巴特沃斯数字带通滤波器
二阶无限增益多路反馈巴特沃斯带通滤波器

二阶无限增益多路反馈巴特沃斯带通滤波器摘要:一、巴特沃斯带通滤波器简介1.滤波器原理2.应用场景二、二阶无限增益多路反馈滤波器设计1.结构特点2.设计方法三、反馈网络构建与分析1.反馈网络拓扑结构2.稳定性分析四、滤波器性能仿真与测试1.仿真软件介绍2.性能指标五、应用实例1.信号处理领域2.通信系统中的应用正文:一、巴特沃斯带通滤波器简介1.滤波器原理巴特沃斯带通滤波器是一种以巴特沃斯函数为传递函数的滤波器,具有频率响应平坦、群延迟均匀的优点。
它能在特定的频率范围内,让信号通过,而阻隔其他频率的信号。
2.应用场景巴特沃斯带通滤波器广泛应用于信号处理、通信系统、音频处理等领域,如滤波、降噪、信号分离等。
二、二阶无限增益多路反馈滤波器设计1.结构特点二阶无限增益多路反馈巴特沃斯带通滤波器,其主要特点是具有多个反馈路径,从而提高滤波器的性能。
这种滤波器的反馈网络由多个运放和电阻、电容组成,形成多路反馈结构。
2.设计方法设计二阶无限增益多路反馈滤波器时,首先需确定滤波器的通带频率、阻带频率和截止频率。
然后,根据这些参数,选取合适的巴特沃斯函数作为滤波器的传递函数,并根据反馈网络的拓扑结构设计电阻、电容的值。
最后,通过仿真软件对滤波器的性能进行仿真和测试。
三、反馈网络构建与分析1.反馈网络拓扑结构二阶无限增益多路反馈滤波器的反馈网络主要包括多个运放、电阻和电容。
根据巴特沃斯函数的特性,设计合适的反馈网络拓扑结构,使滤波器在通带内具有较好的频率响应和群延迟特性。
2.稳定性分析分析滤波器的稳定性,主要看其反馈网络是否产生自激振荡。
通过调整反馈网络的参数,避免不稳定现象的发生,确保滤波器在工作过程中稳定可靠。
四、滤波器性能仿真与测试1.仿真软件介绍使用专业的仿真软件(如Multisim、ADS等),对二阶无限增益多路反馈滤波器进行性能仿真。
这些软件能实时显示出滤波器的频率响应、群延迟等性能指标,便于设计师对滤波器进行优化。
用巴特沃兹滤波器设计一个带通数字滤波器

1已知通带截止频率fp=3kHz,通带最大衰减Wp=2dB,阻带截止频率fs=15kHz,阻带最小衰减Ws=30dB,按照以上技术指标设计巴特沃斯低通滤波器。
>>Wp=2*pi*3000; %通带截止角频率>> Ws=2*pi*15000; %阻带截止角频率>> Rp=2; %通带最大衰减>> Rs=30; %阻带最小衰减>> [n,Wn] = buttord(Wp,Ws,Rp,Rs,'s'); %求巴特沃斯阶数和3db截止角频率>> [b,a] = butter(n,Wn,'s'); %求传递函数>> [z,p,k] = butter(n,Wn,'s'); %求零极点及增益>> w=linspace(1,15000)*2*pi;>> H =freqs(b,a,w); %频率响应>> magH=abs(H); %频率响应的幅度>> phaH=unwrap(angle(H)); %频率响应的相位(平滑处理)>> plot(w/(2*pi),20*log10(magH)); %频率响应的幅度的曲线图>> title('巴特沃斯低通滤波器的幅频特性');>> xlabel('频率/Hz');>> ylabel('幅度/db')2 用巴特沃兹滤波器设计一个带通数字滤波器,抽样频率Fs=2000HZ。
要求:(1)通带范围为300~400Hz,在带边频率处衰减不大于3dB,(2)在200Hz以下和500Hz以上衰减不小于18dB。
具体程序如下:>> clear all;>> fp=[300 400];fs=[200 500];>> rp=3; rs=18;>> Fs=2000;>> wp=fp*2*pi/Fs;>> ws=fs*2*pi/Fs;>> % Firstly to finish frequency prewarping; >> wap=2*Fs*tan(wp./2)>> was=2*Fs*tan(ws./2);>> [n,wn]=buttord(wap,was,rp,rs,'s');>> % Note: 's'!>> [z,p,k]=buttap(n);>> [bp,ap]=zp2tf(z,p,k)>> bw=wap(2)-wap(1)>> w0=sqrt(wap(1)*wap(2));>> [bs,as]=lp2bp(bp,ap,w0,bw)>> [h1,w1]=freqs(bp,ap);>> figure(1)>> plot(w1,abs(h1));grid;>> ylabel('Bandpass AF and DF')>> xlabel('Hz')程序执行结果:3针对一个含有5Hz、15Hz和30Hz的混和正弦波信号,设计一个FIR带通滤波器,参数要求:采样频率fs=100Hz,通带下限截止频率fc1=10 Hz,通带上限截止频率fc2=20 Hz,过渡带宽6 Hz,通阻带波动0.01,采用凯塞窗设计。
巴特沃斯带通滤波器设计

做巴特沃斯带通滤波器设计模拟滤波器在测试系统或专用仪器仪表中是一种常用的变换装置。
例如:带通滤波器用作频谱分析仪中的选频装置;低通滤波器用作数字信号分析系统中的抗频混滤波;高通滤波器被用于声发射检测仪中剔除低频干扰噪声;带阻滤波器用作电涡流测振仪中的陷波器等等。
下面就在低频高阶滤波电路中应用较多的巴特沃斯滤波器的设计交流下自己的做法。
本设计只讨论有源带通滤波器的设计,因为带通包含了低通和高通的电路,暂不分别讨论。
设计中运放选择TI产品典型的通用双放LM358,LM358里面包括两个高增益、独立的、内部频率补偿的双运放,适用于电压范围很宽的单电源,而且也适用于双电源工作方式,特点方面具有低输入偏置电流、低输入失调电压和失调电流,它的共模输入电压范围较宽,差模输入电压范围等于电源电压范围,单电源供电电压3-32V,双电源供电±1.5-±16V,单位增益带宽为1MHz,适用于一般的带通滤波器的设计,同时具有低功耗的功能,对于设计阶数相对高一些的带通滤波器的话,可以选用TI的四运放LM324,其性能与LM358大体相同,应用起来节省空间。
对于运放的要求此设计不是特别高,只要运放的频率满足低通的截止频率即可,如果精确度要求高的话那么首先运放的供电电压要足够稳定,或者选择精密运放,如TLC274A,否则通用的即可,例如推荐TI的LM224四运放。
巴特沃斯带通滤波器幅频响应在通带中具有最平幅度特性,但是从通带到阻带衰减较慢,如果对于过渡带要求稍高,可以增加阶数来实现,否则改选用切比雪夫滤波电路。
下面讨论设计两种带通滤波器,其一为二阶低通滤波器和二阶高通滤波器组成的四阶带通滤波器,如下图:图1 四阶带通滤波器参数选择与计算:对于低通滤波器的设计,电容一般选取1000pF,对于高通滤波器的设计,电容一般选取0.1uF,然后根据公式R=1/2Πfc计算得出与电容相组合的电阻值,即得到此图中R2、R6和R7,为了消除运放的失调电流造成的误差,尽量是运放同相输入端与反向输入端对地的直流电阻基本相等,同时巴特沃斯滤波器阶数与增益有一定的关系(见表1),根据这两个条件可以列出两个等式:30=R4*R5/(R4+R5),R5=R4(A-1),36=R8*R9/(R8+R9),R8=R9(A-1)由此可以解出R4、R5、R8、R9,原则是根据现实情况稍调整电阻值保持在一定限度内即可,不要相差太大,注意频率不要超过运放的标定频率。
巴特沃斯滤波器优缺点

巴特沃斯滤波器优缺点巴特沃斯滤波器简介巴特沃斯滤波器是一种广泛应用于信号处理和图像处理的数字滤波器。
它基于巴特沃斯滤波器函数设计,可以用于滤波信号中的某个频率范围,同时保留其他频率分量。
巴特沃斯滤波器的设计主要围绕着截止频率和阶数展开,通过调节这两个参数可以实现对信号的不同滤波需求。
巴特沃斯滤波器优点1.频率选择性强: 巴特沃斯滤波器可以实现对指定频率的信号进行滤波,保留感兴趣的频率成分,而抑制其他频率的干扰信号,具有良好的频率选择性。
2.通带平滑: 在通过通带频率的信号时,巴特沃斯滤波器能够保持信号的频率特征,在通带范围内的信号不会发生明显失真。
3.设计灵活: 巴特沃斯滤波器的阶数和截止频率可以根据实际需求进行调整,设计灵活性高,能够满足不同滤波要求。
4.响应特性良好: 巴特沃斯滤波器的频率响应平滑,相位响应线性,能够保持信号的原始相位信息。
巴特沃斯滤波器缺点1.群延迟大: 巴特沃斯滤波器在滤波过程中会引入较大的群延迟,导致信号在时域上出现一定程度的延迟,不适用于对信号的实时性要求较高的场合。
2.截止频率陡峭: 随着阶数增加,巴特沃斯滤波器的截止频率特性会变得非常陡峭,在截止频率附近会出现较大的波纹,可能引起频域波动。
3.阶数选择困难: 巴特沃斯滤波器的滤波效果与所选取的阶数密切相关,但阶数选择并不是一项容易的任务,需要在满足滤波要求的同时尽量减少系统复杂度。
4.边缘频率失真: 在边缘频率附近,巴特沃斯滤波器的频率响应容易发生失真,可能导致信号在该频率范围内出现较大波动。
总的来说,巴特沃斯滤波器作为一种常用的数字滤波器,拥有着频率选择性强、通带平滑、设计灵活等优点,能够很好地满足信号处理中的滤波需求。
然而,也存在群延迟大、截止频率陡峭、阶数选择困难等缺点,需要结合具体应用场景进行选择和权衡。
通过了解巴特沃斯滤波器的特点及优缺点,可以更好地应用于实际工程中,提高信号处理的效率和质量。
DSP实验4 巴特沃斯滤波器的设计与实现

实验四 巴特沃斯数字滤波器的设计与实现1. 数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:p f :通带截止频率(Hz ) s f :阻带起始频率(Hz )p R :通带内波动(dB ),即通带内所允许的最大衰减;s R :阻带内最小衰减设采样速率(即奈奎斯特速率)为N f ,将上述参数中的频率参数转化为归一化角频率参数:p ω:通带截止角频率(rad/s ) ,)2//(N p p f f =ω;s ω:阻带起始角频率(rad/s ) ,)2//(N s s f f =ω通过以上参数就可以进行离散滤波器的设计。
● 低通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频率为2000Hz ,通带内波动3dB ,阻带内最小衰减为50dB ,则p ω=1500/4000,s ω=2000/4000,p R =3dB ,s R =50dB 。
● 高通滤波器情况:采样频率为8000Hz ,要求通带截止频率为1500Hz ,阻带起始频率为1000Hz ,通带内波动3dB ,阻带内最小衰减为65dB ,则p ω=1500/4000,s ω=1000/4000,p R =3dB ,s R =65dB 。
● 带通滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻 带起始频率为[500Hz ,1800Hz],通带内波动3dB ,阻带内最小衰减为45dB ,则p ω=[800/4000,1500/4000],s ω=[500/4000,1800/4000],p R =3dB ,s R =45dB 。
● 带阻滤波器情况:采样频率为8000Hz ,要求通带截止频率为[800Hz ,1500Hz],阻 带起始频率为[1000Hz ,1300Hz],通带内波动3dB ,阻带内最小衰减为55dB ,则p ω=[800/4000,1500/4000],s ω=[1000/4000,1300/4000],p R =3dB ,s R =45dB 。
数字高通巴特沃斯滤波器的设计

目录摘要 (1)Abstract (1)引言 (1)1.数字高通滤波器的设计原理 (1)1.1双线性变换法简介 (1)1.2方案论证及确定 (2)2.设计步骤 (2)3.设计方案 (3)3.1解析计算 (3)3.2 MATLAB程序仿真 (4)结束语 (7)参考文献 (8)数字高通巴特沃斯滤波器的设计摘要:本文基于巴特沃斯高通滤波器的设计原理及双线性变换,介绍了数字高通滤波器的设计原理和设计步骤,并结合MATLAB实现数字高通巴特沃斯滤波器的仿真。
该设计证明数字高通巴特沃斯滤波器具有平稳的幅频特性。
关键词:巴特沃斯;模拟低通;数字高通;频率;MATLAB仿真The Analysis of Digital Butterworth High-Pass Filter Design Abstract: Based on the Butterworth high-pass filter design principle and the bilinear transform, this paper introduce digital high-pass filter design principles and design steps, and with the help of MATLAB a simulation on digital high pass Butterworth filter is successfully finished.The design demonstrates that the Butterworth high-pass filter has smooth amplitude frequency characteristics.Key words:Butterworth;Analog low-pass filter;Digital high-pass filter;Frequency;MATLAB simulation引言滤波器是一种对信号有处理作用的器件或电路。
巴特沃斯高通滤波器系数计算

b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
(4)巴特沃斯带阻滤波器系数计算 [b,a]=butter(ceil(n/2),[W1,W2],′stop′)
n为用buttord()设计出的带阻滤波器阶数。 butter(n,[W1,W2],′stop′)将返回2*n阶滤波器系数;
高通滤波器 在采样频率为8000Hz的条件下设计一个高通滤波器,要求 通带截止频率为1500Hz,阻带起始频率为1000Hz,通带内 波动3dB,阻带内最小衰减65dB。
则有:
ωp=1500/4000 ωs=1000/4000 Rp=3 Rs=65
带通滤波器 在采样频率为8000Hz的条件下设计一个带通滤波器,要求 通 带 截 止 频 率 为 [ 8 0 0 Hz,1500Hz], 阻 带 起 始 频 率 为 [ 5 0 0 Hz,1800Hz], 通 带 内 波 动 3 dB, 阻 带 内 最 小 衰 减 45dB。
数字滤波器
一、数字滤波器的设计参数
fp:通带截止频率(Hz); fs:阻带起始频率(Hz); R
减; Rs:阻带内最小衰减(dB)。
设采样率为fN,则可将以上频率参数转换为归一化角频率: ωp:通带截止角频率(rad/s)
ωp =fp/(fN/2) ωs:阻带起始角频率(rad/s)
2 系数计算 由巴特沃斯滤波器的阶数n以及截止频率ωn可以计算出对应 传递函数H(z) 的分子分母系数。 MATLAB提供的命令是: (1) [b,a]=butter(n,Wn)
n为低通滤波器阶数; Wn为低通滤波器截止频率; b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
双线性变换巴特沃斯IIR数字带通滤波器

课程设计报告课程名称:专业综合课程设计学生姓名:陈旋学号:10160101专业班级:芙蓉通信1001班指导教师:朱明旱完成时间:2013年6月10日报告成绩:评阅意见:评阅教师日期IIR数字带通滤波器1.课程设计目的通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计IIR 数字带通滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法。
掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。
2.课题要求采用双线性变换法设计一数字带通滤波器,抽样频率为 kHz f s 1=,性能要求为:通带范围从Hz 250到Hz 400,在此两频率处衰减不大于dB 3,在Hz 150和Hz 480频率处衰减不小于dB 20,采用巴特沃思型滤波器。
3.设计原理3.1 数字滤波器介绍滤波器,顾名思义,其作用是对输入信号起到滤波作用。
数字滤波器(DF ,Digital Filter )在数字信号处理中起着重要作用。
数字滤波器由数字乘法器、加法器和延时单元组成的一种算法或装置。
数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。
数字滤波器有低通(LP ,Low pass)、高通(HP ,High Pass)、带通(BS,Band PASS)、带阻(BS,Band Stop)和全通等类型。
它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。
应用最广的是线性、时不变数字滤波器,以及FIR 滤波器。
数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。
数字滤波器在语音信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。
3.2 巴特沃思的原理巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巴特沃斯数字带通滤波器
《数字信号处理》课程设计报告
设计课题滤波器设计与实现
专业班级
姓名
学号
报告日期 2012年12月
目录
1. 课题描述
2. 设计原理
2.1 滤波器的分类
2.2 数字滤波器的设计指标
2.3 巴特沃斯数字带阻模拟滤波器
2.3.1 巴特沃斯数字带通滤波器的设计原理
2.3.2 巴特沃斯数字带通滤波器的设计步骤
3. 设计内容
3.1 用MATLAB编程实现
3.2 设计结果分析
4. 总结
5. 参考文献
课程设计任务书题目滤波器设计与实现
学生姓名学号专业班级
设计内容与要求一、设计内容:
设计巴特沃斯数字带通滤波器,通带频率200~500hz,阻带上限频率600hz, 阻带下限频率150hz,通带衰减最大0.5dB,阻带最小衰减40dB,采样频率2000hz,画出幅频、相频响应曲线,并设计信号验证滤波器设计的正确性。
二、设计要求
1 设计报告一律按照规定的格式,使用A4纸,格式、封面统一给出模版。
2 报告内容
(1)设计题目及要求
(2)设计原理 (包括滤波器工作原理、涉及到的MATLAB函数的说明)
(3)设计内容(设计思路,设计流程、仿真结果)
(4)设计总结(收获和体会)
(5)参考文献
(6)程序清单
起止时间2012年 12 月 3日至 2011年 12月11 日
指导教师签名
2011年 12月 2日
系(教研室)主任
签名
年月日学生签名年月日
1 .课题描述
数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置。
数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。
由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。
使用MATLAB信号处理箱和BW(巴特沃斯)设计低通数字滤波器。
2.设计原理
2.1 滤波器的分类
数字滤波器有低通、高通、带通、带阻和全通等类型。
它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。
如果数字滤波器的内部参数不随时间而变化,则称为时不变的,否则为时变的。
如果数字滤波器在某一给定时刻的响应与在此时刻以后的激励无关,则称为因果的,否则为非因果的。
如果数字滤波器对单一或多个激励信号的响应满足线性条件,则称为线性的,否则为非线性的。
应用最广的是线性、时不变数字滤波器。
数字滤波器也可以按所处理信号的维数分为一维、二维或多维数字滤波器。
一维数字滤波器处理的信号为单变量函数序列,例如时间函数的抽样值。
二维或多维数字滤波器处理的信号为两个或多个变量函数序列。
2.2 数字带通滤波器的设计指标
阻带频率150~600hz,通带上限频率500, 通带下限频率200hz,
通带衰减为0.5dB,阻带最大衰减40dB,采样频率2000hz
2.21巴特沃斯原理
实际的滤波电路往往难以达到理想的要求,如要同时在幅频和相频响应两方面都满足要求就更为困难。
因此,只有根据不同的实际需要,寻求最佳的近似理想特性。
例如,可以主要着眼于幅频响应,而不考虑相频响应;也可以从满足相频响应出发,而把幅频响应居于次要位置。
介绍一种最简单也是最常用的滤波电路——巴特沃斯滤波电路(又叫最平幅度滤波电路)。
这种滤波电路对幅频响应的要求是:在小于截止频率cω的范围内,具有最平幅度的响应,而在cωω>后,幅频响应迅速下降。
2.3.2 巴特沃斯带通数字滤波器的设计步骤
(1)确定滤波器的指标即:通带上截止频率。
通带下截止频率。
阻带上截止频率,阻带下截止频率。
以及通带内最大衰减和阻
带最小衰减。
(2)求出模拟带通滤波器指标
(3)模拟归一化低通滤波器技术指标
(4)设计模拟低通滤波器
(5)将归一化模拟低通妆化为模拟带通
(6)利用双线性变换法将Ha(s)转化为数字带通滤波器H(Z).
(7)作图显示滤波器的幅频特性和相位特性。
3 设计内容
3.1 用MATLAB编程实现
ft=2000;
fpl=150;
fph=600;
wp1= fpl *2*pi; %临界频率采用模拟角频率表示
wph= fph*2*pi; %临界频率采用模拟角频率表示
wp=[ wp1,wph];
wpb=wp/ ft; %求数字频率
rp=0.5;
rs=40;
fsl=200;
fsh=500;
ws1= fsl *2*pi; %临界频率采用模拟角频率表示
wsh= fsh *2*pi; %临界频率采用模拟角频率表示
ws=[ ws1, wsh];
wsb=ws/ ft; %求数字频率
OmegaP=2* ft *tan(wpb/2);%频率预畸
OmegaS=2* ft*tan(wsb/2);%频率预畸
%选择滤波器的最小阶数
[N,Wn]=buttord(OmegaP,OmegaS, rp, rs,'s'); %此处是代入经预畸变后获得的归一化模拟频率参数
[Bt,At]=butter(N,Wn,'s'); % 设计一个N阶的巴特沃思模拟滤波器[Bz,Az]=bilinear(Bt,At, ft); %双线性变换为数字滤波器
[H,W] = freqz(Bz,Az); %求解数字滤波器的频率响应
subplot(2,2,1);
plot(W*ft/(2*pi),abs(H));grid on;
xlabel('频率');ylabel('幅值');
title('数字滤波器幅频响应');
subplot(2,2,2);
plot(W*ft/(2*pi),angle(H));grid on; xlabel('频率/Hz');ylabel('相位');
t=0:50;
y=sin(50*t+1/3*pi)+sin(300*t+pi); subplot(2,2,3);
plot(t,y);grid on;
y1=filter(Bz,Az,y);
subplot(2,2,4);
plot(t,y1);grid on;
3.2 设计结果分析
设计巴特沃斯带阻滤波器时,由于通带为一定的频率段。
因此被滤掉的部分为平缓先线条。
4 总结
本次课程实验中,让我慢慢了解了程序的编译,对于程序的编译也渐渐地掌握了其中的方法与规律。
通过这次试验让我收获颇大,在实验设计中,要先确定需要的函数,然后根据所给条件对数据进行处理后得到函数Ha(s),在经过程序编译,一步一步最终得到自己所需要的滤波器内容。
5 参考文献
《数字信号处理》(第三版)高西全丁美玉编著《MATLAB辅助现代工程数字信号处理》(第二版)
李益华主编
参考书目
邹理和著:《数字滤波器》,国防工业出版社,北京,1979。