带电粒子的运动
第一章 3 带电粒子在匀强磁场中的运动

3 带电粒子在匀强磁场中的运动[学习目标] 1.理解带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动.2.会根据洛伦兹力提供向心力推导半径公式和周期公式.3.会分析带电粒子在匀强磁场中运动的基本问题.一、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以速度v 做匀速直线运动,其所受洛伦兹力F =0.所以粒子做匀速直线运动.2.若v ⊥B ,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小. (2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力. 二、带电粒子在磁场中做圆周运动的半径和周期 1.半径一个电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中以速度v 运动,那么带电粒子所受的洛伦兹力为F =q v B ,由洛伦兹力提供向心力得q v B =m v 2r ,由此可解得圆周运动的半径r=m vqB.从这个结果可以看出,粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成正比,与电荷量、磁感应强度成反比. 2.周期由r =m v qB 和T =2πr v ,可得T =2πm qB .带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径和运动速度无关.1.判断下列说法的正误.(1)运动电荷进入磁场后(无其他场)可能做匀速圆周运动,不可能做类平抛运动.( √ ) (2)带电粒子在匀强磁场中做匀速圆周运动时,轨道半径跟粒子的速率成正比.( √ ) (3)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比.( × ) (4)带电粒子在匀强磁场中做圆周运动的周期随速度的增大而减小.( × )2.两个粒子带电荷量相等,在同一匀强磁场中只受到磁场力作用而做匀速圆周运动,则( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则半径必相等 D .若动量相等,则周期必相等 答案 B一、带电粒子在匀强磁场中运动的基本问题 导学探究如图所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转.(1)不加磁场时,电子束的运动轨迹如何? (2)加上磁场后,电子束的运动轨迹如何?(3)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化? (4)如果保持磁感应强度不变,增大出射电子的速度,轨迹圆半径如何变化? 答案 (1)一条直线 (2)圆 (3)变小 (4)变大 知识深化1.分析带电粒子在匀强磁场中的匀速圆周运动,要紧抓洛伦兹力提供向心力,即q v B =m v 2r .2.同一粒子在同一匀强磁场中做匀速圆周运动,由r =m v qB 知,r 与v 成正比;由T =2πmqB知,T 与速度无关,与半径无关.例1 质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2 B .R p ∶R α=1∶1,T p ∶T α=1∶1 C .R p ∶R α=1∶1,T p ∶T α=1∶2 D .R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确,B 、C 、D 错误.针对训练1 薄铝板将同一匀强磁场分成 Ⅰ、Ⅱ 两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图所示,半径R 1>R 2.假定穿过铝板前后粒子带电荷量保持不变,则该粒子( )A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域 答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小.由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.二、带电粒子在匀强磁场中的圆周运动 1.圆心位置确定的两种方法 (1)圆心一定在垂直于速度的直线上已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P 为入射点,M 为出射点). (2)圆心一定在弦的垂直平分线上已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连接入射点和出射点,作其垂直平分线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T ,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角. (2)当v 一定时,粒子在匀强磁场中运动的时间t =lv ,l 为带电粒子通过的弧长.例2 如图所示,a 和b 所带电荷量相同,以相同动能从A 点射入磁场,在匀强磁场中做圆周运动的半径r a =2r b ,则可知(重力不计)( )A .两粒子都带正电,质量比m am b =4B .两粒子都带负电,质量比m am b =4C .两粒子都带正电,质量比m a m b =14D .两粒子都带负电,质量比m a m b =14答案 B解析 由于q a =q b ,E k a =E k b ,由动能E k =12m v 2和粒子偏转半径r =m v qB ,可得m =r 2q 2B 22E k ,可见m 与半径r 的二次方成正比,故m a ∶m b =4∶1,再根据左手定则知粒子应带负电,故选B.例3 如图所示,一带电荷量为2.0×10-9 C 、质量为1.8×10-16kg 的粒子,从直线上一点O沿与PO 方向成30°角的方向进入磁感应强度为B 的匀强磁场中,经过1.5×10-6 s 后到达直线上的P 点,求:(1)粒子做圆周运动的周期; (2)磁感应强度B 的大小;(3)若O 、P 之间的距离为0.1 m ,则粒子的运动速度的大小. 答案 (1)1.8×10-6 s (2)0.314 T (3)3.49×105 m/s解析 (1)作出粒子的运动轨迹,如图所示,由图可知粒子由O 到P 的大圆弧所对的圆心角为300°,则t T =300°360°=56,周期T =65t =65×1.5×10-6 s =1.8×10-6 s (2)由q v B =m v 2r ,T =2πr v ,得T =2πm qB ,知B =2πm qT =2×3.14×1.8×10-162.0×10-9×1.8×10-6T =0.314 T.(3)由几何知识可知,半径r =OP =0.1 m 则q v B =m v 2r得,粒子的运动速度大小为v =Bqr m =0.314×2.0×10-9×0.11.8×10-16 m/s ≈3.49×105 m/s. 针对训练2 (多选)(2020·天津卷)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBa mC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a 答案 AD解析 由题意可知,粒子在磁场中做顺时针圆周运动,根据左手定则可知粒子带负电荷,故A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,故C 错误;由洛伦兹力提供向心力可得q v B =m v 2R ,则v =2qBa m ,故B 错误;由图可知,ON =a +2a =(2+1)a ,故D 正确.考点一 周期公式与半径公式的基本应用1.(多选)两个粒子A 和B 带有等量的同种电荷,粒子A 和B 以垂直于磁场的方向射入同一匀强磁场,不计重力,则下列说法正确的是( ) A .如果两粒子的速度v A =v B ,则两粒子的半径R A =R B B .如果两粒子的动能E k A =E k B ,则两粒子的周期T A =T B C .如果两粒子的质量m A =m B ,则两粒子的周期T A =T B D .如果两粒子的动量大小相同,则两粒子的半径R A =R B 答案 CD解析 因为粒子在匀强磁场中做匀速圆周运动的半径r =m v qB ,周期T =2πmqB ,又粒子电荷量相等且在同一匀强磁场中,所以q 、B 相等,r 与m 、v 有关,T 只与m 有关,所以A 、B 错误,C 、D 正确.2.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率不变,周期变为原来的2倍D .粒子的速率减半,轨道半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,故粒子的速率不变;当磁感应强度减半后,由r =m vBq 可知,轨道半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子能使沿途的空气电离,粒子的能量逐渐减小(电荷量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电 答案 C解析 由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,可知速度逐渐减小;根据粒子在匀强磁场中做匀速圆周运动的半径公式r =m vqB 可知,粒子的运动半径逐渐减小,所以粒子的运动方向是从b 到a ;再根据左手定则可知粒子带正电,选项C 正确,A 、B 、D 错误. 4.质量和带电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运动的半圆轨迹如图中虚线所示,不计重力,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运动时间大于N 的运动时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;因r =m vBq,而M 的轨迹半径大于N的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运动时间都为t =πmBq,D 错误.考点二 带电粒子做匀速圆周运动的分析5.如图,ABCD 是一个正方形的匀强磁场区域,两相同的粒子甲、乙分别以不同的速率从A 、D 两点沿图示方向射入磁场,均从C 点射出,则它们的速率之比v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )A .1∶1,2∶1B .1∶2,2∶1C .2∶1,1∶2D .1∶2,1∶1答案 C解析 根据q v B =m v 2r ,得v =qBrm ,根据题图可知,甲、乙两粒子的轨迹半径之比为2∶1,又因为两粒子相同,故v 甲∶v 乙=r 甲∶r 乙=2∶1,粒子在磁场中的运动周期T =2πmqB ,两粒子相同,可知甲、乙两粒子的周期之比为1∶1,根据轨迹图可知,甲、乙两粒子转过的圆心角之比为1∶2,故两粒子在磁场中经历的时间之比t 甲∶t 乙=1∶2,选C.6.如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2∶1 B.2∶1 C .1∶1 D.2∶2 答案 D解析 根据几何关系可知,带电粒子在铝板上方做匀速圆周运动的轨迹半径r 1是其在铝板下方做匀速圆周运动的轨迹半径r 2的2倍,设粒子在P 点的速度大小为v 1,动能为E k ,根据牛顿第二定律可得q v 1B 1=m v 12r 1,则B 1=m v 1qr 1=2mE kqr 1;同理,B 2=m v 2qr 2=2m ·12E kqr 2=mE kqr 2,则B 1B 2=2r 2r 1=22,D 正确.7.(多选)如图所示,分界线MN 上、下两侧有垂直纸面的匀强磁场,磁感应强度分别为B 1和B 2,一质量为m 、电荷量为q 的带电粒子(不计重力)从O 点出发以一定的初速度v 0沿纸面垂直MN 向上射出,经时间t 又回到出发点O ,形成了图示心形轨迹,则( )A .粒子一定带正电荷B .MN 上、下两侧的磁场方向相同C .MN 上、下两侧的磁感应强度的大小之比B 1∶B 2=1∶2D .时间t =2πm qB 2答案 BD解析 题中未给出磁场的方向和粒子绕行的方向,所以不能判定粒子所带电荷的正负,选项A 错误;粒子越过磁场的分界线MN 时,洛伦兹力的方向没有变,根据左手定则可知MN 上、下两侧的磁场方向相同,选项B 正确;设MN 上方的轨迹半径是r 1,下方的轨迹半径是r 2,根据几何关系可知r 1∶r 2=1∶2;洛伦兹力充当粒子做圆周运动的向心力,由q v 0B =m v 02r ,解得B =m v 0qr ,所以B 1∶B 2=r 2∶r 1=2∶1,选项C 错误;由题图知,时间t =T 1+T 22=2πmqB 1+πm qB 2,由B 1∶B 2=2∶1得t =2πm qB 2,选项D 正确. 8.如图所示,两个速度大小不同的同种带电粒子1、2沿水平方向从同一点垂直射入匀强磁场中,磁场方向垂直纸面向里,当它们从磁场下边界飞出时相对入射方向的偏转角分别为90°、60°,则粒子1、2在磁场中运动的( )A .轨迹半径之比为2∶1B .速度之比为1∶2C .时间之比为2∶3D .周期之比为1∶2答案 B解析 带电粒子在匀强磁场中运动时,洛伦兹力提供向心力,由牛顿第二定律有q v B =m v 2r,可得r =m v qB ,又T =2πr v ,联立可得T =2πmqB ,故两粒子运动的周期相同,D 错误;速度的偏转角等于轨迹所对的圆心角,故粒子1的运动时间t 1=90°360°T =14T ,粒子2的运动时间t 2=60°360°T=16T ,则时间之比为3∶2,C 错误;粒子1和粒子2运动轨迹的圆心O 1和O 2如图所示,设粒子1的轨迹半径R 1=d ,对于粒子2,由几何关系可得R 2sin 30°+d =R 2,解得R 2=2d ,故轨迹半径之比为1∶2,A 错误;由r =m vqB可知,速度之比为1∶2,B 正确.9.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,在xOy 平面内,从原点O 处与x 轴正方向成θ角(0<θ<π),以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )A .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远B .若v 一定,θ越大,则粒子在磁场中运动的时间越短C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短 答案 B解析 画出粒子在磁场中运动的轨迹如图所示,由几何关系得,轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动的时间t =α2πT =2π-2θ2π·2πm qB =(2π-2θ)m qB ,可得,若v 一定,θ越大,粒子在磁场中运动的时间t 越短,若θ一定,则粒子在磁场中的运动时间一定,故B 正确,D 错误;设粒子的轨迹半径为r ,则r =m v qB ,由图有,AO =2r sin θ=2m v sin θqB ,可得,若θ是锐角,θ越大,AO 越大,若θ是钝角,θ越大,AO 越小,故A 错误;粒子在磁场中运动的角速度ω=2πT ,又T =2πm qB ,则得ω=qBm,与速度v 无关,故C 错误.10.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.11.一带电粒子的质量m =1.7×10-27 kg ,电荷量q =+1.6×10-19 C ,该粒子以大小为v =3.2×106 m/s 的速度沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图所示.(粒子重力不计,g 取10 m/s 2,结果均保留两位有效数字)(1)带电粒子离开磁场时的速度多大?(2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?答案 (1)3.2×106 m/s (2)3.3×10-8 s (3)2.7×10-2 m解析 (1)由于洛伦兹力不做功,所以带电粒子离开磁场时的速度大小仍为3.2×106 m/s.(2)由q v B =m v 2r 得, 轨迹半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m. 由题图可知偏转角θ满足:sin θ=L r =0.1 m 0.2 m=0.5, 所以θ=30°=π6, 由q v B =m v 2r 及v =2πr T可得 带电粒子在磁场中运动的周期T =2πm qB, 所以带电粒子在磁场中运动的时间t =θ2π·T =112T , 所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32) m ≈2.7×10-2 m.12.(2020·江苏卷改编)空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.质量为m 、带电荷量为q 的粒子从原点O 沿x 轴正向射入磁场,速度为v .粒子第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.不考虑粒子重力影响.求:(1)Q 到O 的距离d ;(2)粒子两次经过P 点的时间间隔Δt .答案 (1)m v 3qB 0 (2)2πm qB 0解析 (1)粒子先后在两磁场中做匀速圆周运动,设半径分别为r 1、r 2由q v B =m v 2r 可知r =m v qB故r 1=m v 2qB 0,r 2=m v 3qB 0且d =2r 1-2r 2,解得d =m v 3qB 0(2)粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2由T =2πr v =2πm qB 得t 1=πm 2qB 0,t 2=πm 3qB 0, 且Δt =2t 1+3t 2解得Δt =2πm qB 0.。
带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
高中物理第一章 第3节带电粒子在匀强磁场中的运动

第3节 带电粒子在匀强磁场中的运动核心素养导学一、带电粒子在匀强磁场中的运动1.带电粒子沿着与磁场垂直的方向射入匀强磁场,由于带电粒子初速度的方向和洛伦兹力的方向都在与磁场方向 的平面内。
所以,粒子只能在该平面内运动。
2.洛伦兹力总是与粒子运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小。
3.粒子速度大小不变,粒子在匀强磁场中所受洛伦兹力大小也不改变,洛伦兹力提供粒子做圆周运动的向心力,粒子做 运动。
带电粒子在匀强磁场中做匀速圆周运动,带电粒子的重力忽略不计,洛伦兹力提供向心力。
二、带电粒子在磁场中做圆周运动的半径和周期1.半径公式由洛伦兹力提供向心力q v B =m v 2r ,可得圆周运动的半径r = 。
2.周期公式匀速圆周运动的周期T =2πr v ,将r =m v qB 代入,可得T = 。
1.电子以某一速度进入洛伦兹力演示仪中。
(1)励磁线圈通电前后电子的运动情况相同吗?提示:①通电前,电子做匀速直线运动。
②通电后,电子做匀速圆周运动。
(2)电子在洛伦兹力演示仪中做匀速圆周运动时,什么力提供向心力?提示:洛伦兹力提供向心力。
2.如图,带电粒子在匀强磁场中做匀速圆周运动。
判断下列说法的正误。
(1)运动电荷在匀强磁场中做匀速圆周运动的周期与速度有关。
( )(2)带电粒子做匀速圆周运动的半径与带电粒子进入匀强磁场时速度的大小有关。
( )(3)带电粒子若垂直进入非匀强磁场后做半径不断变化的运动。
( )新知学习(一)⎪⎪⎪带电粒子做圆周运动的半径和周期[任务驱动]美丽的极光是由来自太阳的高能带电粒子流进入地球高空大气层出现的现象。
科学家发现并证实,向地球两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与哪些因素有关?提示:一方面磁场在不断增强,另一方面由于大气阻力粒子速度不断减小,根据r =m v qB,半径r 是不断减小的。
[重点释解]1.由公式r =m v qB 可知,带电粒子在匀强磁场中做圆周运动的半径r 与比荷q m 成反比,与速度v 成正比,与磁感应强度B 成反比。
1.3带电粒子在匀强磁场中的运动

依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2
.
55
10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7
5
.
6875
洛伦兹力提供向心力
v2
qvB m
r
圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间
t
T
带电粒子在电场中的运动(含解析)

带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02 非匀强电场中:W =qU =E k2-E k1●带电粒子在匀强电场中的直线运动【例1】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图6A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【答案】A【解析】根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =Q U和匀强电场的电压与电场强度的关系式U =Ed 可得E = 4πkQ εr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.【变式1】 两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh U B .edUh C.eU dh D.eUh d【答案】D【解析】由动能定理得:-e U d h =-E k ,所以E k =eUh d,故D 正确. 二、带电粒子在交变电场中的直线运动【例2】 匀强电场的电场强度E 随时间t 变化的图象如图所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度不为零D .0~3 s 内,电场力做的总功为零【答案】D【解析】由牛顿第二定律可知带电粒子在第1 s 内的加速度和第2 s 内的加速度的关系,因此粒子将先加速1 s 再减速0.5 s ,速度为零,接下来的0.5 s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知前2 s 内的位移为负,故选项B 错误;由图象可知3 s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3 s 内,电场力做的总功为零,故选项D 正确.●带电粒子在电场力和重力作用下的直线运动问题【例3】如图所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的点电荷从两极板正中间处静止释放.重力加速度为g .则点电荷运动到负极板的过程( )A .加速度大小为a =Eq m+g B .所需的时间为t =dm Eq C .下降的高度为y =d 2D .电场力所做的功为W =Eqd 【答案】B【解析】点电荷受到重力、电场力的作用,所以a =(Eq )2+(mg )2m ,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,则d 2=12Eq mt 2,解得t =md Eq ,选项B 正确;下降高度y =12gt 2=mgd 2Eq,选项C 错误;电场力做功W =Eqd 2,选项D 错误. 【例4】如图所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b 沿直线运动到d ,且bd 与竖直方向所夹的锐角为45°,则下列结论不正确的是( )A .此液滴带负电B .液滴的加速度大小为2gC .合力对液滴做的总功等于零D .液滴的电势能减少【答案】C【解析】带电液滴由静止开始沿bd 做直线运动,所受的合力方向必定沿bd 直线,液滴受力情况如图所示,电场力方向水平向右,与电场方向相反,所以此液滴带负电,故选项A 正确;由图知液滴所受的合力F =2mg ,其加速度为a =F m =2g ,故选项B 正确;因为合力的方向与运动的方向相同,故合力对液滴做正功,故选项C 错误;由于电场力所做的功W 电=Eqx bd sin 45°>0,故电场力对液滴做正功,液滴的电势能减少,故选项D 正确.三、带电粒子在电场中的偏转1.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 02 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 02得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =U dy ,指初、末位置间的电势差.【例5】 质谱仪可对离子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生电荷量为q 、质量为m 的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器(可上下移动).已知a 、b 板间距为d ,极板M 、N 的长度和间距均为L ,a 、b 间的电压为U 1,M 、N 间的电压为U 2.不计离子重力及进入a 板时的初速度.求:(1)离子从b 板小孔射出时的速度大小;(2)离子自a 板小孔进入加速电场至离子到达探测器的全部飞行时间;(3)为保证离子不打在极板上,U 2与U 1应满足的关系.【答案】 (1)2qU 1m (2)(2d +L )m 2qU 1(3) U 2<2U 1 【解析】(1)由动能定理qU 1=12mv 2,得v =2qU 1m (2)离子在a 、b 间的加速度a 1=qU 1md 在a 、b 间运动的时间t 1=v a 1=2m qU 1·d 在MN 间运动的时间:t 2=Lv =L m 2qU 1离子到达探测器的时间:t =t 1+t 2=(2d +L )m 2qU 1; (3)在MN 间侧移:y =12a 2t 22=qU 2L 22mLv 2=U 2L 4U 1由y <L2,得 U 2<2U 1. 【变式2】 如图所示,电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相同的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则下列说法不正确的是( )A .A 和B 在电场中运动的时间之比为1∶2B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1【答案】D【解析】粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2;竖直方向由h =12at 2得a =2h t 2,它们沿竖直方向运动的加速度大小之比为a A ∶a B =4∶1;根据a =qE m 得m =qE a ,故m A m B =112,A 和B 的位移大小不相等,故选项A 、B 、C 正确,D 错误.【变式3】 如图所示,喷墨打印机中的墨滴在进入偏转电场之前会带上一定量的电荷,在电场的作用下带电荷的墨滴发生偏转到达纸上.已知两偏转极板长度L =1.5×10-2 m ,两极板间电场强度E =1.2×106 N/C ,墨滴的质量m =1.0×10-13 kg ,电荷量q =1.0×10-16 C ,墨滴在进入电场前的速度v 0=15 m/s ,方向与两极板平行.不计空气阻力和墨滴重力,假设偏转电场只局限在平行极板内部,忽略边缘电场的影响.(1)判断墨滴带正电荷还是负电荷?(2)求墨滴在两极板之间运动的时间;(3)求墨滴离开电场时在竖直方向上的位移大小y .【答案】(1)负电荷 (2)1.0×10-3 s (3)6.0×10-4 m【解析】(1)负电荷.(2)墨滴在水平方向做匀速直线运动,那么墨滴在两板之间运动的时间t =L v 0.代入数据可得:t =1.0×10-3 s(3)离开电场前墨滴在竖直方向做初速度为零的匀加速直线运动,a =Eq m代入数据可得:a =1.2×103 m/s 2离开偏转电场时在竖直方向的位移y =12at 2 代入数据可得:y =6.0×10-4 m.。
带电粒子在匀强磁场中的运动

〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.
带电粒子在有界磁场中的运动

简单回顾
一、带电粒子在匀强 磁场中的运动规律
1.带电粒子在匀强磁场中 运动( v B),只受洛伦兹
F v
o
力作用,做 匀速圆周运动 .
2.洛伦兹力提供向心力:
v2 m q v B R
半径:
2R T v
周期:
T
mv R qB 2m
qB
二、 r(1 cos ) cot
mv0 x1 b L a (1 cos ) cot eB eBL (其中 arcsin ) ⑤ mv0
④
P
v0
θ θ
0
图1
x
Q
②当 r<L 时,磁场区域及电子运动轨迹如图 2 所示,
( 1 )粒子沿环状的半径方向射入磁场,不能穿越磁场的最大 速度。
(2)所有粒子不能穿越磁场的最大速度。
解析:( 1)要粒子沿环状的半径方向射入磁场,不能穿越磁 场,则粒子的临界轨迹必须要与外圆相切,轨迹如图所示。
2 2 2 r R ( R r ) 由图中知, 1 1 2 1
解得
r1 0.375m
v v
v v v
v
一.带电粒子在平行直线边界磁场中的运动
Q P B P Q
P
Q
v
S
垂直磁场边界射入
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
v
S
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出
带电粒子在电场中的运动知识点

带电粒子在电场中的运动知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(一)带电粒子的加速1.运动状态分析带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加速(或减速)直线运动。
2.用功能观点分析粒子动能的变化量等于电场力做的功。
(1)若粒子的初速度为零,则qU=mv 2/2, V=2qU m (2)若粒子的初速度不为零,则qU=mv 2/2- mv 02/2, V=202qU V m+ (二)带电粒子的偏转(限于匀强电场)1.运动状态分析:带电粒子以速度V 0垂直电场线方向飞入匀强电场时,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动。
2.偏转问题的分析处理方法:类似平抛运动的分析处理,应用运动的合成和分解知识分析处理。
(1)垂直电场方向的分运动为匀速直线运动:t=L/V 0;v x =v 0 ;x=v 0t(2)平行于电场方向是初速为零的匀加速运动:v y =at ,y=12 at 2经时间t 的偏转位移:y=qU 2md (x V 0 )2; 粒子在t 时刻的速度:Vt=V 02+V y 2 ;时间相等是两个分运动联系桥梁;偏转角:tg φ=V y V 0 =qUx mdv 02 (三)先加速后偏转若带电粒子先经加速电场(电压U 加)加速,又进入偏转电场(电压U 偏),射出偏转电场时的侧移22222012244qU L qU L U L y at dmV dqU dU ====偏偏偏加加偏转角:tg φ=V y V 0 =U 偏L 2U 加d带电粒子的侧移量和偏转角都与质量m 、带电量q 无关。
(四)示波管原理1.构造及功能如图8-5所示图8-2(1)电子枪:发射并加速电子.(2)偏转电极YY':使电子束竖直偏转(加信号电压)偏转电极XX':使电子束水平偏转(加扫描电压)(3)荧光屏.2.原理:○1YY'作用:被电子枪加速的电子在YY'电场中做匀变速曲线运动,出电场后做匀速直线运动打到荧光屏上,由几何知识'22L l y Ly +=,可以导出偏移20'()tan ()22L ql L y l l U mV d θ=+=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、如图8-13所示,质量为m,带电量为q的粒子,以初速度v0,从A点竖直向上射入真空中的沿水平方向的匀强电场中,粒子通过电场中B点时,速率v B=2v0,方向与电场的方向一致,则A,B两点的电势差为:在竖直方向做匀减速直线运动:2gh = v02①根据动能定理例2、置于真空中的两块带电的金属板,相距1cm,面积均为10cm2,带电量分别为Q1=2×10-8C,Q2=-2×10-8C,若在两板之间的中点放一个电量q=5×10-9C的点电荷,求金属板对点电荷的作用力是多大?两个平行带电板相距很近,其间形成匀强电场,电场中的点电荷受到电场力的作用。
例3、如图8-15电路中,电键K1,K2,K3,K4均闭合,在平行板电容器C的极板间悬浮着一带电油滴P,(1)若断开K1,则P将__________;(2)若断开K2,则P将________;(3)若断开K3,则P将_________;(4)若断开K4,则P将_______。
电容器充电完毕后,电容器所在支路的电流为零。
电容器两端的电压与它所并联的两点的电压相等。
本题中四个开关都闭合时,有R1,R2两端的电压为零,即R1,R2两端等势。
电容器两端的电压与R3两端电压相等。
(1)若断开K1,虽然R1被断开,但是R2两端电压仍为零,电容器两端电压保持不变,则P将继续悬浮不动(2)若断开K2,由于R3被断开,电路再次达到稳定时,电容器两端电压将升高至路端电压R2上的电压仍为零,使得电容器两端电压升高,则P将向上加速运动。
(3)若断开K3,由于电源被断开,电容器两端电压存在一个回路,电容器将放电至极板两端电压为零,P将加速下降。
(4)K4断开,电容器两端断开,电量不变,电压不变,场强不变,P将继续悬浮不动。
例4、有两个带电量相等的平行板电容器A和B,它们的正对面积之比S A∶S B=3∶1,板长之比∶L A∶L B=2∶1,两板距离之比d A∶d B=4∶1,两个电子以相同的初速度沿与场强垂直的方向分别射入两电容器的匀强电场中,并顺利穿过电场,求两电子穿越电场的偏移距离之比。
例5、在平行板电容器之间有匀强电场,一带电粒子以速度v垂直电场线射入电场,在穿越电场的过程中,粒子的动能由E k增加到2E k,若这个带电粒子以速度2v垂直进入该电场,则粒子穿出电场时的动能为多少?建立直角坐标系,初速度方向为x轴方向,垂直于速度方向为y轴方向。
设粒子的的质量m,带电量为q,初速度v;匀强电场为E,在y方向的位移为y。
速度为2v时通过匀强电场的偏移量为y′,平行板板长为L。
由于带电粒子垂直于匀强电场射入,粒子做类似平抛运动。
两次入射带电粒子的偏移量之比为例6、 A,B两块平行带电金属板,A板带负电,B板带正电,并与大地相连接,P为两板间一点。
若将一块玻璃板插入A,B两板间,则P点电势将怎样变化。
按照题意作出示意图,画出电场线,图8-17所示。
我们知道电场线与等势面间的关系:“电势沿着电场线的方向降落”所以U pB=U p-U B<0,B板接地U B=0U Bp=U B-U p=0-U p U p=-E d常数ε增大,电场强度减小,导致U p上升。
例7、 1000eV的电子流在两极板中央斜向上方进入匀强电场,电场方向竖直向上,它的初速度与水平方向夹角为30°,如图8-18。
为了使电子不打到上面的金属板上,应该在两金属板上加多大电压U?电子流在匀强电场中做类似斜抛运动,欲使电子刚好不打金属板上,则必须使电子在d/2内竖直方向分速度减小到零,设此时加在两板间的电压为U,在电子流由C到A途中,电场力做功W e=EU AC,由动能定理至少应加500V电压,电子才打不到上面金属板上。
例8、如图8-19,一个电子以速度v0=6.0×106m/s和仰角α=45°从带电平行板电容器的下板边缘向上板飞行。
两板间场强E= 2.0×104V/m,方向自下向上。
若板间距离d=2.0×10-2m,板长L=10cm,问此电子能否从下板射至上板?它将击中极板的什么地方?应先计算y方向的实际最大位移,再与d进行比较判断。
由于y m<d,所以电子不能射至上板。
例9、一个质量为m,带有电荷-q的小物块,可在水平轨道Ox上运动,O端有一与轨道垂直的固定墙,轨道处于匀强电场中,场强大小为E,方向沿Ox轴正方向,如图8-20所示,小物体以初速v0从x0沿Ox轨道运动,运动时受到大小不变的摩擦力f作用,且f<qE。
设小物体与墙碰撞时不损失机械能且电量保持不变。
求它在停止运动前所通过的总路程s。
设小物块从开始运动到停止在O处的往复运动过程中位移为x0,往返路程为s。
根据动能定理有例10、如图8-21所示,长为L的绝缘细线,一端悬于O点,另一端连接一质量为m的带负电小球,置于水平向右的匀强电场中,在O点向右水平拉直后从静止释放,细线碰到钉子后要使小球刚好饶钉子O′在竖直平面内作圆周运动,求OO′长度。
本题是一个摆在重力场和电场的叠加场中的运动问题,由于重力场和电场力做功都与路径无关,因此可以把两个场叠加起来看成一个等效力场来处理,如图8-23所示,∴θ=60°。
开始时,摆球在合力F的作用下沿力的方向作匀加速直线运动,从A点运动到B点,由图8-23可知,△AOB为等边三角形,则摆球从A到B,在等效力场中,由能量守恒定律得:在B点处,由于在极短的时间内细线被拉紧,摆球受到细线拉力的冲量作用,法向分量v2变为零,切向分量接着摆球以v1为初速度沿圆弧BC做变速圆周运动,碰到钉子O′后,在竖直平面内做圆周运动,在等效力场中,过点O′做合力F的平行线与圆的交点为Q,即为摆球绕O′点做圆周运动的“最高点”,在Q点应满足过O 点做OP⊥AB 取OP 为等势面,在等效力场中,根据能量守恒定律得:例11、 质量为m 的通电导体棒ab 置于倾角为θ的导轨上,如图10-10所示。
已知导体与导轨间的动摩擦因数为μ,在图10-11所加各种磁场中,导体均静止,则导体与导轨间摩擦力为零的可能情况是:要使静摩擦力为零,如果N=0,必有f=0。
图10-11B 选项中安培力的方向竖直向上与重力的方向相反可能使N=0,B 是正确的;如果N ≠0,则导体除受静摩擦力f 以外的其他力的合力只要为零,那么f=0。
在图10-11A 选项中,导体所受到的重力G 、支持力N 及安培力F 安三力合力可能为零,则导体所受静摩擦力可能为零。
图10-11的C .D 选项中,从导体所受到的重力G 、支持力N 及安培力F 安三力的方向分析,合力不可能为零,所以导体所受静摩擦力不可能为零。
故正确的选项应为A .B 。
例12、 如图10-12所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg ,电量q=10-13C ,速度v 0=105m/s ,磁场区域的半径R=3×10-1m ,不计重力,求磁场的磁感应强度。
画进、出磁场速度的垂线得交点O ′,O ′点即为粒子作圆周运动的圆心,据此作出运动轨迹AB ,如图10-13所示。
此圆半径记为r 。
带电粒子在磁场中做匀速圆周运动例13、 如图10-14所示,带电粒子在真空环境中的匀强磁场里按图示径迹运动。
径迹为互相衔接的两段半径不等的半圆弧,中间是一块薄金属片,粒子穿过时有动能损失。
试判断粒子在上、下两段半圆径迹中哪段所需时间较长?(粒子重力不计)首先根据洛仑兹力方向,(指向圆心),磁场方向以及动能损耗情况,判定粒子带正电,沿abcde 方向运动。
再求通过上、下两段圆弧所需时间:带电粒子在磁场中做匀速圆周运动子速度v,回旋半径R无关。
因此上、下两半圆弧粒子通过所需时间相等。
动能的损耗导致粒子的速度的减小,结果使得回旋半径按比例减小,周期并不改变。
例14、一个负离子的质量为m,电量大小为q,以速度v0垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图10-15所示。
磁感应强度B方向与离子的初速度方向垂直,并垂直于纸面向里。
如果离子进入磁场后经过时间t到这位置P,证明:直线OP与离子入射方向之间的夹角θ跟t如图10-16,当离子到达位置P时圆心角为【小结】如果想用平均力的牛顿第二定律求解,则要先求平均加速度例15、如图10-17所示。
在x轴上有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y 铀负方向的匀强电场,场强为E。
一质最为m,电荷量为q的粒子从坐标原点。
沿着y轴正方向射出。
射出之后,第3次到达X轴时,它与点O的距离为L,求此粒子射出时的速度v和运动的总路程s,(重力不计)。
粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速直线运动。
画出粒子运动的过程草图10-19。
根据这张图可知粒子在磁场中运动半个周期后第一次通过x轴进入电场,做匀减速运动至速度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入磁场。
这就是第二次进入磁场,接着粒子在磁场中做圆周运动,半个周期后第三次通过x轴。
Bqv=mv2/R在电场中:粒子在电场中每一次的位移是l第3次到达x轴时,粒子运动的总路程为一个圆周和两个位移的长度之和。
例16、摆长为L的单摆在匀强磁场中摆动,摆动平面与磁场方向垂直,如图10-20所示。
摆动中摆线始终绷紧,若摆球带正电,电量为q,质量为m,磁感应强度为B,当球从最高处摆到最低处时,摆线上的拉力T多大?球从左右两方经过最低点,因速度方向不同,引起f洛不同,受力分析如图10-21所示。
由于摆动时f洛和F拉都不做功,机械能守恒,小球无论向左、向右摆动过C点时的速度大小相同,方向相反。
摆球从最高点到达最低点C的过程满足机械能守恒:当摆球在C的速度向右,根据左手定则,f洛竖直向上,根据牛顿第二定律则有当摆球在C的速度向左,f洛竖直向下,根据牛顿第二定律则有所以摆到最低处时,摆线上的拉力例17、设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图10-22所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是:[]A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点时,将沿原曲线返回A点(1)平行板间电场方向向下,离子由A点静止释放后在电场力的作用下是向下运动,可见电场力一定向下,所以离子必带正电荷,选A。
(2)离子具有速度后,它就在向下的电场力F及总与速度心垂直并不断改变方向的洛仑兹力f作用下沿ACB曲线运动,因洛仑兹力不做功,电场力做功等于动能的变化,而离子到达B点时的速度为零,所以从A到B电场力所做正功与负功加起来为零。