简述半导体气敏传感器的工作原理

合集下载

气敏传感器的原理

气敏传感器的原理

气敏传感器的原理
气敏传感器的原理是利用气敏材料的电学性能随环境气体浓度的变化而发生改变。

气敏材料通常是一种半导体材料,其电阻随着环境气体浓度的变化而发生变化。

当环境气体浓度较低时,气敏材料的电阻较高;当环境气体浓度增加时,气敏材料的电阻逐渐减小。

这是因为当有害气体接触到气敏材料表面时,会发生在表面吸附和体内扩散的过程,导致电子和离子的迁移,从而改变材料的电阻。

气敏传感器一般采用两种不同的工作模式来检测环境气体浓度:阻性传感模式和电容传感模式。

在阻性传感模式下,气敏材料作为电阻器的一部分,其电阻值会随环境气体浓度的变化而改变。

此时,通过测量气敏材料两端的电压或电流,可以间接得知环境气体浓度的变化。

在电容传感模式下,气敏材料作为电容器的一部分,当气敏材料表面吸附气体时,会改变电容器之间的电容值。

通过测量电容器的电容值,可以判断环境气体浓度的变化。

总之,气敏传感器利用气敏材料的电学性能随环境气体浓度的变化而改变的原理,实现对环境气体浓度的检测和监控。

半导体气体传感器原理

半导体气体传感器原理

半导体气体传感器原理
半导体气体传感器是利用气体在半导体表面的氧化还原反应导致敏感元件电阻值发生变化而制成的。

具体来说,当气体接触到半导体表面时,被吸附的分子首先在物体表面自由扩散,失去运动能量,一部分分子被蒸发掉,另一部分残留分子产生热分解吸附在物体表面。

如果半导体的功函数小于吸附分子的亲和力,则吸附分子将从器件夺走电子而变成负离子吸附,半导体表面呈现电荷层。

例如氧气,等具有负离子吸附倾向的气体被称为氧化型气体。

如果半导体的功函数大于吸附分子的离解能,吸附分子将向器件释放出电子,而形成正离子吸附。

具有正离子吸附倾向的气体有氢气、一氧化碳等,它们被称为还原性气体。

当氧化型气体吸附到n型半导体,还原性气体吸附到p 型半导体上时,将使半导体载流子减少,而使电阻增大。

当还原型气体吸附到n型半导体上,氧化型气体吸附到p型半导体上时,则载流子增多,半
导体阻值下降。

以上信息仅供参考,如需了解半导体气体传感器原理的更多信息,建议查阅相关书籍或论文。

半导体气体传感器的结构及原理

半导体气体传感器的结构及原理

一、在博物馆文物、档案管理方面的运用这是温湿度传感器应用的另一个领域。

档案的纸张在温湿度适宜的条件可以多存放一些时间,而一旦温湿度条件遭到破坏纸张将要变脆,重要资料也将随之荡然无存,对档案馆进行温湿度记录是必要的,可以预防恶性事故的发生。

使用温湿度传感器将使温湿度记录的工作得以简化,也将节约文物保管的成本,使这一工作得以科学化,不受到过多的人为因素的干扰。

二、在疫苗冷链中的运用气体传感器主要针对于行业中的气体进行检测,在工业、电子、电力、化工、治金等行业中都有一定的应用。

气体传感器的种类是比较多的,其中常用的主要有半导体式、接触燃烧方式、化学反应式、光干涉式、热传导式、红外线吸收散式等。

而这当中以半导体气体传感器应用更为广泛。

半导体气体传感器由气敏部分、加热丝以及防爆网等构成,它是在气敏部分的sno2、fe2o2、zno2等金属氧化物中添加pt、pd等敏化剂的传感器。

传感器的选择性由添加敏化剂的多少进行控制,例如,对于zno2系列传感器,若添加pt,则传感器对丙烷与异丁烷有较高的灵敏度;若添加pd,则对co与h2比较敏感。

气体传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。

敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。

它的两个关键部分是加热电阻和气体敏感膜。

金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。

由于金属氧化物有很高的热稳定性,而且这种传感器仅在半导体表面层产生可逆氧化还原反应,半导体内部化学结构不变,因此,长期使用也可获得较高的稳定性。

原理简介如下:金属氧化物一旦加热,空气中的氧就会从金属氧化物半导体结晶粒子的施主能级中夺走电子,而在结晶表面上吸附负电子,使表面电位增高,从而阻碍导电电子的移动,所以,气体传感器在空气中为恒定的电阻值。

这时还原性气体与半导体表面吸附的氧发生氧化反应,由于气体分子的离吸作用使其表面电位高低发生变化,因此,传感器的电阻值要发生变化。

半导体传感器

半导体传感器

气敏传感器1、半导体气敏传感器工作机理气敏传感器是利用气体在半导体表面的氧化和还原反应,导致敏感元件阻值变化化型气体——电子接收性气体;氢、碳氧化合物、醇类等具有正离子吸附倾向的气体,被称为还原型气体——电子供给性气体。

N型半导体,如氧化锡、氧化铁、氧化锌、氧化钨等;P型半导体,如氧化钴、氧化铅、氧化铜、氧化镍等。

当氧化型气体吸附到N型半导体上,半导体的载流子减少,电阻率上升;当氧化型气体吸附到P型半导体上,半导体的载流子增多,电阻率下降;当还原型气体吸附到N型半导体上,半导体的载流子增多,电阻率下降;当还原型气体吸附到P型半导体上,半导体的载流子减少,电阻率上升;气敏元件的加热作用:电阻型气敏元件通常工作在高温状态(2000C—4500C),目的是为了加速气体吸附和上述的氧化还原反应,提高灵敏度和响应速度;另外使附着在壳面上的油雾、尘埃烧掉。

在常温下,电导率变化不大,达不到检测目的,因此以上结构的气敏元件都有电阻丝加热器。

加热时间2—3分钟,加热电源一般为5V。

N型半导体与气体接触时的氧化还原反映①先在大气中加热,阻值急剧下降,后上升,达到稳定。

②通过被测气体氧化性气体(O2,NOX),吸取元件中电子,使电阻值增加。

③还原性气体(H2,CO)向元件释放电子,使电阻值下降。

通常器件工作在空气中,由于氧化的作用,空气中的氧被半导体(N型半导体)材料的电子吸附负电荷,结果半导体材料的传导电子减少,电阻增加,使器件处于高阻状态;当气敏元件与被测气体接触时,会与吸附的氧发生反应,将束缚的电子释放出来,敏感膜表面电导增加,使元件电阻减小。

空气中——氧化作用——氧被电子吸附——电子减少——高阻状态;气体接触——吸附——氧发生反应——电子释放——电导增加——电阻减小。

优点:工艺简单,价格便宜,使用方便;气体浓度发生变化时响应迅速;即使是在低浓度下,灵敏度也较高。

缺点:稳定性差,老化较快,气体识别能力不强,各器件之间的特性差异大等。

简述半导体气体传感器工作原理

简述半导体气体传感器工作原理

简述半导体气体传感器工作原理
半导体气体传感器是一种常用的气体检测设备,广泛应用于工业生产、环境监测、安全防护等领域。

其工作原理基于半导体材料对不同气体的吸附作用,通过测量半导体材料电阻的变化来实现气体浓度的检测。

半导体气体传感器的核心部件是由半导体材料制成的传感元件。

当目标气体接触到传感元件表面时,会发生化学反应,导致传感元件表面电子浓度的变化。

这种表面电子浓度的变化将影响半导体材料的电阻,从而实现对气体浓度的监测。

半导体气体传感器的工作原理是基于半导体材料的吸附作用。

不同的气体在半导体表面的吸附作用不同,导致表面电子浓度的变化也不同。

通过测量半导体材料电阻的变化,可以间接地反映出目标气体的浓度。

半导体气体传感器还可以通过加热传感元件来提高传感器的灵敏度。

加热传感元件可以促进目标气体在表面的吸附和反应,从而加快传感器的响应速度和稳定性。

总的来说,半导体气体传感器的工作原理是基于半导体材料表面对目标气体的吸附作用,通过测量半导体材料电阻的变化来实现对气体浓度的检测。

通过不断优化传感元件的材料和结构,可以提高传感器的检测灵敏度和稳定性,满足不同应用场景的需求。

半导体传感器

半导体传感器

2 湿敏传感器
2.2 半导体陶瓷湿敏电阻 ◆半导体陶瓷湿敏电阻通常是用两种以上的金属氧化物半导 体材料混合烧结而成的多孔陶瓷。这些材料有ZnO-LiOV2O5系、 Si-Na2O-V2O5系、 TiO2-MgO-Cr2O3系、Fe3O4等, 前三种材料的电阻率随湿度增加而下降,故称为负特性湿 敏半导体陶瓷,最后一种的电阻率随湿度增大而增大,故 称为正特性湿敏半导体陶瓷(为叙述方便,有时将半导体 陶瓷简称为半导瓷)。
2 湿敏传感器
2 湿敏传感器
图10-6 MgCr2O4-TiO2陶瓷湿度传感器结构
ห้องสมุดไป่ตู้
2 湿敏传感器
图10-7 MgCr2O4-TiO2陶瓷湿度传感器相对湿度与电阻的关系
● MgCr2O4-TiO2陶瓷湿度传感器的相对湿度与电阻值之
间的关系,见图10-7所示。传感器的电阻值既随所处环 境的相对湿度的增加而减少,又随周围环境温度的变化 而有所变化。
2 湿敏传感器 ◆水的饱和蒸气压随温度的降低而逐渐下降。在同样的空气水
蒸气压下,温度越低,则空气的水蒸气压与同温度下水的饱 和蒸气压差值越小。当空气温度下降到某一温度时,空气中 的水蒸气压与同温度下水的饱和水蒸气压相等。此时,空气 中的水蒸气将向液相转化而凝结成露珠,相对湿度为100% RH。该温度称为空气的露点温度,简称露点。如果这一温 度低于0℃时,水蒸气将结霜,又称为霜点温度。两者统称 为露点。空气中水蒸气压越小,露点越低,因而可用露点表 示空气中的湿度。
2 湿敏传感器
图10-5 Fe3O4半导瓷湿敏电阻特性
3. 典型半导瓷湿敏元件 (1) MgCr2O4-TiO2湿敏元件 ●氧化镁复合氧化物——二氧化钛湿敏材料通常制成多孔陶瓷 型“湿—电”转换器件,它是负特性半导瓷,MgCr2O4为P 型半导体,它的电阻率低,阻值温度特性好,结构如图10-6 所示。

半导体气体传感器工作原理

半导体气体传感器工作原理

半导体气体传感器工作原理半导体气体传感器,这名字听起来挺高大上的,但其实它就像是我们日常生活中的一个小帮手,默默无闻地在那儿工作。

想象一下,你在家里做饭,油烟机一开,厨房里瞬间弥漫着各种气味,这时候如果家里有个半导体气体传感器,它就会像一个小侦探一样,帮你检测空气中的气体成分。

肯定有人会问,它到底是怎么做到的?别急,我慢慢来给你讲。

半导体气体传感器的工作原理其实挺简单的。

它的核心材料通常是一些特定的半导体材料,比如说二氧化钛、锡氧化物等等。

这些材料在空气中待久了,会吸附一些气体分子,像是小海绵一样,滋润得不得了。

好吧,开个玩笑,实际上它们是通过化学反应来改变自己的电阻值。

当某种气体进入传感器时,这些气体分子就会和半导体材料发生反应,结果就是电阻值会发生变化。

没错,简单来说,就是电阻变了,电流也就随之变化了。

这就好比你在路上碰到朋友,跟他打招呼一样。

电阻和电流之间的这种互动就像你们之间的交流,友好、亲切,又有点紧张。

这种变化是可以通过电路来检测的,电路就像是个老好人,能够把这些变化转化成信号,告诉你“嘿,空气里有啥气体哦!”。

哇,听起来是不是有点像科幻电影里的高科技设备?半导体气体传感器的用途可不止检测厨房里的油烟。

它可以用在很多地方,比如说工业领域、环境监测、汽车排放检测等等。

你知道吗?在工厂里,如果有有害气体泄漏,传感器会立马报警,确保工人们的安全。

这就像一个忠实的守卫,时刻关注着你身边的一切。

真是让人感到安心。

再说说它的反应速度。

半导体气体传感器反应速度可快了!就像闪电一样,转眼之间就能给你答案。

因为它的结构很简单,不需要经过复杂的处理,就能在短时间内检测到气体的变化。

这样一来,很多场合都能用得上,生活中大大小小的问题,都能找到它的身影。

多实用啊,简直是“随叫随到”的小助手。

不过,半导体气体传感器也有自己的“小脾气”。

它对环境的变化可敏感了,比如温度、湿度这些,都可能影响它的表现。

想象一下,外面下雨了,空气湿气重,它可能就会有些“情绪波动”,导致检测结果不太准确。

半导体气敏传感器概述、机理、结构和应用

半导体气敏传感器概述、机理、结构和应用
当半导体材料的分子相对于吸附分子来说 易于失去电子,吸附分子将从器件夺得电子而变 成负离子吸附,半导体表面呈现正电荷层。例如 氧气等具有负离子吸附倾向的气体被称为氧化型 气体或电子接收性气体。如果半导体材料的分子 相对于吸附分子来说易于得到电子,吸附分子将 向器件释放出电子,而形成正离子吸附。具有正 离子吸附倾向的气体有H2、CO、碳氢化合物和醇 类,它们被称为还原型气体或电子供给性气体。
2.含湿量,它表示每千克干空气所含有的水蒸
气量,单位是千克/千克·干空气;
3.相对湿度,表示空气中的绝对湿度与同温度
下的饱和绝对湿度的比值,得数是一个百分比
。(也就是指在一定时间内,某处空气中所含水
汽量与该气温下饱和水汽量的百分比,用RH表
示。
35
2.湿 敏 传 感 器
一定温度和压力下,一定数量的空气只能容纳
半导体气 敏 传 感 器概述、机 理、结构和应用
一、概述 二、半导体气敏传感器的机理
三、半导体气敏传感器类型及结构
四、气敏传感器应用
可燃气体报警器
2
1.气 敏 传 感 器
一、概述 气敏传感器是用来检测气体类别、浓度和
成分的传感器。由于气体种类繁多, 性质各不 相同,不可能用一种传感器检测所有类别的气 体,因此,能实现气-电转换的传感器种类很多, 按构成气敏传感器材料类别可分为半导体和非 半导体两大类。目前实际使用最多的是半导体 气敏传感器。
15
1.气 敏 传 感 器
图2(a)为烧结型气敏器件。这类器件以SnO2 半导体材料为基体,将铂电极和加热丝埋入SnO2 材料中,用加热、加压、温度为700~900℃的制陶 工艺烧结成形。因此,被称为半导体陶瓷,简称 半导瓷。烧结型器件制作方法简单,器件寿命长; 但由于烧结不充分,器件机械强度不高,电极材 料较贵重,电性能一致性较差,因此应用受到一 定限制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述半导体气敏传感器的工作原理
半导体气敏传感器是一种能够检测气体浓度变化并转化为电信号输出的传感器,其工
作原理主要基于气敏材料的电阻特性随着气体浓度的变化而发生改变。

本文将对半导体气
敏传感器的工作原理进行详细阐述,以便更好地理解这一类型传感器的工作机制。

1. 气敏材料的选择
半导体气敏传感器中最核心的部分就是气敏材料,它的选择直接影响着传感器的性能
和灵敏度。

常用的气敏材料包括氧化锡(SnO2)、氧化锆(ZrO2)、氧化钛(TiO2)等。

这些材料具有高灵敏度、稳定性和良好的可制备性,能够有效地实现对多种气体的检测。

2. 气敏材料的电阻特性
气敏材料在不同气体环境中的电阻值会发生变化,这是半导体气敏传感器工作原理的
基础。

在空气中,气敏材料的电阻值较高;而当有害气体存在时,气敏材料的电阻值会下降。

这是因为气体与气敏材料表面发生化学反应,导致电子浓度发生变化,从而影响了材
料的电阻特性。

3. 电阻变化与气体浓度关系
半导体气敏传感器的工作原理可以通过气体在气敏材料表面吸附和解吸的过程来解释。

当目标气体存在时,气体分子会吸附在气敏材料表面,导致了材料表面的电子浓度变化,
从而引起电阻值的变化。

电阻值的变化与气体浓度呈正相关关系,一般来说,气体浓度越高,电阻值变化越大。

4. 电路控制
为了准确地检测气敏材料的电阻变化,半导体气敏传感器一般会配备特定的电路控制
系统。

这些电路系统可以校准并转换气敏材料的电阻变化为电信号输出,便于进一步的数
据处理和分析。

通过对输出信号的处理,可以得到准确的气体浓度信息。

5. 灵敏度与稳定性
半导体气敏传感器的工作原理决定了其具有较高的灵敏度和稳定性。

灵敏度主要表现
在对气体浓度变化的快速响应能力,而稳定性则保证了传感器的长期稳定工作。

这使得半
导体气敏传感器在工业生产、环境监测等领域有着广泛的应用。

总结来看,半导体气敏传感器的工作原理主要基于气敏材料的电阻特性随着气体浓度
变化而发生变化。

通过对气敏材料的电阻变化进行监测和处理,可以实现对气体浓度的准
确检测和监测。

这使得半导体气敏传感器在环境保护、安全监测等领域有着重要的应用意义。

相关文档
最新文档