆≌(SAS ),MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90︒,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △∠ANM ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ △∠ABM ,同(2)的方法,即可得出结论.(1)证明:如图1,∠把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=,BM DN =,2MN BM ∴=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=. (3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABM中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ∴∠()ABM SAS ,DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN 和AQN △中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN ∴∠()AQN SAS ,MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得∠ABE ∠∠ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD ∠=︒,50EAF ∠=︒,可证得∠AEF ∠∠AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得∠ABE ∠∠ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ∠∠=,可证得∠AEF ∠∠AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∠90ABC ADC∠=∠=︒,∠∠ADG=∠ABC=90°,∠AB=AD,∠∠ABE∠∠ADG,∠AE=AG,∠BAE=∠DAG,∠100BAD∠=︒,50EAF∠=︒,∠∠BAE+∠DAF=50°,∠∠F AG=∠EAF=50°,∠AF=AF,∠∠AEF∠∠AGF,∠EF=FG,∠FG=DG+DF,∠EF=DG+DF=BE+DF;(2)EF=BE+DF,理由如下:如图,延长CD至点H,使DH=BE,连接AH,∠180ABC ADC∠+∠=︒,∠ADC+∠ADH=180°,∠∠ADH=∠ABC,∠AB=AD,∠∠ABE∠∠ADH,∠AE=AH,∠BAE=∠DAH,∠2BAD EAF∠∠=∠∠EAF=∠BAE+∠DAF=∠DAF+∠DAH,∠∠EAF=∠HAF,∠AF=AF,∠∠AEF∠∠AHF,∠EF=FH,∠FH=DH+DF,∠EF=DH+DF=BE+DF;(3)如图,连接CD,延长AC、BD交于点M,根据题意得:∠AOB=20°+90°+40°=150°,∠OBD=60°+50°=110°,∠COD=75°,∠OAM=90°-20°=70°,OA=OB,∠∠AOB=2∠COD,∠OAM+∠OBM=70°+110°=180°,∠OA=OB,∠由(2)【迁移推广】得:CD=AC+BD,∠AC=80×0.5=40,BD=90×0.5=45,∠CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt∠ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD 绕点A 按逆时针方向旋转90º,得到∠ACF ,联结EF (如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE =45°,可证△F AE ∠△DAE ,得FE =DE .解△FCE ,可求得FE (即DE )的长.(1)请回答:在图2中,∠FCE 的度数是 ,DE 的长为 .参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .猜想线段BE ,EF ,FD 之间的数量关系并说明理由. )根据旋转的性质,可得ADB AFC ≌,勾股定理解按逆时针方向旋转,使AB 与AD 重合,FG =DG +FD =BE +按逆时针方向旋转90º,得到∠ACF ∠ADB AFC ≌ACF ∴∠,90AB AC BAC ∠==45ACF ABD ∴∠=∠=在Rt FCE 中,BD 2EF CF ∴=+(2)猜想:EF =BE 如图,将∠ABE8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN=,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∠45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∠GAB GAD DAN GAD ∠+∠=∠+∠,∠90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM BG GM -=,BG DN =,∠BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∠四边形ABCD 是正方形,∠AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∠MAB BAG GAD BAG ∠+∠=∠+∠,∠90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∠6CN =,8MC =,∠1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-, ∠DC BC =,∠48x x +=-,解得:2x =,∠6AB BC CD CN ====,∠//AB CD ,∠BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∠AD∠CP,DF=DE,∠CE=CF,∠∠DCF=∠DCE=45°,∠∠ACB=90°,∠∠ACD+∠ECB=45°,∠∠DCA+∠ACF=∠DCF=45°,∠∠FCA=∠ECB,在∠ACF和∠BCE中,CA CB ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ACF ∠∠BCE (SAS ),∠AF =BE ,∠AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

初中数学人教版八年级上册第十二章 全等三角形单元复习-章节测试习题(2)

章节测试题1.【题文】如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.【答案】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明见解答【分析】由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.【解答】△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).2.【题文】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【答案】20米.【分析】已知AB∥CD,根据平行线的性质可得∠ABO=∠CDO,再由垂直的定义可得∠CDO=90°,可得OB⊥AB,根据相邻两平行线间的距离相等可得OD=OB,即可根据ASA定理判定△ABO≌△CDO,由全等三角形的性质即可得CD=AB=20m.【解答】∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)3.【题文】我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD. 对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【答案】证明见解答.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.4.【题文】已知△ABN和△ACM的位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【答案】(1)证明见解答(2)证明见解答【分析】(1)由SAS证明△ADB≌△AEC,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)在△ADB和△AEC中,∴△ADB≌△AEC∴BD=CE(2)∵∴即又△ADB≌△AEC∴180°-即.5.【题文】如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【答案】(1)FE=FD(2)答案见解答【分析】(1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;(2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.【解答】(1)FE与FD之间的数量关系为:FE=FD.理由:如图,在AC上截取AG=AE,连结FG,∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF与△AGF中,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,∴2∠2+2∠3+∠B=180°,∴∠2+∠3=60°,又∵∠AFE为△AFC的外角,∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,∴∠CFG=180°-60°-60°=60°,∴∠GFC=∠DFC,在△CFG与△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD;(2)结论FE=FD仍然成立.如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠2+∠3=60°,F是△ABC的内心,∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH,又∵∠HDF=∠B+∠1=60°+∠1,∴∠GEF=∠HDF,在△EGF与△DHF中,,∴△EGF≌△DHF(AAS),∴FE=FD.6.【答题】下列说法正确的是()A. 两个面积相等的图形一定是全等形B. 两个长方形是全等图形C. 两个全等图形形状一定相同D. 两个正方形一定是全等图形【答案】C【分析】根据全等图形的概念即可得出答案.【解答】A、面积相等,但图形不一定完全重合,故错误,B、两个长方形,图形不一定完全重合,故错误;C、全等图形∵完全重合,∴形状一定相同,故正确,D、两个正方形,面积不相等,也不是全等图形,故答案选C.7.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】根据全等三角形对应角相等可知∠α是a、c边的夹角,然后写出即可.【解答】∵两个三角形全等,∴∠α的度数是50°.选D.8.【答题】如图,在下列条件中,不能证明△ABD≌△ACD的是().A. BD=DC,AB=ACB. ∠ADB=∠ADC,BD=DCC. ∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.【解答】∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.选D.9.【答题】如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A. SASB. ASAC. AASD. HL【答案】D【分析】本题考查了直角三角形全等的判定.【解答】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),选D.10.【答题】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3m,则BD等于()A. 6cmB. 8cmC. 10cmD. 4cm【答案】B【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=3cm,CD=AB=5cm,∴BD=BC+CD=3+5=8cm,故答案选B.11.【答题】如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E,下列说法错误的是()A. AD=BCB. ∠DAB=∠CBAC. △ACE≌△BDED. AC=CE【答案】D【分析】本题考查了全等三角形的判定与性质.【解答】在和中,,∴≌,∴,正确,,正确,在和中,,∴在≌,∴正确.无从得证.选.12.【答题】如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A. SSSB. SASC. ASAD. AAS【答案】B【分析】本题考查了全等三角形的应用.【解答】解:如图,连接AB,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴AB=DE选B13.【答题】如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC =()A. 120°B. 125°C. 130°D. 140°【答案】A【分析】由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).在△BOC中利用三角形的内角和定理可求得∠BOC.【解答】∵O到三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A).∵∠A=60°,∴∠OBC+∠OCB=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.选A.14.【答题】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为()A. 12B. 6C. 7D. 8【答案】B【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△DEF=S△DGH,然后列式求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△DEF=S△DGH,∵△ADG和△AED的面积分别为40和28,∴△EDF的面积=×(40-28)=6.选B.15.【答题】如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. ①②③④B. ①②④C. ①②③D. ②③④【答案】A【分析】根据等腰三角形、全等三角形的判定与性质即可得到答案.【解答】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为①②③④.16.【答题】已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠BCE=______.【答案】20°【分析】根据全等三角形的基本性质即可得到答案.【解答】∵△ADF≌△CBE,∴∠BCE=∠DAF=∠A=20°,故答案为20°.17.【答题】如图,△ABC≌△CDA,则AB与CD的位置关系是______.【答案】AB∥CD【分析】根据全等三角形的性质得出边和角的关系,进一步可得到AB与CD的关系即可得到答案.【解答】∵△ABC≌△CDA,则∠ACD=∠BAC,∴AB∥CD,故答案为AB∥CD.18.【答题】如图,在中,点A的坐标为,点B的坐标为,点C 的坐标为,点D在第二象限,且与全等,点D的坐标是______.【答案】(-4,2)或(-4,3)【分析】本题考查了全等三角形的性质、点的坐标.【解答】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC 全等.故答案为(-4,2)或(-4,3).19.【答题】如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若加条件∠B=∠C,则可用______判定.【答案】AAS【分析】根据全等三角形的判定从而得到答案.【解答】已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS,故答案为AAS.20.【答题】如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③DA=DC;④△ABC≌△ADC,其中正确结论的序号是______.【答案】①②④【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,AB=AD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故④正确∴BC=DC,故②正确;故答案为①②④.。

最新九年级中考数学专题复习:全等三角形


在△EDM和△FDN中,源自∠EDM ∠FDNDM
DN
,
∠DME ∠DNF
∴△EDM≌△FDN(ASA),
∴DE=DF.
两边及其夹角对 三边对应相等的两
应相等的两个三 个三角形全等.
角形全等.
两角及其夹边对应 相等的两个三角形 全等.
两角及其中一个角 的对边对应相等的 两个三角形全等.
斜边和一条直角边对应相 等的两个直角三角形全等.
模型一、平移模型
知识点3:全等模型
模型展 示
模型特 沿同一直线(BC)平移可得两三角形重合(BE=CF)
证明:∵AD∥BC,∠A=90°,∠1=∠2, ∴∠A=∠B=90°,DE=CE. 在Rt△ADE和Rt△BEC中,
AD DE
BE EC
,
∴Rt△ADE≌Rt△BEC(HL);
模型四、一线三等角模型
知识点3:全等模型
一般通过一线三等角找等角或进行角度转换,证三角形全等时必须还有一组边相等这个条件. 常见基本图形如 下: 1.两个三角形在直线同侧,点P在线段AB上,已知:∠1=∠2=∠3,AP=BD.
模型应用
2. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折 叠,使点B落在点E处,AE交CD于点F,连接DE.若矩形ABCD的周 长为18,则△EFC的周长为___9_____.
模型三、一线三垂直模型
知识点3:全等模型
常用三个垂直作条件进行角度等量代换,即同(等)角的余角相等,相等的角就是 对应角,证三角形全等时必须还有一组边相等. 基本图形1 如图①,已知:AB⊥BC,DE⊥CE,AC⊥CD,AB=CE.
锐角一线三等角
钝角一线三等角
结论:△CAP≌△PBD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学中考专题复习——图形的全等2【教学内容】第24章图形的全等全等三角形的识别(一)、(二)【重点难点】重点:⑴掌握三角形全等的识别方法(一):如果一个三角形的三边与另一个三角形三边对应相等那么这两个三角形全等。

简称:“S.S.S.”⑵掌握三角形全等的识别方法(二):如果一个三角形的两边和它们的夹角与另一个三角形的两边和它们的交角对应相等,那么这两个三角形全等。

简称:“S.A.S.”难点:“S.S.S.”、“S.A.S.”识别方法的应用。

【学习方法】1.我们知道一个三角形有六个元素,即三边a、b、c和三角∠A、∠B、∠C。

运用这六个元素来识别两个三角形的全等,根据全等三角形的概念,三角形的三边对应相等并且三个角也对应相等,那么这两个三角形才能全等。

通过此办法来说明两三角形全等较为复杂。

做一实验观察发现如果两个三角形的一个或两个元素(边或角)对应相等,这两个三角形不一定能完全重合(即全等)甚至其形状都不尽相同。

三个元素对应相等呢?答案是肯定的,你能找出哪几种可能的情况?2.鉴于课本上做一做,已知三条线段为边画一个三角形,这个三角形不会改变。

即通过已知三条线段画出的所有三角形都能够完全重合。

可感性地认识到全等三角形识别方法(一),即有三边对应相等的两个三角形全等。

3.在运用“S.A.S.”来识别两个三角形全等的问题中,要注意的是两边和它们的夹角..对应相等。

一般在问题中,如果出现有两边对应相等,则可考虑第三边或它们的夹角是否会相等,从这里找突破口来论证问题。

4.运用所学的识别方法识别两个三角形全等来解决线段或角相等的问题。

【典型例题分析】例1.如图,点D是△ABC中BC边上的一点,E是AD上一点,EB=EC,∠ABE=∠ACE,试说明:∠BAE=∠CAE.分析: 要识别∠BAE=∠CAE.关键是找这两个角在哪两个三角形中,从图中可看出若△ABE和△ACE、△ABD和△ACD全等则结论成立,本题以此为突破口来证明。

解: 在△BEC中,∵BE=CE, ∴∠EBC=∠ECB。

又∵∠ABE=∠ACE,∴∠ABC=∠ACB∴AB=AC,在△AEB和△AEC中,AE=AE,BE=CE,AB=AC.EC BA∴△AEB ≌△AEC 。

∴∠BAE=∠CAE.说明:本题很容易出现用“SSA”的办法来说明,这种方法不正确,即EB=EC, ∠ABE=∠ACE ,AE=AE.得到△AEB ≌△AEC ∴∠BAE=∠CAE. 因为有两条边及其中一边的对角对应相等的两个三角形不一定全等。

例2. 若△ABC 中,∠A =30°,∠B =70°,AC =17cm 。

△DEF 中,∠D =70°,∠E=80°,DE=17cm ,那么△ABC 与△DEF 全等码?为什么?分析: 在说明两个三角形全等的问题时,有两个角和一边分别相等的两个三角形不一定全等。

两个三角形全等,两个角与一边不是仅仅“相等”,还要注意说明对应..两字。

并且要满足对应的三角形全等的判定。

解:不全等。

这是因为(如图)在△ABC 中,∠A =30°,∠B =70°,AC=17cm在△DEF 中,∠F =180°-∠D -∠E =180°-70°-80°=30°,∠D =70°,ED =17cm 。

但AC 是∠B 的对边,DE 是∠F 的对边,又∠B ≠∠F ,所以这两个三角形不全等。

例3.已知:如图,AD=BC,AC=BD.试说明:⑴∠DAB=∠CBA;⑵ ∠ACD =∠BDC 。

分析:由于∠DAB ,∠CBA 分别在△DAB 和△CBA 中,如果这两个三角形全等,根据全等三角形的特征,结论则成立。

解:在△ABD 和△BAC 中,∵ AD=BC,BD=AC, AB =AB ∴△ABD ≌△BAC ∴∠DAB=∠CBA同理可证:△ACD ≌△BDC∴∠ACD =∠BDC 。

例4.如图,是一个平分角的仪器,其中,AB=AD,BC=DC,将点A 放在角的顶点,AB 和AD 沿着角的两边放下。

沿AC 画一条射线AE 。

AE 就是角平分线。

说明它的道理。

分析:要AE 是角平分线,即要构造两个三角形全等,说明∠BAE=∠DAE 。

解:在△ABC 和△ADC 中, AB=AD ,BC=DC,AC=AC∴△ABC ≌△ADC (SSS ) ∴∠BAC =∠DAC 。

ooo807030CBAooo807030FEDDCBA例5.如图,某一养鱼户想测量一池塘两端AB 的长度。

请你根据你学过的全等三角形的知识为他设计一个方案,使得在陆地上就能测量出池塘两端A 、B 的距离,并说明其中的道理。

分析: 要运用全等三角形的知识来测量池塘的宽度,不能采用“SSS ”方法来设计,目前我们只能考虑“SAS ”方法在AB 的一侧构造一个三角形使它与AB 所在的一个三角形全等来设计。

解:方案:先在地上取一个可以直接到达A 点和B 点的点O ,连结AO 并延长到B ’,使OB ’=OB.连结OB 并延长到A ’,使OA ’=OA,连结A ’B ’并测量出它的长度就是A 、B 间的距离。

理由:由图形可知:OA =OA ’,OB=OB ’,∠AOB =∠A ’OB ’, 所以,△AOB ≌△A ’OB ’,(SAS),所以 AB=A ’B ’例6: 已知△ABC 为正三角形,点M 为射线BC 上的任一点,点N 是射线CA 上任意一点,且BM=CN ,直线BM 和AM 相交于Q 点。

就下面给出的三种情况,如图⑴、图⑵、图⑶,先用量角器分别测量∠BQM 的大小,然后猜测∠BQM 的度数大小?并利用图⑶证明你的结论。

分析: 本题通过测量对角的大小有直接的感性认识,根据这一认识判断结论,并寻求答案的证明。

我们通过测量可得到∠BQM 均相等并近似等于60°,因此可猜测出∠BQM=60°。

解 :用量角器在三个图中分别测∠BQM,可知∠BQM 均相等,且接近60°。

因此,可猜测∠BQM=60°。

如图⑶证明如下:∵△ABC 为正三角形,∴AB=BC=AC,∠BAC=∠BCA=60°。

∵BM=CN,∴BM -CB=CN -CA,即CM=AN. ∵∠BAN =180°-60°=∠ACM, ∴△BAN ≌△ACM. ∴ ∠CMA=∠ANB.又∵∠QAN=∠CAM,∴∠BQM=∠ANB+∠QAN=∠CAM+∠CMA=∠BCA=60°例7.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过E 点,试说明:AB=AC+BD 。

分析:本题是一道证明线段的和(差)问题,其主要方法为“截长补短法”,以下给出证法一和证法二请同学们注意。

解一:如图,在AB 上截取AF=AC ,连结EF 。

由△AEF ≌△AEB 、△CEF ≌△DEB,可证得AB=AC+BD 。

(1)Q N MC BA (2)Q N M CBA (3)QN BAFEC BAC EF解二:如图,延长AC至F,使AF=AB,连结EF。

由△AEF≌△AEB、△CEF≌△DEB,可证得AB=AC+BD.【同步练习】一、选择题:1. 如图,在∠AOB的两边上截取AO=BO,CO=DO,连结AD、BC交于点P,则下列结论正确的是()①△AOD≌△BOC; ②△APC≌△BPD ③点P在∠AOB的角平分线上。

A. ①B. ②C. ①②D. ①②③2.下列各组图形中,一定全等的是()A. 各有一个角是45°的等腰三角形B. 两个等边三角形C. 有两条边相等的两个直角三角形D. 腰和顶角对应相等的两个等腰三角形3.使两个直角三角形全等的条件是()A.两直角边对应相等B. 一锐角对应相等C. 两锐角对应相等D. 斜边相等4.下列四组中一定是全等三角形的为()A、三内角分别相等的两三角形B、斜边相等的两直角三角形C、周长相等的两等边三角形D、面积相等的两等腰三角形二、填空题:5. 如图,∠1=∠2,要使△ABE≌△ACE,还需要添加一个条件。

(只需写一个条件)6.如图,已知AC=BD,要使得△ABC≌△DCB,只需添加一个条件是。

7.如图,∠1=∠2,BC=EF,那么△ABC≌△DEF成立还需补充的一个直接条件是。

(写出一个即可)PODCB AODBAABCE21FEDCB A218.已知,如图D 、E 是△ABC 的BC 边上的两点,AD=AE,请你再附加一个条件 ,使△ABE ≌△ACD.三、解答题:9. 如图,已知OA=OB ,AC=BD,且OA ⊥AC ,OB ⊥BD,M 为CD 的P 点,试说明:OM 平分∠AOB 。

证明:10. 如图,△ABC 中,AD 是BC 边上的中线, 求证:1()2AD AB AC <+ 证明:11. 如图,AB<BC,AD=DC,BD 平分∠ABC 。

求证:∠A+∠C=180°. 证明:12. 如图,△ABC 和△ADE 都是等腰直角三角形,CE 和BD 相交于点M,BD 交AC 于点N.试证明:⑴BD=CE;⑵BD ⊥CE.证明:OMD CBA ED CBACDCB A NEC B A13. 如图,已知:等边ΔABC和等边ΔBDE,且点A在DE的延长线上,求证:BD+DC=AD证明:14.. 如图,△ABC中,AD平分∠BAC,AB=AC+DC.求证:∠C=2∠B.证明:参考答案一、选择题:D D A C二、填空题:5.BE=CE 6. AB=DC 7.AC=DF8. BE=CD 三、解答题:AB CDECBA9.略证:连结OC、OD可证得△OAC≌△OBD得到OC=OD,∠AOC=∠BOD又可证得△OCM≌△ODM所以∠COM=∠DOM即OM平分∠AOB10.略证:延长AD至E点,使DE=AD,连结BE 可证得△ACD≌△EBD所以AC=BE在△ABE中AB+BE>AE所以1()2AD AB AC<+11.略证:在BC上截取BE=BA,连结DE。

可证得:△ABD≌△EBD所以AD=ED,∠A=∠BED因为AD=DC,所以DE=DC即∠DEC=∠C所以∠DEB+∠DEC=180°即∠A+∠C=180°12. 略证:因为△ABC和△ADE都是等腰直角三角形所以AB=AC,AD=AE,∠BAC+∠CAD=∠EAD+∠CAD 即:∠BAD=∠CAE所以△BAD≌△CAE所以BD=CE∠ABD=∠ACE因为∠CNM=∠BNA又因为∠ABN+∠BNA=90°所以∠NCM+∠CNM=90°即BD⊥CE13. 略证:连结CD可证明△ABE≌△CBD所以AE=CD,因为BD=DE所以BD+DC=AE+DE,即BD+DC=AD14.略证:在AB上截取AE=AC,连结DE可证明△AED≌△ACD所以∠AED=∠C,DC=DE因为AB=AC+DC,所以EB=ED所以∠B=∠EDB所以∠C=2∠B.。

相关文档
最新文档