气相色谱的分离基本原理
气相色谱法的原理

气相色谱法的原理气相色谱法是一种常用的分离和分析技术,它基于样品在气相载气流动相中的分配行为,利用不同化合物在固定相和流动相之间的分配系数差异,实现对混合物中成分的分离和检测。
本文将详细介绍气相色谱法的原理。
首先,气相色谱法的基本原理是建立在色谱柱上的。
色谱柱是气相色谱法的核心部件,它通常由不同材质的填料填充而成。
填料的选择对于色谱分离的效果至关重要。
常用的填料包括聚合物、硅胶、膜材料等,它们具有不同的亲和性和分配系数,可以对不同化合物进行有效的分离。
其次,气相色谱法的原理基于样品在色谱柱中的分配和传递过程。
当样品进入色谱柱后,不同成分会在填料中发生分配行为,根据其在固定相和流动相之间的分配系数不同,逐渐分离出来。
这种分离过程是在色谱柱中不断重复进行的,最终导致混合物中各成分的分离。
另外,气相色谱法的原理还涉及到检测器的作用。
色谱柱分离出的各成分将依次通过检测器,检测器会根据各成分的特定性质进行检测和记录。
常用的检测器包括质谱检测器、荧光检测器、紫外-可见光谱检测器等,它们能够对不同成分进行高效、灵敏的检测。
最后,气相色谱法的原理还包括色谱条件的选择和优化。
色谱条件的选择对于色谱分离效果和分析结果至关重要。
包括流动相的选择、色谱柱温度、流速、检测器灵敏度等参数的优化,都会直接影响到色谱分离的效果和分析结果的准确性。
综上所述,气相色谱法的原理基于样品在色谱柱中的分配和传递过程,利用不同成分在固定相和流动相之间的分配系数差异,通过检测器对分离出的各成分进行检测和记录,最终实现对混合物中成分的分离和检测。
在实际应用中,需要根据具体样品的特性和分析要求,选择合适的色谱条件进行优化,以达到最佳的分离效果和分析结果。
希望本文的介绍能够对气相色谱法的原理有所帮助。
气相色谱分离原理

气相色谱分离原理
气相色谱(Gas Chromatography,GC)是一种常用的分离分析技术,其原理基于不同化合物在特定条件下在流动相(气态)和固定相(液态或固态)之间的分配差异。
气相色谱主要包括样品的进样、样品的挥发和分离以及检测等步骤。
首先,样品被注入气相色谱仪中。
在进样器中,样品被加热,使其挥发成为气态。
然后,样品的气体进入色谱柱。
色谱柱内部是一个涂有液态或固态的固定相的管道。
蒸发出的样品气体在固定相上分配,不同化合物由于其与固定相的亲疏性不同,将以不同的速率在固定相上相互分离。
在色谱柱内分离完成后,化合物依次出现在色谱柱的出口处。
然后,这些化合物被传送到检测器进行检测和定量分析。
常用的检测器包括火焰离子化检测器(Flame Ionization Detector,FID)、电子捕获检测器(Electron Capture Detector,ECD)和质谱检测器(Mass Spectrometry,MS)等。
这些检测器会对化合物进行响应并产生相应的信号。
通过测量峰的面积或峰的高度,可以得到样品中不同化合物的含量。
根据化合物相对于固定相的亲疏性不同,在一定的时间内到达检测器的化合物质量信号也不相同。
因此,通过比较这些时间和信号可以确定样品中不同化合物的种类和含量。
总的来说,气相色谱是一种基于化合物在流动相和固定相之间的分配差异进行分离分析的技术。
它广泛应用于化学、环境、食品、药物等领域的分析与研究中。
气相色谱法的基本原理

气相色谱法的基本原理
气相色谱法(Gas Chromatography),是一种广泛应用于化学分析的一
种技术,它利用流动的相乎作为柱剂,能够将混合物转变为单独的组分,供检测。
一、基本原理
1、样品的分离:分离效果取决于样品分子颗粒大小和组成。
它在柱中被分解为单独的化学物质,以便进行检测。
2、样品的流动:用活性气体作为流体,把样品溶解在体系中并实现样品的流动和甩掉。
3、色谱室的温度控制:传热器控制色谱室的温度,当分子被连续加热和充满时,不同分子的稳定性越差,分离效率越高。
4、测定:检测各分子的浓度,可以通过元素测定仪器,例如:热电偶、热电阻、IEF等,用来检测分离得到的组分,使样品进行定量分析。
5、解析:记录检测数据,通过相对密度、元素信息以及表明分离物分子量的柱面分离,获得加入到样品中所包含的物质。
二、工作原理
1、引入混合样品:通过用N2或H2等气体将混合样品在色谱柱中进
行渗透。
2、对样品的第一次划分:使混合样品分为两组,一组比另一组相对密度较低的小分子。
3、增加温度:将色谱室的温度陆续加热,让更小的分子从色谱柱的出口处流出。
4、多次环路:重复上面的三步,多次进行环路,最终实现混合物的分离。
5、检测:通过元素测定仪器(如:热电偶、热电阻、红外)测定每个分离得到的组分,对样品进行定量分析。
三、应用
气相色谱法有较高的分离效果和灵敏度,具有检测多组分精细物质的
能力,能够采用可调精度的测定方法。
常用于环境监测(毒气检测、
有害物质检测),气体分析(氧气含量分析),食品检测(风味检测)等各种实际工程中,为样品的安全分析提供快速准确的基础数据。
气相色谱的原理

气相色谱的原理
气相色谱(Gas Chromatography, GC)是一种在化学分析中广泛应用的分离技术。
它通过将混合物中的化合物分离成单独的组分,并对每个组分进行定量分析,从而实现对样品的分析和检测。
气相色谱的原理是基于化合物在固定填充物上的分配和分离。
首先,样品被注入到色谱柱中,色谱柱是一个长而细的管状结构,内部填充有吸附剂或不溶于流动相的液相。
然后,样品在色谱柱中被气态载气(通常是惰性气体)带动向前移动,化合物会在填充物表面上吸附和脱附,这个过程称为分配。
不同的化合物会以不同的速率进行分配,因此在色谱柱的末端会出现分离的效果。
接下来,分离的化合物会进入检测器进行检测和定量分析。
常用的检测器包括火焰光度检测器(FID)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
这些检测器可以根据化合物的特性进行检测,并输出相应的信号。
在气相色谱中,流动相的选择对于分离效果至关重要。
通常情况下,气相色谱中使用的流动相是惰性气体,如氮气、氦气等。
这些气体对大多数化合物都是不活跃的,不会与样品发生化学反应,从而保证了分离的准确性。
此外,色谱柱的选择也对分离效果有重要影响。
不同的色谱柱具有不同的分离机制和分离效果,根据样品的性质和分析要求选择合适的色谱柱对于保证分离效果至关重要。
总的来说,气相色谱的原理是基于化合物在填充物上的分配和分离。
通过合理选择色谱柱和流动相,以及配合适当的检测器,可以实现对样品的高效分离和定量分析。
气相色谱技术在化学、生物、环境等领域都有着广泛的应用,为科学研究和工业生产提供了重要的技术支持。
气相色谱分析的基本原理

气相色谱分析的基本原理气相色谱分析是一种常用的分离和检测技术,它广泛应用于化学、生物、环境等领域。
其基本原理是利用气相色谱柱对混合物中的化合物进行分离,然后通过检测器对分离后的化合物进行检测和定量分析。
下面将详细介绍气相色谱分析的基本原理。
首先,气相色谱分析的样品处理。
在进行气相色谱分析之前,样品需要经过一系列的处理步骤,包括样品的提取、净化和浓缩。
这些步骤的目的是将需要分析的化合物从样品中提取出来,并去除干扰物质,以便进行后续的分离和检测。
其次,气相色谱柱的选择和分离。
气相色谱柱是气相色谱仪的核心部件,它的选择对于分离效果和分析结果具有重要影响。
在气相色谱分析中,常用的色谱柱包括吸附柱、填充柱和毛细管柱等。
不同类型的色谱柱适用于不同的分析目标,选择合适的色谱柱对于保证分离效果至关重要。
接下来,气相色谱分析的分离原理。
气相色谱分析的分离原理基于化合物在色谱柱中的分配和传递过程。
当样品混合物经过色谱柱时,不同化合物会根据其在柱中的亲和性和传递速率而发生分离。
这种分离原理可以实现对混合物中各种化合物的有效分离,为后续的检测和定量分析提供了可靠的基础。
最后,气相色谱分析的检测和定量。
分离后的化合物会通过检测器进行检测和定量分析。
常用的检测器包括火焰光度检测器(FID)、质谱检测器(MSD)等。
这些检测器可以对化合物进行灵敏的检测,并通过信号的强弱来实现对化合物的定量分析。
综上所述,气相色谱分析的基本原理包括样品处理、色谱柱的选择和分离、分离原理以及检测和定量。
通过对这些基本原理的理解和掌握,可以更好地实现对混合物中化合物的分离和检测,为科研和生产提供可靠的数据支持。
希望本文能够对读者对气相色谱分析的基本原理有所帮助。
气相色谱的分离基本原理

一、气相色谱的分离基本原理是什么?1.利用混合物中各组分在流动相和固定相中具有不同的溶解和解吸能力,或不同的吸附和脱附能力或其他亲和性能作用的差异。
2.当两相作相对运动时样品各组分在两相中反复多次受到各种作用力的作用,从而使混合物中各组分获得分离。
二、简述气相色谱仪的基本组成。
基本部件包括5个组成部分。
1.气路系统;2.进样系统;3.分离系统;4.检测系统;5.记录系统。
简述气相色谱法的特点?1、高分离效能;2、高选择性;3、高灵敏度;4、快速;5、应用广泛。
三、什么叫保留时间?从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用t表示。
四、什么是色谱图?进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线图称为色谱图。
五、什么是色谱峰?峰面积?1、色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。
2、出峰到峰回到基线所包围的面积,称为峰面积。
六、怎样测定载气流速?高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测,将皂膜流量计连接在测检测出口(也可将色谱柱与检测器断开皂膜流量计测接在色谱柱一端),测试每分钟的流速。
测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。
测试载气流速在室温下测试。
七、怎样控制载气流速?载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳流阀以达到控制载气流量稳定,减压阀给出的压力要高出稳压后的压力。
非程序升温色谱一般没有稳流阀,只靠稳压阀控制流速。
八、气相色谱分析怎样测其线速度?1、一般测定线速度实际上是测定色谱柱的死时间;2、甲烷作为不滞留物,测定甲烷的保留时间(TCD检测器以空气峰),3、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。
九、气相色谱分析中如何选择载气流速的最佳操作条件?在色谱分析中,选择好最佳的载气流速可获得塔板高度的最小值。
气相色谱的分离基本原理

一、气相色谱的分离基本原理是什么1.利用混合物中各组分在流动相和固定相中具有不同的溶解和解吸能力,或不同的吸附和脱附能力或其他亲和性能作用的差异。
2.当两相作相对运动时样品各组分在两相中反复多次受到各种作用力的作用,从而使混合物中各组分获得分离。
二、简述气相色谱仪的基本组成。
基本部件包括5个组成部分。
1.气路系统;2.进样系统;3.分离系统;4.检测系统;5.记录系统。
简述气相色谱法的特点1、高分离效能;2、高选择性;3、高灵敏度;4、快速;5、应用广泛。
三、什么叫保留时间从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用t表示。
四、什么是色谱图进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线图称为色谱图。
五、什么是色谱峰峰面积1、色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。
2、出峰到峰回到基线所包围的面积,称为峰面积。
六、怎样测定载气流速高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测,将皂膜流量计连接在测检测出口(也可将色谱柱与检测器断开皂膜流量计测接在色谱柱一端),测试每分钟的流速。
测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。
测试载气流速在室温下测试。
七、怎样控制载气流速载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳流阀以达到控制载气流量稳定,减压阀给出的压力要高出稳压后的压力。
非程序升温色谱一般没有稳流阀,只靠稳压阀控制流速。
八、气相色谱分析怎样测其线速度1、一般测定线速度实际上是测定色谱柱的死时间;2、甲烷作为不滞留物,测定甲烷的保留时间(TCD检测器以空气峰),3、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。
九、气相色谱分析中如何选择载气流速的最佳操作条件在色谱分析中,选择好最佳的载气流速可获得塔板高度的最小值。
气相色谱分离的原理

气相色谱分离的原理
气相色谱(Gas Chromatography, GC)是一种基于物质在气相
和液相中的分配行为,通过气体载气和固定相之间的相互作用来分离和定量分析物质的方法。
气相色谱的分离原理可以概括为以下几个步骤:
1. 气相传递:样品溶解在适当的溶剂中后,通过一个进样口被注入到气相色谱柱中。
柱中通常充满了一种固定相,如多孔玻璃柱或固定合成材料。
2. 柱温调节:为了使样品在柱中得到有效分离,柱的温度需要被控制在一个适当的范围内。
温度升高会加快样品在固定相中的扩散速度,提高分离的效果。
3. 气体载气:在进样口后,气体载气被用来将样品推动到柱中。
载气通常是无色、无味、无反应性的气体,如氮气或氦气。
载气的选择很重要,它影响到样品分离的速度和最终的分离效果。
4. 相互作用分离:样品在固定相中的传递过程中会与固定相上的活性位点相互作用。
这些相互作用包括吸附、扩散、排斥等,根据不同成分与固定相的相互作用力的差异,导致在柱中不同成分的分离。
5. 检测和分析:通过检测器检测样品分离后的成分,并将信号转换为电信号,进行数据处理和分析。
常用的检测器包括火焰离子化检测器(FID)、热导率检测器(TCD)、质谱检测器
(MS)等。
通过以上步骤,气相色谱可以将样品中不同成分进行有效的分离和定量分析,广泛应用于化学、生物、医药等领域中的物质分析与检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、气相色谱的分离基本原理是什么?1.利用混合物中各组分在流动相和固定相中具有不同的溶解和解吸能力,或不同的吸附和脱附能力或其他亲和性能作用的差异。
2.当两相作相对运动时样品各组分在两相中反复多次受到各种作用力的作用,从而使混合物中各组分获得分离。
二、简述气相色谱仪的基本组成。
基本部件包括5个组成部分。
ﻪ1.气路系统;2.进样系统;3.分离系统;4.检测系统;5.记录系统。
简述气相色谱法的特点?1、高分离效能;ﻪ2、高选择性;3、高灵敏度;ﻪ4、快速;5、应用广泛。
三、什么叫保留时间?从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用t表示。
ﻪ四、什么是色谱图?ﻪ进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线图称为色谱图。
ﻪ五、什么是色谱峰?峰面积?1、色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。
2、出峰到峰回到基线所包围的面积,称为峰面积。
六、怎样测定载气流速?ﻪ高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测,将皂膜流量计连接在测检测出口(也可将色谱柱与检测器断开皂膜流量计测接在色谱柱一端),测试每分钟的流速。
测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。
测试载气流速在室温下测试。
ﻪﻪ七、怎样控制载气流速?ﻪ载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳流阀以达到控制载气流量稳定,减压阀给出的压力要高出稳压后的压力。
非程序升温色谱一般没有稳流阀,只靠稳压阀控制流速。
ﻪ八、气相色谱分析怎样测其线速度?1、一般测定线速度实际上是测定色谱柱的死时间;ﻪ2、甲烷作为不滞留物,测定甲烷的保留时间(TCD检测器以空气峰),3、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。
ﻪ九、气相色谱分析中如何选择载气流速的最佳操作条件?在色谱分析中,选择好最佳的载气流速可获得塔板高度的最小值。
因此,从速率理论关于峰形扩张公式可求出最佳流速值。
通常色谱柱内径4mm,可用流速为30ml/minﻪﻪ十、气相色谱分析中如何选择载气的最佳操作条件?ﻪ1、载气的性质对柱效和分析时间有影响;2、用相对分子质量小的载气时,最佳流速和最小塔板高度都比相对分子质量大的载气时优越;ﻪ3、用轻载气有利于提高分析速度,但柱效较低;4、低速时,最好用,这样既能提高柱效,又能减小噪声;5、另外,选择载气又要从检测器的灵敏度考虑。
ﻪﻪ十一、气相色谱分析中如何选择气化室温度的最佳操作条件?1、气化室温度控制在使样品瞬间气化而不造成样品分解为最佳。
ﻪ2、一般规律是气化室温度高于样品的沸点温度并要求保持气化温度恒定就可用峰高定量。
十二、色谱分析中,气、液、固样品各用什么进样器进样?ﻪ气体样品进样:用注射器进样;用气体定量管进样,常用六通阀。
ﻪ液体样品进样:微量注射器。
固体样品进样:固体样品溶解后用微量注射器进样,顶空进样法。
ﻪ十三、气相色谱分析中如何选择柱温的最佳操作条件?1、一般采用柱温为被分析物的平均沸点左右或稍低一点;ﻪ2、柱温不能高于固定液最高使用温度,低于样品分解温度;ﻪ3、特殊情况下柱温也可以低于柱温很多(环己酮中环己基过氧化氢色谱分析中环己酮沸点160多度,用55度柱温峰型和出峰速度都很好)。
十四、在气相色谱分析中如何选择柱形、柱径和柱长的最佳操作条件?ﻪ1、缩小柱子的直径对提高柱效率,提高分离度是有利的,但直径太小,对分析速度不利;ﻪ2、柱子直径与柱曲率半径相差越大越好;3、一般填充柱柱长多用2左右,毛细管柱十几、几十米左右。
十五、热导检测器使用时应注意什么?ﻪ1、温度,热导池温度应高于或接近柱温,防止样品冷凝;2、热丝,为避免热丝氧化,要先通载气,再通桥流,关闭时要先关桥流再关ﻪ十六、载气热导池的基本结构有几种?1、热导池检测器是不锈钢制成池体、池槽和热敏元件所组成的;ﻪ2、基本结构有三种:直通型;扩散型;半扩散型。
ﻪﻪ十七、热导池检测器温度如何控制?ﻪ1、热导池检测器温度要求高于柱温,防止分离物质冷凝污染。
2、更重要的是控温精度要求能控制在此。
0、05以内。
ﻪﻪ十八、简述气相色谱检测器的性能指标?1、灵敏度;2、敏感度;3、线性范围;4、稳定性。
ﻪ十九、简述热导检测器的分析原理?1、热导检测器是基于不同的物质有不同的热导系数。
2、在未进样时,两池孔的钨丝温度和阻值减小是相等的。
3、在进样时,载气经参比池,而载气带着试样组分流经测量池,由于被组分与载气组成的混合气体的热导系数与载气的热导系数不同。
4、因此测量池中的钨丝温度发生变化使两池孔中的两根钨丝阻值有了差异。
ﻪ5、通过电桥测出这个差异,从而测出被测组分含量。
二十、氢焰检测器的注意事项是什么?ﻪ1、离子头绝缘要好,外壳要接地;ﻪ2、氢焰离子化检测器使用温度应大于是100度;3、离子头的喷嘴和收集极,在使用一定时间后应进行清洗。
ﻪ二十一、氢火焰氢火焰离子检测器的基本原理?ﻪ1、氢火焰检测器是根据色谱流出物中可燃性有机物在氢一氧火焰中发生电离的原理而制成的;ﻪ2、由于在火焰附近存在着由收集极和发射极之间所造成的静电场;3、当被测组分燃烧生成离子,在电场作用下定向移动而形成离子流,经微电流放大器放大,然后到记录仪记录。
(目前氢火焰离子检测器的基本原理说法有两种,一种是在火燃的作用下离子化,另一种是在电场作用下离子化。
)二十二、在气固色谱中,常用的固定相有哪些?ﻪ1、活性炭;2、氧化铝;3、硅胶;4、分子筛;5、高分子多孔小球。
色谱柱固定液选择原则是什么?ﻪ1、相似相溶原则;2、利用分子间特殊作用力原则;3、利用混合固定液原则。
ﻪ什么是固定相?在色谱柱内不能移动而能起分离作用的物质称为固定相。
二十三、色谱固定相分几类?1、一类为具有吸附性的多孔固体物质称吸附剂;2、一类是能起分离作用的液体物质称为固定液。
二十四、常用的固体吸附固定相有哪些?常用的固体吸附固定相有:吸附剂、高分子多孔小球、化学键合固定相。
ﻪ二十五、气相色谱选择固定液的要求是什么?ﻪ1、热稳定性好,蒸汽压低,色谱温度下呈液态;ﻪ2、试样在固定液中有足够的溶解能力;ﻪ3、选择性高;4、具有化学惰性。
ﻪ二十六、气相色谱用载体应具备哪些特性?ﻪ1、应具有大的比表面积;2、应具有化学惰性;3、载体形状规则;4、要有较大的机械强度。
二十七、简述色谱柱管的预处理?ﻪ1、将截取所需长度的不锈钢管弯成所需形状;2、用10%热碱洗去油污,用自来水洗净;3、用10%盐酸洗去管内金属氧化物;ﻪ4、先用水后用乙醇冲洗,烘干后待用。
ﻪﻪ二十八、色谱柱的载体是如何涂渍的?1、根据配比先称取一定量的固定液,溶解在有机溶剂中;ﻪ2、加入载体,溶剂应把载体没入,轻轻搅拌;3、用红外灯照射使溶剂蒸发,溶剂挥发后涂渍完毕;二十九、怎样老化色谱柱?1、在室温下,将柱子接真空泵的一端接在色谱仪的气化室上,另一端放空;2、通载气在室温下吹0、5,使柱中空气被吹干净;ﻪ3、然后升温,在高于使用温度20-30度的温度下保持12-24。
ﻪ4、降至室温,完成老化,接检测器。
ﻪﻪ三十、为什么老化色谱柱?1、新填的色谱柱中有残余的溶剂和固定液中的一部分低分子量的物质及其它易挥发杂质,所以老化。
ﻪ2、另一个目的是可以使固定液均匀地涂在载体上。
ﻪ三十一、色谱定量分析常用有几种方法?ﻪ内标法;外标法;归一化法。
ﻪ三十二、气相色谱法定量依据是什么?1、检测器产生的响应信号大小与进入检测器组分的量成正比。
因此只要色谱柱能将试样中所有2、组分完全分离,ﻪ3、记录系统正确记录ﻪ4、准确测量色谱面积就可以进行定量。
三十三、什么是校正因子?1、校正因子是相对响应的倒数,它与峰面积的乘积正比于物质的量。
ﻪ2、即进入检测器中组分的量与检测器产生的相应色谱峰之间的关系。
ﻪﻪ三十四、在气相色谱分析中,如何测定定量校正因子?ﻪ1、准确称量被测组分和标准物质,混合后,在实验条件下进行分析,分别测量相应的峰面积。
2、然后计算质量校正因子;摩尔校正因子,如果数次的测量值接近,可取平均值ﻪ三十五、气相色谱永久性气体的分析采用的仪器和试剂如何?ﻪ1、仪器:热导池检测器;皂膜流量计;秒表。
ﻪ2、试剂:13或5分子筛;(60-80目);使用前预先在高温炉内,于350度活化4小时后备用。
纯氧气、氮气、甲烷、一氧化碳装入球胆或聚乙烯取样袋中。
氢气装在高压钢瓶内。
三十六、高效液相色谱法在使用中有什么特点?ﻪ1、分离效能高;ﻪ2、检测灵敏度高;3、分析速度快;4、选择性高。
七、高效液相色谱法的适用范围?适于分析1、沸点高、2、相对分子量大、3、受热易分解的不稳定有机化合物、4、生物活性物质5、以及多种天然产物。
ﻪ三十八、高效液相色谱检测器按检测的对象分哪几类?1、整体性质检测器;ﻪ2、溶质性质检测器。
ﻪﻪ三十九、高效液相色谱检测器按适用性分哪几类?ﻪ1、选择性检测器;2、通用型检测器。
四十、进行液相色谱分析时,评价检测器要强调哪几点?ﻪ1、噪声ﻪ2、基线漂移;3、灵敏度;4、线性范围;5、检测器的池体积。
ﻪﻪ四十一、高效液相色谱分析常用的进样器有哪几种?1、注射器进样装置;2、六通阀进样装置。
四十二、在高效液相色谱仪分析中,如何处理色谱柱柱管?ﻪ使用前柱管先用1、氯仿、甲醇、水依次清洗,2、再用50%的对柱内壁作3、钝化处理。
钝化时使在柱管内至少滞留10Min。
以在内壁形成纯化的氧化涂层。
ﻪﻪ四十三、在高效液相色谱分析中,填充色谱柱的方法有几种?是什么?ﻪ有2种,根据固定相微粒的大小有干法和湿法两种。