剪切强度-指材料承受剪切力的能力,代号σc,指外力与材料轴线垂直

合集下载

钢结构专业术语和符号

钢结构专业术语和符号

钢结构专业术语和符号,全方面覆盖一、术语1、强度:构件截面材料或连接抵抗破坏的能力。

强度计算是防止结构构件或连接因材料强度被超过而破坏的计算。

2、承载能力:结构或构件不会因强度、稳定或疲劳等因素破坏所能承受的最大内力;或塑性分析形成破坏机构时的最大内力;或达到不适应于继续承载的变形时的内力。

3、脆断:一般指钢结构在拉应力状态下没有出现警示性的塑性变形而突然发生的脆性断裂。

4、强度标准值:国家标准规定的钢材屈服点(屈服强度)或抗拉强度。

5、强度设计值:钢材或连接的强度标准值除以相应抗力分项系数后的数值。

6、一阶弹性分析:不考虑结构二阶变形对内力产生的影响,根据未变形的结构建立平衡条件,按弹性阶段分析结构内力及位移。

7、二阶弹性分析:考虑结构二阶变形对内力产生的影响,根据位移后的结构建立平衡条件,按弹性阶段分析结构内力及位移。

8、屈曲:杆件或板件在轴心压力、弯矩、剪力单独或共同作用下突然发生与原受力状态不符的较大变形而失去稳定。

9、腹板屈曲后强度:腹板屈曲后尚能继续保持承受荷载的能力。

10、通用高厚比:参数,其值等于钢材受弯、受剪或受压屈服强度除以相应的腹板抗弯、抗剪或局部承压弹性屈曲应力之商的平方根。

11、整体稳定:在外荷载作用下,对整个结构或构件能否发生屈曲或失稳的评估。

12、有效宽度:在进行截面强度和稳定性计算时宽度。

假定板件有效的那13、有效宽度系数:板件有效宽度与板件实际宽度的比值。

14、计算长度:构件在其有效约束点间的几何长度乘以考虑杆端变形情况和所受荷载情况的系数而得的等效长度,用以计算构件的长细比。

计算焊缝连接强度时采用的焊缝长度。

15、长细比:构件计算长度与构件截面回转半径的比值。

16、换算长细比:在轴心受压构件的整体稳定计算中,按临界力相等的原则,将格构式构件换算为实腹构件进行计算时所对应的长细比或将弯扭与扭转失稳换算为弯曲失稳时采用的长细比。

17、支撑力:为减小受压构件(或构件的受压翼缘)的自由长度所设置的侧向支承处,在被支撑构件(或构件受压翼缘)的屈曲方向,所需施加于该构件(或构件受压冀缘)截面剪心的侧向力。

材料力学之四大基本变形

材料力学之四大基本变形
内径d=15mm,承受轴向载荷F=20kN作用, 材料旳屈服应力σs=235MPa,安全因数ns= 1.5。试校核杆旳强度。
解:杆件横截面上旳正应力为
N
A
4F
(D2 d2)
4(20103 N ) [(0.020m)2 (0.015m)2
]
1.45108 Pa 145MPa
材料旳许用压力为
IZ
(D4 d 4)
64
D4
64
(1 4 )
WZ
D3
32
(1 4 )
(1)求支座反力
M A 0, M 0 RBl 0 M B 0, RAl M 0 0
(2)列剪力方程和弯矩方程
RB
M0 l
RA
M0 l
AC段 :
Q1
RA
M0 l
M1
RA x
M0 l
x
(0 x a)
CB段 :
许用剪应力
其中,F 为剪切力——剪切面上内力旳合力
A 为剪切面面积
可见,该实用计算措施以为剪切 剪应力在剪切面上是均匀分布旳。
2、挤压强度旳工程计算
由挤压力引起旳应力称为挤压应力 bs
与剪切应力旳分布一样,挤压应力旳分布
也非常复杂,工程上往往采用实用计算旳
方法,一般假设挤压应力平均分布在挤压
面上
首先计算各杆旳内力:
需要分析B点旳受力
X 0
F1 cos 30 F2 0
Y 0
F1 cos 60 Q 0
F1 2Q 20KN
30 B
A
y
F1
F2
x
Q
1 F2 2 3F1 17.32KN
F1 2Q 20KN
F2

材料力学名词解释

材料力学名词解释

材料力学名词解释塑性材料:拉伸断裂前,即发生强性变形也发生不可逆塑性变形。

脆性材料:拉伸断裂前,不产生塑性变形,只发生弹性变形。

滞弹性:滞弹性就是在外加载荷作用下,应变落后于应力的现象。

内耗:是指材料在弹性范围内由于其内部各种微观因素的原因致使机械性能逐渐转化为材料内能的现象。

循环韧性:表示材料吸收不可逆变形功的能力,故又称消振性。

包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力降低的现象。

颈缩:是韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,它是应变硬化与截面减小共同作用的结果。

6应力集中系数和缺口敏感度?答:应力集中系数Kt定义为缺口静截面上的最大应力σmax与平均应力σ之比。

Kt表示缺口引起的应力集中程度,与材料性质无关,只决定于缺口几何形状。

缺口敏感度:金属材料的缺口敏感性指标用缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比值来表示,称为缺口敏感度,记为NSR。

金属硬度:指金属表面上的不大体积内抵抗变形或破裂的能力。

冲击载荷:指加载速度很快而作用时间很短的突发性载荷。

加载速度快,作用时间短的载荷。

冷脆:指材料因温度的降低导致冲击韧性急剧下降并引起脆性破坏的现象。

冲击韧性:是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力。

低应力脆断:在应力水平低于材料屈服极限的情况下所发生的突然断裂现象疲劳:金属机件或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象疲劳曲线:是疲劳应力与疲劳寿命的关系曲线,疲劳极限:是经无限次应力循环也不发生疲劳断裂,故将对应的应力称为疲劳极限。

过载损伤:对于一定的金属材料,引起过载损伤需一定的加载应力与一定的应力循环周次相配合,即在一次过载应力下,只有过载运转超过一周次后才会引起过载损伤。

过载持久值:材料在高于疲劳强度的一定应力下工作,发生疲劳断裂的应力循环周次称为材料的过载持久值,也称为有限疲劳寿命。

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!材料力学性能又称机械性能,任何材料受力后都要产生变形,变形到一定程度即发生断裂。

这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。

检测可靠性实验室可材料力学性能试验服务。

作为第三方检测中心,机构拥有CMA、CNAS检测资质,检测设备齐全、数据科学可靠。

材料力学性能试验:拉伸试验拉伸试验是其中一种最常用的试验方法,用于测定试样在受到轴向拉伸载荷后的行为。

这些试验类型可在室温或受控(加热或制冷)条件下进行,以确定材料的拉伸性能。

适用材料:金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

常见的拉伸试验结果:最大载荷、最大载荷下的挠度、最大载荷做功、刚度、断裂载荷、断裂时的形变、断裂做功、弦斜率、应力、应变、杨氏模量试验仪器:万能试验机,高速试验机等测试标准GB/T 6397-1986《金属拉伸试验试样》ASTM D3039-76用于测定高模量纤维增强聚合物复合材料面内拉伸性能ASTM D638用于测定试件的拉伸强度和拉伸模量材料力学性能试验:压缩试验压缩试验是一种常用于测定材料的压缩负载或抗压性的试验方法,同时也用于测定材料在受到一个特定的压缩负载并保持一段设定时间后的恢复能力。

压缩试验用于测定材料在加载下的行为。

此外也可测定一段时间内材料在(恒定或递增)载荷下可承受的最大应力。

适用材料金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

试验仪器:万能试验机,高速试验机、压缩试验机等注意事项:(1)压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等;(2)对于塑性材料,无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。

测试标准GB/T7314-2023《金属压缩实验试样》ASTM D3410-75(剪切荷载法测定带无支撑标准截面的聚合体母体复合材料压缩特性的试验方法)GB/T7314-2023《金属材料室温压缩试验方法》材料力学性能试验:弯曲试验材料机械性能试验的基本方法之一,测定材料承受弯曲载荷时的力学特性的试验。

材料机械性能

材料机械性能

材料机械性能材料的机械性能是指材料在外力作用下的变形、破坏和承载能力等机械行为。

主要包括强度、韧性、硬度、延展性、刚性、塑性等指标。

材料的强度是材料抵抗外力作用下破坏的能力。

通常根据不同的应力模式,可以分为拉伸强度、压缩强度、剪切强度等。

拉伸强度是指材料在拉伸状态下发生破坏时所能承受的最大应力,反映了材料的抗拉能力。

压缩强度是指材料在受到压缩应力作用下破坏时所能承受的最大应力,反映了材料的抗压能力。

剪切强度是指材料在剪切状态下发生破坏时所能承受的最大应力,反映了材料的抗剪切能力。

材料的韧性是指材料在受力下能够延展变形而不断线的能力。

通常用断裂延伸率来表示材料的韧性。

高韧性的材料能够在外力作用下发生较大的变形而不断线,具有较好的抗冲击性和抗振动性。

材料的硬度是指材料抵抗表面划痕或压痕形成的能力。

硬度高表示材料的抗磨损能力强。

常用的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

材料的延展性是指材料在拉伸应力下的变形能力。

常用指标有延伸率和断面收缩率。

高延展性的材料能够在外力作用下发生较大的变形而不断裂。

材料的刚性是指材料在受力下的变形能力。

刚性高表示材料的抗变形能力强。

刚性常用弹性模量来表示,弹性模量越大,刚性越高。

材料的塑性是指材料在受力下的变形能力和保持变形的能力。

塑性好的材料能够在外力作用下发生较大的变形并能保持变形。

总之,材料的机械性能是评价材料质量的关键指标之一。

不同的应用领域和要求对机械性能有不同的要求,因此在选择和设计材料时需要综合考虑不同机械性能指标的要求,以满足实际使用的需要。

抗剪强度名词解释

抗剪强度名词解释

抗剪强度名词解释抗剪强度抗剪强度是指在剪切作用下所表现出的抵抗能力。

当钢筋混凝土构件的承载能力达到一定极限值时,应发生断裂或变形,但未超过钢筋混凝土的弹性极限,即认为该混凝土满足抗剪强度设计要求。

抗剪强度的设计值为拉伸时破坏的抗剪强度设计值乘以与其相应的强度设计标准值。

我国混凝土结构设计规范(gb50010-2002)规定:钢筋混凝土构件的抗剪强度设计值不小于抗压强度标准值的1.25倍,不大于4.0MPa,也可采用实际单轴抗压强度标准值乘以折减系数。

一般情况下,抗剪强度的高低与结构物的重要性有关,它与承载力无关。

为此我国国家建筑标准设计图集《混凝土结构设计规范》(03g210)提供了按双轴受弯构件抗剪强度验算时采用的统一公式:各种材料的抗剪强度标准值:混凝土C30: 1.8MPa;普通钢筋C40: 4.0MPa;预应力钢筋C200: 6.0MPa。

抗剪强度试验就是测定混凝土材料和构件受到外力而产生破坏的最大能量值,它反映结构物抵抗能力。

抗剪强度试验分为两类: 1、直接法:将结构构件(主要是梁、板)进行简化处理,使之成为上部受拉为拉应力,下部受压为压应力,然后对其施加外力进行直接测定。

2、间接法:先测得某些构件的抗拉强度,然后再测其他构件的抗压强度,利用它们的抗压强度之比来确定结构的抗剪强度。

因为梁、板等均属二维受力体系,如果将上部受拉区简化为上边缘剪切,而下部受压区则取为下边缘压应力。

1、有一定粘聚性的泥砂浆或胶结料,能胶结某些松散颗粒料及整体料; 2、已浇筑的混凝土或砖块; 3、已制成模壳或其他模拟件;4、可移动的装配式部件;5、材料试验机,包括一组在其上部能够施加均布荷载的加荷平台,具有一个或多个螺旋输送器,用于将水泥等试样沿螺旋输送器运送至加荷平台上。

第3条根据需要,加荷平台上可设置若干个上、下两层导轨,以适应加荷平台各方向的尺寸。

所述试验机还包括水平运输机构,其沿纵向位于加荷平台和试验机之间,所述水平运输机构可采用卷扬机或伺服电机带动。

土壤学 土壤图

土壤学 土壤图

土壤图土壤图是反映不同土壤的分布与特性的地图。

分为普通土壤图和专门土壤图两大类。

前者包括土壤类型图、土壤区划图等,综合性强,内容全面,用途广泛,是土壤图中最基本的图种;后者着重反映土壤的某种特性或某一特定服务对象所需要的内容,如森林土壤图,工程土壤图、土壤养分图、土壤酸碱度图、土壤渗透图、土壤盐渍化程度图和土壤侵蚀图等。

土壤图一般指土壤类型图,其基本内容是表示土壤覆盖层的发生学类别——土类、亚类、土属(组)、土种及变种的地理分布,及土壤的机械成分和成土母质。

土壤图应反映土壤发生学类型的水平和垂直地带性规律,同时也要反映耕作土壤的地理分布规律。

大比例尺土壤图(>1∶25万)应表示个别农业用地的质量、土种和变种,用于土地规划及估量土壤条件。

中比例尺土壤图(1∶5万至1∶20万)应反映到土属一级,用于流域规划及估计地区的土地资源。

小比例尺土壤图(<1∶100万)着重反映土壤的地理规律,表示土类和亚类。

土壤区划图是根据土壤形成条件、分布规律和农业生产特点相结合进行的分区划片,是以土壤发生学为基础而直接服务于农业生产的。

土壤图在规划与指导农业生产、评价土地资源、正确选择农业用地、规划农业企业布局等方面都有重要的应用价值。

“土壤学”分类下的词条:(共1727个)真菌简介真菌(Fungus)一词的拉丁文Fungus 原意是蘑菇。

真菌是生物界中很大的一个类群,世界上已被描述的真菌约有1万属12万余种(属与种都是单位,且属大于种),真菌学家戴芳澜教授估计中国大约有4万种(种为单位)。

按照林奈(Linneaus)的两界...9千字2012-11-04 残剑指寒江流沙地理专业名词——流沙流沙是大自然所设计出的最巧妙机关,它可能藏在河滨海岸甚至邻家后院,静静地等待人们靠近,让人进退两难。

在公元1692年时,牙买加的罗伊尔港口就曾发生过因地震导致土壤液化而形成流沙,最后造成三分之一的城市消失、两千...2千字2012-09-24 c2010n崩塌概述◎崩塌[汉语拼音]bēngtā[英文]collapse; crumble; cave in; fall down; avalanche [解释]崩落而倒塌【近义词】倒塌[其他详细拓展] 崩塌是指较陡斜坡上的岩土体在重力作用下突然脱离母体僵崩落、滚动、堆积在坡脚或沟谷的地质...5千字2012-06-09 yangke19941112砾基本信息砾拼音:lì繁体字:砾部首:石,部外笔画:5,总笔画:10 五笔86:DQIY 五笔98:DTNI 仓颉:MRHVD 笔顺编号:1325135234 四角号码:12694 UniCode: CJK 统一汉字U+783E 注解释义基本字义● 砾(砾)lìㄌㄧˋ◎小石,碎石:~石...1千字2012-08-15 yangke19941112水力个人履历水力:出生于江苏一个贫穷的农民家庭。

剪切强度的定义__解释说明以及概述

剪切强度的定义__解释说明以及概述

剪切强度的定义解释说明以及概述1. 引言1.1 概述剪切强度是指材料在受到剪切力作用下抵抗破坏的能力,是评估材料抗剪性能的重要指标之一。

剪切强度的定义和理解在工程领域和材料科学中具有广泛的应用价值。

通过研究剪切强度,可以更好地理解材料的本质特性、分析材料的结构与性能关系,并为工程设计和材料选择提供有力支持。

1.2 文章结构本文将首先对剪切强度进行详细的定义和解释,包括其基本概念、计算方法以及单位和量纲的描述。

接着,我们将进一步阐述剪切强度与材料内部结构之间的关系,以及外力对剪切强度产生的影响。

同时,我们还将从工程实践和材料科学两个角度来说明剪切强度的重要性和应用领域,包括其在工程设计中需要考虑的因素、在材料科学中的研究价值以及实际工程案例中由于剪切强度失效导致事故分析与教训总结。

最后,本文将对剪切强度的定义和理解进行总结归纳,并展望该领域的未来发展趋势和前景,并探讨其在实际工程和材料科学中的应用意义。

1.3 目的本文的目的是全面介绍剪切强度的定义和解释,旨在加深读者对剪切强度概念及其与材料性能相关性的理解。

同时,通过阐述剪切强度在不同领域中的重要性和应用领域,提高读者对该指标实际价值的认识。

最后,本文还将探讨剪切强度研究的未来发展趋势,为相关领域的研究者提供参考,并为工程设计和材料选择等方面提供启示。

2. 定义剪切强度:2.1 剪切强度的基本概念:剪切强度是指材料在承受剪切力时所能够抵抗变形和断裂的能力。

它是材料力学中一个重要的参数,用来描述材料在剪切加载下的稳定性和耐久性。

2.2 剪切强度的计算方法:剪切强度可以通过实验测量或理论计算得到。

实验测量常使用万能试验机等设备,通过施加剪切应力并测量其引起的应变来确定材料的剪切强度。

理论计算一般基于材料力学的原理,根据材料特性和几何形状等因素,运用数学模型推导得出。

2.3 剪切强度的单位和量纲:剪切强度的单位通常使用帕斯卡(Pa)或兆帕(MPa),国际单位制中表示为N/m^2或MN/m^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

剪切强度-指材料承受剪切力的能力,代号σc,指外力与材料轴线垂直
剪切强度-指材料承受剪切力的能力,代号σc,指外力与材料轴线垂直,并对材料呈剪切作用时的强度极限;以平方毫米为单位,在这个面积里所受到的单位压力称为剪切强度。

学术术语来源--
饰瓷温度烧结对氧化锆陶瓷与树脂黏结剂剪切强度的影响
文章亮点:
1 氧化锆陶瓷表面微裂纹的增加能够增加黏结表面积,提高氧化锆陶瓷与树脂黏结剂间的黏结强度。

通过打磨、喷砂、抛光和热处理可使牙科氧化锆陶瓷材料表明产生微裂纹,多次烧结是热处理较为常见的方式,但多次反复烧结是否会对氧化锆陶瓷黏结剪切强度产生影响尚缺少相关研究。

因此实验采用剪切强度测试方法评价多次饰瓷温度烧结对氧化锆陶瓷与树脂黏结剂间黏结强度的影响,探讨适合口腔氧化锆陶瓷黏结的处理方法。

2 实验在不降低氧化锆陶瓷机械性能的前提下,通过热处理方式增加氧化锆陶瓷的烧结次数,提高黏结强度。

但实验受限于口腔生理环境与牙体组织结构的复杂性,未能完全模拟口腔环境条件完成黏结性能测试。

关键词:
生物材料;组织工程口腔材料;饰瓷温度;氧化锆陶瓷;树脂黏结剂;黏结剪切强度;烧结;裂纹
主题词:
生物相容性材料;牙瓷料;树脂粘固剂;抗剪切强度
摘要
背景:研究已证实硅烷偶联剂和喷砂等表面处理方式,以及增加氧化锆陶瓷表面的微裂纹可提高氧化锆陶瓷与树脂黏结剂间的黏结强度,但有关多次反复烧结是否会对氧化锆陶瓷黏结剪切强度产生影响尚缺少相关研究。

目的:测试饰瓷温度烧结对牙科氧化锆陶瓷与树脂黏结剂黏结剪切强度的影响。

方法:从40片氧化锆瓷片随机选择20片,分成 5组,按照常规烧结程序分别烧结0(对照组),2,4,6,8次,热处理起始温度为500 ℃,最终温度1 000 ℃,升温速率55 ℃/min,抽真空时间7 min。

每次烧结最终温度恒定不变。

将各组分别用树脂黏结剂与剩余未烧结的陶瓷片对位黏结,用万能材料试验机测黏结界面的剪切强度;使用扫描电镜观察剪切后的试件断面形貌。

结果与结论:烧结4,6,8次组试件剪切强度高于对照组(P < 0.05);烧结2次组试件剪切强度稍高于对照组,但差异无显著性意义(P > 0.05);烧结8次组试件剪切强度高于烧结4,6次组(P < 0.05)。

未烧结氧化锆陶瓷表面未见裂纹;经过2次烧结后表面可见细微裂纹;经过4次烧结后表面可见裂纹增多;经过6次烧结后表面已经开始有明显变化,裂纹增多并伴有细微空隙产生,少量黏结剂残留;经过8次烧结后表面可见裂纹与空隙明显增多并有黏结剂残留。

表明经过4,6,8次烧结后的氧化锆陶瓷对树脂黏结剂有较好的黏结剪切强度,烧结8次后的黏结剪切强度最强。

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程。

相关文档
最新文档