2012北京高考一模试题分类汇总---概率

合集下载

北京市各区高考数学一模试题分类解析(14) 统计、概率、随机变量及其分布 理

北京市各区高考数学一模试题分类解析(14) 统计、概率、随机变量及其分布 理

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲十四、统计、概率、随机变量及其分布第一部分 统计、概率1.9.(2012年西城一模理9)某年级120名学生在一次百米测试中, 成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.答案:54.11.(2012年东城一模理11)在如图所示的茎叶图中,乙组数据的 中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个 最小数后,两组数据的平均数中较大的一组是 组. 答案:84; 乙。

11.(2012年门头沟一模理11)某单位招聘员工,从400名报名者中选出200名参加笔试, 再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 答案:80。

13.(2012年石景山一模理13)如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 . 答案:34π。

10.(2012年密云一模理10)样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算x的值为,样本数据落在[)6,14内的频数为.答案:0.09,680。

第二部分随机变量及其分布17.(2012年海淀一模理17)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =.(Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿. (Ⅲ)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 411(4)4256P X ⎛⎫===⎪⎝⎭.………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为1.16.(2012年西城一模理16)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率;Ⅲ求比赛局数的分布列.解:(Ⅰ)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. 记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. (Ⅱ)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, 乙以4比3获胜的概率为3363261115C ()()22232P -==,所以 125()16P B P P =+=. (Ⅲ)设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, 334341111(5)2C ()()2224P X -===, 335251115(6)2C ()()22216P X -==⋅=,336361115(7)2C ()()22216P X -==⋅=.16.(2012年东城一模理16)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-.(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. 由此得X 的分布列为:(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =.所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.17. (2012年丰台一模理17)某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.(Ⅰ)请根据图中所给数据,求出a 的值;(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X 表示所选学生成绩在[60,70)内的人数,求X 的分布列和数学期望.解:(Ⅰ)根据频率分布直方图中的数据,可得1(0.0050.00750.02250.035)100.10.070.0310a -+++⨯==-=,所以 0.03a =. ……2分(Ⅱ)学生成绩在[50,60)内的共有40×0.05=2人,在[60,70)内的共有40×0.225=9人,成绩在[50,70)内的学生共有11人. …4分设“从成绩在[50,70)的学生中随机选3名,且他们的成绩都在[60,70)内”为事件A ,则3931128()55C P A C ==. ……7分所以选取的3名学生成绩都在[60,70)内的概率为2855. (Ⅲ)依题意,X 的可能取值是1,2,3. …8分21293113(1)55C C P X C ===; 122931124(2)55C C P X C ===; 28(3)()55P X P A ===. …10分所以X32412355555511E ξ=⨯+⨯+⨯=. …13分16.(2012年朝阳一模理16)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(Ⅰ)下表是这次考试成绩的频数分布表,求正整(II )现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x=30, 即其中成绩为优秀的学生人数为30名. …7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. 13分16.(2012年东城11校联考理16)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X的分布 列及数学期望EX .解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+====== 则随机变量X 的分布列:012.156********X EX =⨯+⨯+⨯=所以的数学期望 ……13分16.(2012年石景山一模理16)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.解:(Ⅰ)ξ的可能取值为:0,1,2,3. …1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξ ξ的分布列如下表:……4分 127139229412780=⨯+⨯+⨯+⨯=ξE . 5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . ……8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. ……10分 =+=)()()(21B P B P A P 61819483278=⨯+⨯. 所以乙恰好比甲多投中2次的概率为61. …13分16.(2012年房山一模16)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P 答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ……4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 …6分 ()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()8132323113114=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()811323140444=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. 11分 随机变量ξ的分布列为:…12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE …13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …5分 则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……7分随机变量ξ的分布列为:所以334=⨯==np E ξ ……13分17.(2012年密云一模理17)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和期望. 解:设事件(1,2,3,4)i A i =表示“该选手能正确回答第i 轮问题”,由已知12345431(),(),(),()6543P A P A P A P A ====(Ⅰ)设事件B 表示“该选手进入第三轮才被淘汰”,则331212()()()()()P B P A A A P A P A P A ==543116546⎛⎫=⨯⨯-= ⎪⎝⎭.…3分(Ⅱ)设事件C 表示“该选手至多进入第三轮考核”,则123112()()P C P A A A A A A =++1231121515431()()()(1)6656542P A P A A P A A A =++=+⨯+⨯⨯-=;…7分(Ⅲ)X 的可能取值为1,2,3,411(1)()6P X P A ===,21541(2)()(1)656P X P A A ===⨯-=,3125431(3)()(1)6546P X P A A A ===⨯⨯-=,1235431(4)()6542P X P A A A ===⨯⨯=,()123436662E X =⨯+⨯+⨯+⨯=. …13分17.(2012年门头沟一模理17)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数.(Ⅰ)求1号球恰好落入1号盒子的概率;(Ⅱ)求ξ的分布列和数学期望ξE .解:(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A == 所以1号球恰好落入1号盒子的概率为14……5分 (Ⅱ)ξ的所有可能取值为0,1,2,4 ……6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯=== 22441(2)4C P A ξ=== 4411(4)24P A ξ===(每个1分)……10分 所以ξ的分布列为……11分 数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= ……13分。

2012年北京高考模拟系列试卷(一)文科综合能力测试

2012年北京高考模拟系列试卷(一)文科综合能力测试

P Q M 纬线 北京时间 24 12 02012年北京高考模拟系列试卷(一)文科综合能力测试【新课标版】题 号 第I 卷 第II 卷必做题 选做题得 分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共300分;答题时间150分钟。

第Ⅰ卷(选择题,共140分)一、选择题(共35小题,每题4分,共140分)下图中的实线和虚线分别示意某日晨线、昏线与M 纬线相交点的时间变化情况。

P 、Q 为M纬线上的两点,其经度差为90°。

读图,完成1~2题。

1.该日Q 地日出的当地时间为A .3时B .6时C .9时2.P 地可能位于A .北美洲B .南美洲C .欧洲读某大洋局部环流示意图,完成3~4题。

3.如果该海域完全位于东半球,那么下列洋流中属于图示大洋环流的是 ( )A .墨西哥湾暖流B .加利福尼亚寒流C .东澳大利亚暖流D .西澳大利亚寒流4.与图中②海岸相比,④海岸 ( )A .气温较高,空气湿度较小B .气温较高,空气湿度较大C .气温较低,空气湿度较大D .气温较低,空气湿度较小下图表示了某海域四次地震的发生地、震级和震源深度。

读图完成5—6题。

5.该海域地震频发的原因是A .板块碰撞B .板块张裂C .岩浆活动D .变质作用6.海啸是一种巨大的海浪。

一般当海底浅源大地震(震源深度小于50km ,震级大于里氏6.5级)造成大洋地壳局部隆起或陷落,并且带动震源上方的深层(水深不小于1000m )海水做大规模扰动时,就可能发生灾害性海啸。

若图中的四次地震都造成了地壳陷落,则四地中最可能发生灾害性海啸的是A.①地B.②地 C.③地D.④地下图中的甲、乙、丙、丁所示地区都是灌溉农业区。

完成7~9题。

7.图中所示地区为世界著名产棉区的是A.甲与丙B.甲与乙C.丙与丁D.乙与丁8.图中所示地区不属于世界古代文明发祥地的是A.甲B.乙C.丙D.丁9.图中所示地区共同面临的生态问题是A.土地荒漠化B.水土流失C.气候变暖D.酸雨危害读“香港土地利用类型示意图”,完成10~11题。

2012年北京高考模拟系列试卷

2012年北京高考模拟系列试卷

2012年北京高考模拟系列试卷(一)数学试题(文)第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的. 1.若集合211{|log (1)1},{|()1}42xM x x N x =-<=<<,则M N = ( )A .{|12}x x <<B .{|13}x x <<C .{|03}x x <<D .{|02}x x <<2.已知向量()525,2,1=-=⋅=b a a等于( )A .5B .52C .25D .53.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++ ,则k = ( ) A .22 B .23 C .24 D .25 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3B .38000cm 3C .32000cmD .34000cm5.命题“存在R x ∈,使a a a x x 42-+<0,为假命题”是命题“016≤≤-a ”的 ( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件6.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,105,45=∠=∠CAB ACB 后,就可以计算出A 、B 两点的距离为正视图侧视图俯视图( )A .m 250B .m 350C .m 225D .m 2225 7.设实数x 和y 满足约束条件1024x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y =+的最小值为( )A .26B .24C .16D .148.已知直线22x y +=与x 轴,y 轴分别交于,A B 两点,若动点(,)P a b 在线段AB 上,则ab 的最大值为( )A .12B .2C .3D .31 9.某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图).1s ,2s 分别表示甲、乙两班抽取的5名学生学分的标准差,则1s 2s .(填“>”、“<”或“=”). A .> B .<C .=D .不能确定10、函数x xy sin 3+=的图象大致是( )11.已知函数2221,0()21,0x x x f x x x x ⎧+-≥=⎨--<⎩,则对任意12,x x R ∈,若120x x <<,下列不等式成立的是( ) A .12()()0f x f x +< B . 12()()0f x f x +>C .12()()0f x f x ->D .12()()0f x f x -<第9题图12.设双曲线1422=-y x 的两条渐近线与直线2=x 围成的三角形区域(包括边界)为D ,P ()y x ,为D 内的一个动点,则目标函数y x z -=21的最小值为 ( ) A .2-B .223-C .0D .225-第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。

2012北京各区一模数学理试题分类解析-统计、概率、随机变量.

2012北京各区一模数学理试题分类解析-统计、概率、随机变量.

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲2012北京各区一模数学理试题分类解析(14)--统计、概率、随机变量及其分布 第一部分 统计、概率 1.9.(2012年西城一模理9)某年级120名学生在一次百米测试中, 成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.答案:54.11.(2012年东城一模理11)在如图所示的茎叶图中,乙组数据的 中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个 最小数后,两组数据的平均数中较大的一组是 组. 答案:84; 乙。

11.(2012年门头沟一模理11)某单位招聘员工,从400名报名者中选出200名参加笔试, 再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 答案:80。

13.(2012年石景山一模理13)如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 .答案:34π。

10.(2012年密云一模理10)样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图,计算x 的值为 ,样本数据落在[)6,14内的频数为 .答案:0.09,680。

10第二部分 随机变量及其分布17.(2012年海淀一模理17)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿. (Ⅲ)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,4381(0)4256P X ⎛⎫===⎪⎝⎭,3141327(1)C 4464P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭,22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,411(4)4256P X ⎛⎫===⎪⎝⎭.所以的分布列为:812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=) 所以X 的数学期望为1.16.(2012年西城一模理16)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率;Ⅲ求比赛局数的分布列.解:(Ⅰ)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21.记“甲以4比1获胜”为事件A , 则334341111()C ()()2228P A -==.(Ⅱ)记“乙获胜且比赛局数多于5局”为事件B . 因为,乙以4比2获胜的概率为3353151115C ()()22232P -==,乙以4比3获胜的概率为3363261115C ()()22232P -==,所以125()16P B P P =+=.(Ⅲ)设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===,334341111(5)2C ()()2224P X -===,335251115(6)2C ()()22216P X -==⋅=,336361115(7)2C ()()22216P X -==⋅=.比赛局数的分布列为:X 45 6 7 P1814 516 51616.(2012年东城一模理16)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-.(10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= , (2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. 由此得的分布列为:(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥,又n *∈N 且4n ≤,得3n =,或4n =. 所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625)答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.17. (2012年丰台一模理17)某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.(Ⅰ)请根据图中所给数据,求出a 的值;(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X 表示所选学生成绩在[60,70)内的人数,求X 的分布列和数学期望.解:(Ⅰ)根据频率分布直方图中的数据,可得1(0.0050.00750.02250.035)100.10.070.0310a -+++⨯==-=, 所以 0.03a =. ……2分(Ⅱ)学生成绩在[50,60)内的共有40×0.05=2人,在[60,70)内的共有40×0.225=9人,成绩在[50,70)内的学生共有11人. …4分设“从成绩在[50,70)的学生中随机选3名,且他们的成绩都在[60,70)内”为事件A , 则3931128()55C P A C ==. ……7分所以选取的3名学生成绩都在[60,70)内的概率为2855.(Ⅲ)依题意,X 的可能取值是1,2,3. …8分21293113(1)55C C P X C ===;122931124(2)55C C P X C ===;28(3)()55P X P A ===. …10分所以X324282712355555511E ξ=⨯+⨯+⨯=. …13分16.(2012年朝阳一模理16)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.(Ⅰ)下表是这次考试成绩的频数分布表,求正整(II )现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300*********x++=,解得:x=30,即其中成绩为优秀的学生人数为30名. …7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===,所以X 的分布列为352930125213522EX =⨯+⨯+⨯=,所以X 的数学期望为32. 13分16.(2012年东城11校联考理16)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选两名学生,用X 表示这两人参加培训次数之差的绝对值,求随机变量X的分布 列及数学期望EX .解:(1)这3名同学中至少有2名同学参加培训次数恰好相等的概率为494419134012011515=-=C C C C P . ……5分(2)由题意知X =0,1,222251520240111151515202401152024061(0);15675(1);1565(2).39C C C P X C C C C C P X C C C P X C ++===+======则随机变量X 的分布列:012.156********X EX =⨯+⨯+⨯=所以的数学期望……13分16.(2012年石景山一模理16)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.解:(Ⅰ)ξ的可能取值为:0,1,2,3. …1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξξ的分布列如下表:……4分127139229412780=⨯+⨯+⨯+⨯=ξE . 5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . ……8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. ……10分=+=)()()(21B P B P A P 61819483278=⨯+⨯.所以乙恰好比甲多投中2次的概率为61. …13分16.(2012年房山一模16)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:高一年级 高二年级 高三年级 10人6人4人(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ……4分(II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 …6分()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()8132323113114=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()811323140444=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. 11分随机变量ξ的分布列为:ξ 0 1 2 3 4P81168132 278 818 811 …12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE …13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …5分则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……7分 随机变量ξ的分布列为:ξ 0 1 2 3 4P8116 8132 278 818 811 所以34314=⨯==np E ξ ……13分17.(2012年密云一模理17)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和期望. 解:设事件(1,2,3,4)iA i =表示“该选手能正确回答第i 轮问题”,由已知12345431(),(),(),()6543P A P A P A P A ====(Ⅰ)设事件B 表示“该选手进入第三轮才被淘汰”, 则331212()()()()()P B P A A A P A P A P A ==543116546⎛⎫=⨯⨯-= ⎪⎝⎭.…3分(Ⅱ)设事件C 表示“该选手至多进入第三轮考核”, 则123112()()P C P A A A A A A =++1231121515431()()()(1)6656542P A P A A P A A A =++=+⨯+⨯⨯-=;…7分(Ⅲ)X 的可能取值为1,2,3,411(1)()6P X P A ===,21541(2)()(1)656P X P A A ===⨯-=,3125431(3)()(1)6546P X P A A A ===⨯⨯-=,1235431(4)()6542P X P A A A ===⨯⨯=,所以,的分布列为1111()123436662E X =⨯+⨯+⨯+⨯=17.(2012年门头沟一模理17)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数.(Ⅰ)求1号球恰好落入1号盒子的概率;(Ⅱ)求ξ的分布列和数学期望ξE .解:(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A ==所以1号球恰好落入1号盒子的概率为14……5分(Ⅱ)ξ的所有可能取值为0,1,2,4 ……6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯===22441(2)4C P A ξ===4411(4)24P A ξ===(每个1分)……10分所以ξ的分布列为……11分数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= ……13分。

2012届北京市高三一模文科数学分类汇编8:统计与概率

2012届北京市高三一模文科数学分类汇编8:统计与概率

2012北京市高三一模数学文分类汇编:统计与概率【2012年北京市西城区高三一模文】10. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为 1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.【答案】54【解析】成绩在[16,18]的学生的人数比为2093673136=+++++,所以成绩在[16,18]的学生的人数为54209120=⨯。

【2012北京市门头沟区一模文】13. 某公司对下属员工在龙年春节期间收到的祝福短信数量进行了统计,得到了如下的直方图,如果该公司共有员工200人,则收到125条以上的大约有 人.数值频率/组距1451251058565452550.0090.0120.01050.00750.0060.003【答案】8【2012北京市门头沟区一模文】某高中校三个年级人数见下表:通过分层抽样从中抽取40人进行问卷调查,现在从答卷中随机抽取一张,恰好是高三学生的答卷的概率是 (A)101 (B)401 (C)32 (D)52 【答案】D【2012北京市东城区一模文】(11) 在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是 组.【答案】84 乙【2012北京市丰台区一模文】12.为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图(如图所示).若[5.0,5.4]内的 学生人数是2,则根据图中数据可得被抽查的学生总数是____;样本数据在[3.8,4.2)内的频率是______【答案】【2012北京市石景山区一模文】12.在区间[]9,0上随机取一实数x ,则该实数x 满足不等式21log 2x ≤≤的概率为 . 【答案】29【解析】由不等式21log 2x ≤≤,可得42≤≤x ,所以所求概率为920924=--。

2012北京市高三一模理科数学分类汇编8:统计与概率

2012北京市高三一模理科数学分类汇编8:统计与概率

8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲2012北京市高三一模数学理分类汇编7:圆锥曲线【2012年北京市西城区高三一模理】9. 某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[1314),,[1415),,[1516),,[1617),,[1718],,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[16,18]的学生人数是_____.【答案】54【解析】成绩在[16,18]的学生的人数比为2093673136=+++++,所以成绩在[16,18]的学生的人数为54209120=⨯。

【2012北京市门头沟区一模理】11.某单位招聘员工,从400名报名者中选出200名参加笔试,再按笔试成绩择优取40名参加面试,随机抽查了20名笔试者,统计他们的成绩如下:由此预测参加面试所画的分数线是 . 【答案】80【2012北京市东城区一模理】(11)在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数 后,两组数据的平均数中较大的一组是 组.【答案】84 乙【2012北京市石景山区一模理】13.如图,圆222:O x y π+=内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是 .【答案】34π【解析】阴影部分的面积为4)cos (2sin 200=-=⎰ππx xdx ,圆的面积为3π,所以点A 落在区域M 内的概率是34π。

16.【2012北京市石景山区一模理】(本小题满分13分)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为21,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ; (Ⅱ)求乙至多投中2次的概率; (Ⅲ)求乙恰好比甲多投进2次的概率.【答案】解:(Ⅰ)ξ的可能取值为:0,1,2,3. …………1分;27832)0(303=⎪⎭⎫ ⎝⎛==C P ξ;943231)1(213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;923231)2(223=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==C P ξ.27131)3(333=⎪⎭⎫ ⎝⎛==C P ξ ξ的分布列如下表:…………4分 127139229412780=⨯+⨯+⨯+⨯=ξE . …………5分 (Ⅱ)乙至多投中2次的概率为87211333=⎪⎭⎫ ⎝⎛-C . …………8分(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件B 1, 乙恰投中3次且甲恰投中1次为事件B 2,则2121,,B B B B A =为互斥事件. …………10分 =+=)()()(21B P B P A P 61819483278=⨯+⨯.所以乙恰好比甲多投中2次的概率为61. …………13分 【2012北京市门头沟区一模理】17.(本小题满分13分)将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数. (Ⅰ)求1号球恰好落入1号盒子的概率; (Ⅱ)求ξ的分布列和数学期望ξE .【答案】(Ⅰ) 设事件A 表示 “1号球恰好落入1号盒子”,33441()4A P A A ==所以1号球恰好落入1号盒子的概率为14…………5分 (Ⅱ)ξ的所有可能取值为0,1,2,4…………6分44333(0)8P A ξ⨯=== 44421(1)3P A ξ⨯=== 22441(2)4C P A ξ=== 4411(4)24P A ξ===(每个1分)……………………10分 所以ξ的分布列为……………………11分数学期望31110124183424E ξ=⨯+⨯+⨯+⨯= …………………13分【2012北京市朝阳区一模理】16. (本小题满分13分)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.绩进行分析,求其中成绩为优秀的学生人数;(Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.【答案】解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. ……………13分 【2012北京市东城区一模理】(16)(本小题共13分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X (单位:万元),求X 的分布列; (Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.【答案】解:(Ⅰ)由题设知,X 的可能取值为10,5,2,3-. …………2分 (10)P X =0.80.90.72=⨯=, (5)0.20.90.18P X ==⨯= ,(2)0.80.10.08P X ==⨯=, (3)0.20.10.02P X =-=⨯=. …………6分由此得X 的分布列为:…………8分(Ⅱ)设生产的4件甲产品中一等品有n 件,则二等品有4n -件. 由题设知4(4)10n n --≥,解得145n ≥, 又n *∈N 且4n ≤,得3n =,或4n =. …………10分所求概率为33440.80.20.80.8192P C =⨯⨯+=.(或写成512625) 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192. …………13分【2012年北京市西城区高三一模理】16.(本小题满分13分)乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.【答案】(Ⅰ)解:由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是21. ………………1分记“甲以4比1获胜”为事件A ,则334341111()C ()()2228P A -==. ………………4分 (Ⅱ)解:记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为3353151115C ()()22232P -==, ………………6分 乙以4比3获胜的概率为3363261115C ()()22232P -==, ………………7分所以 125()16P B P P =+=. ………………8分 (Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.44411(4)2C ()28P X ===, ………………9分 334341111(5)2C ()()2224P X -===, ………………10分 335251115(6)2C ()()22216P X -==⋅=, ………………11分 336361115(7)2C ()()22216P X -==⋅=. ………………12分 比赛局数的分布列为:X 4 5 6 7 P18 14 516 516………………13分 【2012北京市海淀区一模理】(17)(本小题满分13分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿; (Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 【答案】解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以 0.0125x =. ………………………………………2分 (Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, ………………………………………4分因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分由直方图可知,每位学生上学所需时间少于20分钟的概率为14, 4381(0)4256P X ⎛⎫=== ⎪⎝⎭, 3141327(1)C 4464P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, 22241327(2)C 44128P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,334133(3)C 4464P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 411(4)4256P X ⎛⎫===⎪⎝⎭.X………………………………………12分812727310123412566412864256EX =⨯+⨯+⨯+⨯+⨯=.(或1414EX =⨯=)所以X 的数学期望为1. ………………………………………13分 【2012北京市房山区一模理】16.(本小题共13分)今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;(II )若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.【答案】解:(I )设“他们中恰好有1人是高一年级学生”为事件A ,则()3815320210110==C C C A P 答:若从选派的学生中任选3人进行文明交通宣传活动,他们中恰好有1人是高一年级学生的概率为3815. ………………………4分 (II )解法1:ξ的所有取值为0,1,2,3,4.由题意可知,每位教师选择高一年级的概率均为31.所以 ………………………6分()8116323104004=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()8132323113114=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()2788124323122224==⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ;()818323131334=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ; ()811323140444=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C P ξ. ………………………11分随机变量ξ的分布列为:………………………12分 所以3481148183812428132181160=⨯+⨯+⨯+⨯+⨯=ξE ……………………13分解法2:由题意可知,每位教师选择高一年级的概率均为31. …………………5分 则随机变量ξ服从参数为4,31的二项分布,即ξ~)31,4(B .……………7分随机变量ξ的分布列为:所以334=⨯==np E ξ …………………13分。

北京市各区2012年高考数学一模试题分类解析(18) 空间几何体 理

北京市各区2012年高考数学一模试题分类解析(18) 空间几何体 理

俯视图正视图十八、空间几何体 第一部分 三视图4.(2012年西城一模理4)已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( A ) A .2 B .2 C .28cm D .24cm5.(2012年丰台一模理5)若正四棱锥的正视图和俯视图如右图所示,则该几何体的表面积是( B )A.4B.4+4+10.(2012年朝阳一模理10) 已知某几何体的三视图如图所示,则该几何体的体积为 . 答案:32正视图侧视图6.(2012年东城11校联考理6)一个几何体的三视图如图所示,则此几何体的体积是( B ) A .112 B.80 C.72 D.647.(2012年石景山一模理7)某几何体的三视图如图所示,则它的体积是( A )A.83+B.83+C.83+D.323俯视图 侧视图10.(2012年房山一模10)一个几何体的三视图如图所示,则这个几何体的体积为 . 答案:32。

11.(2012年密云一模理11)已知某几何体的三视图如右图所示,则该几何体的体积 为 . 答案:32。

第第11题图 第12题图C3.(2012年门头沟一模理3)己知某几何体的三视图如右图所示,则其体积为( B ) A.8 B.4 C.主视图 左视图俯视图第二部分 立体几何4.(2012年朝阳一模理4)已知平面α,直线,,a b l ,且,a b αα⊂⊂,则“l a ⊥且l b ⊥”是“l α⊥”的( B )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2012年东城11校联考理3)已知直线m ,n 与平面α,β,下列命题正确的是 ( D )A .βα//,//n m 且βα//,则n m //B .βα//,n m ⊥且β⊥α,则n m ⊥C .,βm n m =⊥α且βα⊥,则α⊥n D .βα⊥⊥n m ,且βα⊥,则n m ⊥4.(2012年石景山一模理4)设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是( D )A.αα//,//,//n m n m 则若B.βαγβγα//,,则若⊥⊥C.n m n m //,//,//则若ααD.n m n m ⊥⊥则若,//,αα4.(2012年东城11校联考理4)甲从正四面体的四个顶点中任意选择两个顶点连成直线, 乙从该正四面体四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( A ) A.61 B. 92 C. 185 D. 318.(2012年海淀一模理8)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45°的点P 的个数为( B )A .0B .3C .4D .616.(2012年海淀一模理16)在四棱锥P ABCD -中,AB //CD ,AB AD ^,4,2AB AD CD ===,PA ^平面ABCD ,4PA =. (Ⅰ)设平面PAB平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ;(Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC所成角的正弦值为3,求PQPB的值.A'B'C'D'ABCDPDCBA证明:(Ⅰ) 因为AB //CD ,CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD //平面PAB . 因为CD ⊂平面PCD ,平面PAB平面PCD m =,所以CD //m .(Ⅱ):因为AP ^平面ABCD ,AB AD ^,所以以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(4,0,0)B ,(0,0,4)P,(0,D,(2,C . 所以(4,BD =-,(2,AC =,(0,0,4)AP =,所以(4)2000BD AC ⋅=-⨯+⨯=,(4)00040BD AP ⋅=-⨯++⨯=.所以 BD AC ⊥,BD AP ⊥.因为 AP AC A =,AC ⊂平面PAC ,PA ⊂平面PAC ,所以 BD ⊥平面PAC .(Ⅲ)解:设PQPBλ=(其中01λ#),(,,)Qxyz ,直线QC 与平面PAC 所成角为θ. 所以 PQ PB λ=.所以 (,,4)(4,0,4)x y z λ-=-.所以 4,0,44,x y z λλì=ïïï=íïï=-+ïïî即(4,0,44)Q λλ-+.所以(42,44)CQ λλ=---+.由(Ⅱ)知平面PAC的一个法向量为(4,BD =-.因为 sin cos ,CQ BD CQ BD CQ BDθ×=<>=×,所以3=. 解得 7[0,1]12λ=∈. 所以 712PQ PB =.17.(2012年西城一模理17)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且F A F C =.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ;(Ⅲ)求二面角B FC A --的余弦值.证明:(Ⅰ)设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点.又 FC FA =,所以 AC FO ⊥. 因为 O BD FO = ,所以 ⊥AC 平面BDEF . (Ⅱ)因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . 又⊂FC 平面FBC ,所以FC // 平面EAD . 解:(Ⅲ)因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. 设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O-. 所以 (3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n .易知平面AFC 的法向量为(0,1,0)=v .由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. 17.(2012年东城一模理17)如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使二面角1A EF B --成直二面角,连结1A B ,1A P .(如图2) (Ⅰ)求证:E A 1⊥平面BEP ;(Ⅱ)求直线E A 1与平面BP A 1所成角的大小.图1 图2证明:(Ⅰ)取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形. 又因为1AE ED ==, 所以EF AD ⊥. 所以在图2中有1A E EF ⊥,BE EF ⊥. 所以1A EB ∠为二面角1A EF B --的平面角. 又二面角1A EF B --为直二面角, 所以1A E BE ⊥. 又因为BEEF E =,所以1A E ⊥平面BEF ,即1A E ⊥平面BEP .解:(Ⅱ)由(Ⅰ)可知1A E ⊥平面BEP ,BE EF ⊥,如图,以E 为原点,建立空间直角坐标系E xyz -,则(0,0,0)E ,1(0,0,1)A ,(2,0,0)B ,,0)F 在图1中,连结DP . 因为12CF CP FA PB ==,所以PF∥BE,且12PF BE DE==.所以四边形EFPD为平行四边形.所以EF∥DP,且EF DP=.故点P的坐标为(10). 图2所以1(2,0,1)A B=-,(BP=-,1(0,0,1)EA=.不妨设平面1A BP的法向量(,,)x y z=n,则10,0.A BBP⎧⋅=⎪⎨⋅=⎪⎩nn即20,0.x zx-=⎧⎪⎨-=⎪⎩令y=(3,6)=n.所以111cos,||||14EAEAEA⋅<>===⨯nnn故直线1A E与平面1A BP所成角的大小为3π.16. (2012年丰台一模理16)四棱锥P—ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠B CD=60º,,E是BC中点,点Q在侧棱PC上.(Ⅰ)求证:AD⊥PB;(Ⅱ)若Q是PC中点,求二面角E-DQ-C的余弦值;(Ⅲ)若PQPCλ=,当PA // 平面DEQ时,求λ的值.证明:(Ⅰ)取AD中点O,连结OP,OB,BD.因为 PA=PD,所以 PO⊥AD.…………1分ED CBAQPPQ因为 菱形ABCD 中,∠B CD =60º, 所以 AB=BD ,所以 BO ⊥AD . …………2分 因为 BO ∩PO=O , …………3分 所以 AD ⊥平面POB .………4分 所以 AD ⊥PB . …………5分 解:(Ⅱ)由(Ⅰ)知BO ⊥AD ,PO ⊥AD .因为 侧面PAD ⊥底面ABCD , 且平面PAD ∩底面ABCD=AD ,所以PO ⊥底面ABCD . ………6分以O 为坐标原点,如图建立空间直角坐标系O-……7分则(1,0,0)D -,(E -,(0,0,1)P , (C -,因为Q 为PC 中点, 所以1()2Q -. ……8分 所以 DE =,1(0,)2DQ =, 所以平面DEQ 的法向量为1(1,0,0)n =. 因为 (DC =-,1(0,)2DQ =, 设平面DQC 的法向量为2(,,)n x y z =, 则220,DC n DQ n ⎧⋅=⎪⇔⎨⋅=⎪⎩0,10.22x y z ⎧-=+=⎪⎩ 令x =1y =,z =2(3,1,n =. …9分12121221cos ,7||||n n n n n n ⋅<>==.由图可知,二面角E-DQ-C 为锐角,所以余弦值为7. …10分 (Ⅲ)因为PQPCλ=,所以 PQ PC λ=, 由(Ⅱ)知(1)PC =--,(1,0,1)PA =-,C若设(,,)Q x y z ,则(,,1)PQ x y z =-,由 PQ PC λ=,得21x y z λλ=-⎧⎪=⎨⎪=-+⎩,在平面DEQ中,DE =,(1,,)(12,1)DQ x y z λλ=+=--,所以平面DEQ 法向量为1(1,0,21)n λλ=--, …12分 又因为 PA // 平面DEQ , 所以 10PA n ⋅=, ……13分 即(1)(1)(21)0λλ-+--=,得23λ=. 所以,当23λ=时,PA // 平面DEQ . …14分17.(2012年朝阳一模理17)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB,==1EB EF,=BC M 是BD 的中点.(Ⅰ)求证:EM//平面ADF ;(Ⅱ)求二面角D-AF-B 的大小;(Ⅲ)在线段EB 上是否存在一点P ,使得CP 与AF 所成的角为30︒?若存在,求出BP 的长度;若不存在,请说明理由.证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,CA F EBMD NCA F EBMD故EM//平面ADF. … 4分解法二:因为EB⊥平面ABD,AB BD⊥,故以B为原点,建立如图所示的空间直角坐标系-B xyz. ……1分由已知可得(0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M(Ⅰ)3=(,0,-3)(3,-2,0)2EM,AD=,设平面ADF的一个法向量是()x,y,zn=.由0,0,ADAFnn⎧⋅=⎪⎨⋅=⎪⎩得32x-y=0,=0.⎧⎪⎨⎪⎩令y=3,则n=. …3分又因为3(=3+0-3=02EM n⋅=⋅,所以EM n⊥,又EM⊄平面ADF,所以//EM平面ADF. ……4分(Ⅱ)由(Ⅰ)可知平面ADF的一个法向量是n=.因为EB⊥平面ABD,所以EB BD⊥.又因为AB BD⊥,所以BD⊥平面EBAF.故(3,0,0)BD=是平面EBAF的一个法向量.所以1cos<=2BDBD,BDnnn⋅>=⋅,又二面角D-AF-B为锐角,故二面角D-AF-B的大小为60︒. …10分(Ⅲ)假设在线段EB上存在一点P,使得CP与AF所成的角为30︒.不妨设(0,0,t)P(0t≤≤,则=(3,-2,-),=PC AFt.所以2cos<2PC AFPC,AFPC AF⋅>==⋅,=,化简得35-=,解得0t=<.所以在线段EB上不存在点P,使得CP与AF所成的角为30︒.……14分17.(2012年东城11校联考理17)如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,90DAB ∠=,//AD BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,2==AB DA ,12BC AD =,E 是线段AB 的中点.(1)求证:CD PE ⊥;(2)求四棱锥P ABCD -的体积;(3)试问线段PB 上是否存在点F ,使二面角C DE F --的余弦值为41?若存在,确定点F 的位置;若不存在,说明理由.证明:(1)因为AD ⊥侧面PAB ,PE ⊂平面PAB , 所以AD PE ⊥.又因为△PAB 是等边三角形,E 是线段AB 的中点,所以PE AB ⊥. 因为ADAB A =,所以PE ⊥平面ABCD .而CD ⊂平面ABCD ,所以PE CD ⊥. ……4分解:(2)由(1)知PE ⊥平面ABCD ,所以PE 是四棱锥P ABCD -的高.由2==AB DA ,12BC AD =,可得1=BC . 因为△PAB 是等边三角形,可求得3=PE .所以332)21(213131=⨯⨯+⨯=⋅=-PE S V ABCD ABCD P .……8分(3)以E 为原点,建立如图所示的空间直角坐标系E xyz -.(0,1,0),(0,0,0)(01,0),(11,0),(2,1,0),(0,0A E B C D P --则有,,,设000(,,),F x y z PF PB=λ,则)3,1,0()3,,(--=-λzyx(0,)F-λ所以.设(,,x y z=)n为平面DEF的法向量,(2,1,0),(0,),ED EF==-λ0,0,EDEF⎧⋅=⎪⎨⋅=⎪⎩nn200.x yy z+=⎧⎪⎨-λ+=⎪⎩,即)x1y2z⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩,所以,(1,=-所以n.设平面CDE的法向量为(0,0,1=)m.1cos,4m n==所以.化简得01232=-+λλ.解得311=-=λλ(舍)或.所以存在点F,且PBPF31= .………13分17.(2012年石景山一模理17)如图,三棱柱111CBAABC-中,1AA⊥面ABC,2,==⊥ACBCACBC,13AA=,D为AC的中点.(Ⅰ)求证:11//BDCAB面;(Ⅱ)求二面角CBDC--1的余弦值;(Ⅲ)在侧棱1AA上是否存在点P,使得1BDCCP面⊥?请证明你的结论.B1 B证明:(I )连接B 1C ,与BC 1相交于O ,连接OD . …1分 ∵BCC 1B 1是矩形,∴O 是B 1C 的中点. 又D 是AC 的中点,∴OD//AB 1.∵AB 1⊄面BDC 1,OD ⊂面BDC 1,∴AB 1//面BDC 1. 解:(II )如图,建立空间直角坐标系, 则C 1(0,0,0),B (0,3,2), C (0,3,0),A (2,3,0), D (1,3,0),1(0,3,2)C B =,1(1,3,0)C D =,……5分设111(,,)n x y z =是面BDC 1的一个法向量,则110,0n C B n C D ⎧=⎪⎨=⎪⎩即1111320,30y z x y +=⎧⎨+=⎩,取11(1,,)32n =-.…7分 易知1(0,3,0)C C =是面ABC 的一个法向量. ……8分1112cos ,7n C C n C C n C C==-⨯.∴二面角C 1—BD —C 的余弦值为27. ……9分 (III )假设侧棱AA 1上存在一点P 使得CP ⊥面BDC 1.设P (2,y ,0)(0≤y ≤3),则 (2,3,0)CP y =-, …10分则110,0CP C B CP C D ⎧=⎪⎨=⎪⎩,即3(3)0,23(3)0y y -=⎧⎨+-=⎩. …12分解之3,73y y =⎧⎪⎨=⎪⎩∴方程组无解. ……13分∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1. …14分17.(2012年房山一模17)在直三棱柱111ABC A B C -中,1BC CC AB ===2 ,BC AB ⊥.点N M ,分别是1CC ,C B 1的中点,G 是棱AB 上的动点.(I )求证:⊥C B 1平面BNG ;(II)若CG //平面M AB 1,试确定G 点的位置,并给出证明;(III)求二面角1M AB B --的余弦值.证明:(I)∵在直三棱柱111ABC A B C -中,1CC BC =,点N 是C B 1的中点,∴C B BN 1⊥ …………1分BC AB ⊥,1BB AB ⊥,B BC BB = 1∴AB ⊥平面11BCC B …………2分⊂C B 1平面11BCC B∴AB C B ⊥1,即GB C B ⊥1 ……………3分 又B BG BN =∴⊥C B 1平面BNG …………4分(II )当G 是棱AB 的中点时,CG //平面M AB 1.……………5分 证明如下:连结1AB ,取1AB 的中点H ,连接GC HM HG ,,, 则HG 为B AB 1∆的中位线 ∴GH ∥1BB ,121BB GH =………6分 ∵由已知条件,11BCC B 为正方形 ∴1CC ∥1BB ,11BB CC = ∵M 为1CC 的中点,∴121CC CM =……7分 ∴MC ∥GH ,且GH MC = ∴四边形HGCM 为平行四边形 ∴GC ∥HM又 ∵M AB HM M AB GC 11,平面平面⊄⊂ ……8分 ∴CG //平面M AB 1 ………9分 解:(III) ∵ 直三棱柱111ABC A B C -且BC AB ⊥依题意,如图:以1B 为原点建立空间直角坐标系1B xyz -,…10分∴1(0,0,0)B ,(0,2,0)B ,)0,1,2(M ,(0,2,2)A ,1(2,0,0)C则1(0,2,2)B A =,)0,1,2(1=B 设平面1B AM 的法向量(,,)n x y z =,则1100n B A n B M ⋅=⋅⎧⎪=⎨⎪⎩,即00222x y z y ⎧⎨+=+=⎩,令1=x ,有)2,2,1(-=n ………12分 又平面1B AB 的法向量为11(2,0,0)BC =,∴11cos ,BC n <>=1111B C n B C n⋅⋅=31, ……13分设二面角1M AB B --的平面角为θ,且θ为锐角∴111cos cos ,3B C n θ=-=. ……14分16.(2012年密云一模理16)如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,PA 、NC 都垂直于平面ABCD ,且4PA AB ==,2NC =,M 是线段PA 上一动点.(Ⅰ)求证:平面PAC ⊥平面NEF ;(Ⅱ)若//PC 平面MEF ,试求:PM MA 的值;(Ⅲ)当M 是PA 中点时,求二面角M EF N --的余弦值.证明:(Ⅰ)连结BD ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥, 又∵BD AC ⊥,AC PA A =,∴BD ⊥平面PAC ,又∵E ,F 分别是BC 、CD 的中点,∴//EF BD , ∴EF ⊥平面PAC ,又EF ⊂平面NEF , ∴平面PAC ⊥平面NEF ; ……4分 解:(Ⅱ)建立如图所示的直角坐标系,则(0,0,4)P ,(4,4,0)C ,(4,2,0)E ,(2,4,0)F ,∴(4,4,4)PC =-,(2,2,0)EF =-,设点M 的坐标为(0,0,)m ,平面MEF 的法向量为(,,)n x y z =,则(4,2,)ME m =-,所以00n ME n EF ⎧⋅=⎪⎨⋅=⎪⎩,即420220x y mz x y +-=⎧⎨-+=⎩,令1x =,则1y =,6z m =,故6(1,1,)n m=,第16题图第16题图用心 爱心 专心∵//PC 平面MEF ,∴0PC n ⋅=,即24440m+-=,解得3m =, 故3AM =,即点M 为线段PA 上靠近P 的四等分点;故:1:3PM MA = ----8分(Ⅲ)(4,4,2)N ,则(0,2,2)EN =,设平面NEF 的法向量为(,,)m x y z =,则00m EN m EF ⎧⋅=⎪⎨⋅=⎪⎩,即220220y z x y +=⎧⎨-+=⎩,令1x =,则1y =,1z =-,即(1,1,1)m =-, 当M 是PA 中点时,2m =,则(1,1,3)n =,∴cos ,m n <>== ∴二面角M EF N --的余弦值为.----14分16.(2012年门头沟一模理16)如图,在多面体ABCD EF -中,四边形ABCD 为正方形,//EF AB ,EF EA ⊥,2AB EF =,090AED ∠=,AE ED =,H 为AD 的中点.(Ⅰ)求证://EH 平面FAC ;(Ⅱ)求证:EH ⊥平面ABCD ;(Ⅲ)求二面角A FC B --的大小.证明:(Ⅰ)ACBD O =,连结HO ,FO因为ABCD 为正方形,所以O 是AC 中点,EDABCFH用心 爱心 专心 22又H 是AD 中点, 所以1//,2OH CD OH CD =,1//,2EF AB EF AB =, 所以//EF OH 且EF OH =, 所以四边形EHOF 为平行四边形, 所以//EH FO ,又因为FO ⊂平面FAC ,EH ⊄平面FAC . 所以//EH 平面FAC .……………4分 证明:(Ⅱ)因为AE ED =,H 是AD 的中点, 所以EH AD ⊥……………6分又因为//AB EF ,EF EA ⊥,所以AB EA ⊥ 又因为AB AD ⊥ 所以AB ⊥平面AED , 因为EH ⊂平面AED , 所以AB EH ⊥,……………8分 所以EH ⊥平面ABCD .……………9分解:(Ⅲ)AC ,BD ,OF 两两垂直,建立如图所示的坐标系,设1EF =, 则2AB =,B,(C ,(0,0,1)F …………10分设平面BCF 的法向量为1(,,)n x y z =, (2,2,0),(2,0,1)BC CF =--=,110,0n BC n CF ⋅=⋅=所以 1(1,1n =- …………11分 平面AFC 的法向量为2(0,1,0)n = ………12分1212121cos ,2n n n n n n ⋅<>==⋅. ………13分二面角A FC B --为锐角,所以二面角A FC B --等于3π.……………14分。

北京市2012高三数学一模分类汇编1集合、简易逻辑与函数理

北京市2012高三数学一模分类汇编1集合、简易逻辑与函数理

2012 北京市高三一模数学理分类汇编1:会合、简略逻辑与函数【 2012 北京市丰台区一模理】1.已知会合A { x | x2 1}, B { a} ,若A B ,则 a 的取值范围是()A.( , 1) (1, ) B., 1 1,C.( -1 , 1)D. [-1 , 1]【答案】 B【 2012 北京市房山区一模理】 1. 已知集合M , a 0 , N 2 x 2 x Z5 如x果 0 , x 则,等于M N , a ()(A)1 ( B)2 ()1或 2(D)5C2【答案】 C【 2012 北京市海淀区一模理】(1)已知会合A ={x x > 1},B ={x x < m},且A B=R,那么 m 的值能够是(A)- 1 (B)0 (C)1 (D)2【答案】 D【 2012 年北京市西城区高三一模理】1.已知全集U R,会合A { x | 11} ,则e U A()x( A)(0,1)( B)(0,1]( C)( ,0] (1, )(D) ( ,0) [1, ) 【答案】 C【分析】 A { x 11} { x 0 x 1} ,所以C U A { x x0或x 1} ,选C.x【 2012 北京市门头沟区一模理】已知全集 U R,会合 A x x2 3x 4 0 ,B x x 2或 x 3 ,则会合A U B等于(A) x 2 x 4 (B) x 2 x 1(C) x 1 x 3 (D) x 3 x 4【答案】 C【 2012 北京市石景山区一模理】1.设会合M { x | x 2 2x 3 0}, N { x | log 1 x 0} ,2则 M N 等于()A.( 1,1) B.(1,3) C.(0,1) D.( 1,0)【答案】 B【分析】 M { x | x 2 2 x 3 0} { x | 1 x 3} , N { x | log 1 x 0} { x | x 1} ,2所以MN { x1 x3},答案选 B.【 2012 北京市石景山区一模理】14.会合U (x, y) | x R, y R , M ( x, y) | x y a , P ( x, y) | y f ( x) , 现给出以下函数:①y a x,② y = log a x,③ y sin( x a) ,④y cos ax ,若 0 a 1 时,恒有P C U M P, 则全部知足条件的函数 f ( x) 的编号是.【答案】①②④【分析】由 P C U M P, 可知M P , 画出相应的图象可知,①②④知足条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率
门头沟
将编号为1,2,3,4的四个材质和大小都相同的球,随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个球,ξ表示球的编号与所放入盒子的编号正好相同的个数. (Ⅰ)求1号球恰好落入1号盒子的概率; (Ⅱ)求ξ的分布列和数学期望ξE . 西城
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(Ⅰ)求甲以4比1获胜的概率;
(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列. 顺义
某学校教学实验楼有两部电梯,每位教师选择哪部电梯到实验室的概率都是1
2
,且相互独立,现有3位教师准备乘电梯到实验室.
(Ⅰ) 求3位教师选择乘同一部电梯到实验室的概率;
(Ⅱ)若记3位教师中乘第一部电梯到实验室的人数为ξ,求ξ的分布列和数学期望.
石景山
甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为31,乙每次投中的概率为2
1,每人分别进行三次投篮.
(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ; (Ⅱ)求乙至多投中2次的概率; (Ⅲ)求乙恰好比甲多投进2次的概率.
75 80 85 90 95 100 分数 频率
0.01
0.02 密云
某高校在2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示. (Ⅰ)分别求第3,4,5组的频率;
(Ⅱ)若该校决定在笔试成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进入第二轮
面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第
4组至少有一名学生被甲考官面试的概率. 丰台
某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.
(Ⅰ)请根据图中所给数据,求出a 的值;
(Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在
[60,70)内的概率;
(Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3
人的成绩进行分析,用X 表示所选学生成绩在[60,70)内的人数,求X 的分布列和数学期望.
海淀
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),
[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方图中x 的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 房山
今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的名额分配如下:
(I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率;
(II
)若将4名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望.
东城
某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.
(Ⅰ)设生产1件甲产品和1件乙产品可获得的总利润为X(单位:万元),求X的分布列;(Ⅱ)求生产4件甲产品所获得的利润不少于10万元的概率.
东城
某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.
绩进行分析,求其中成绩为优秀的学生人数;
(Ⅲ)在(II)中抽取的40名学生中,要随机选取2名学生参
加座谈会,记“其中成绩为优秀的人数”为X,求X的
分布列与数学期望.。

相关文档
最新文档