新课标高考数学考纲.doc

合集下载

2024广东新高考数学大纲

2024广东新高考数学大纲

2024广东新高考数学大纲
2024年广东新高考数学大纲涵盖了更丰富的数学知识体系,旨在更好地满足新时代人才培养的需求。

具体来说,新考纲包括以下几个部分:
1.集合与逻辑用语:考生需要掌握集合的基本概念,如元素与集合、子集、交
集、并集、补集等。

此外,还需了解逻辑运算符及其性质,如与、或、非、蕴含等,并能运用这些知识解决实际问题。

2.代数部分:包括函数、数列、不等式等方面的知识。

考生需要掌握函数的定
义、性质和应用,以及等差数列、等比数列的通项公式和求和公式。

还需理解不等式的性质和解题方法。

3.几何部分:涵盖了几何学中的基本概念和性质,如点、线、面的性质和关系,
以及三角形、四边形、圆等基本图形的性质和定理。

考生需要掌握这些知识,并能够灵活运用解决实际问题。

4.概率与统计部分:这部分知识涉及随机事件、概率、统计等方面的内容。


生需要理解随机事件的概念和概率的计算方法,掌握统计的基本概念和数据处理方法。

2024年广东新高考数学大纲注重考查考生的数学基础知识和应用能力,要求考生能够灵活运用所学知识解决实际问题。

新考纲还强调了数学在日常生活和工作中的重要性,引导考生关注数学的应用价值。

1/ 1。

2024 高考 数学考试大纲

2024 高考 数学考试大纲

2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。

2. 立方根:立方根的概念、立方根的计算、立方根的性质。

3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。

二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。

2. 一次函数:一次函数的定义、一次函数的图象与性质。

3. 二次函数:二次函数的定义、二次函数的图象与性质。

4. 分式函数:分式函数的定义、分式函数的图象与性质。

5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。

6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。

三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。

2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。

3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。

4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。

四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。

2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。

3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。

4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。

新考纲高考系列数学:三角函数

新考纲高考系列数学:三角函数

新考纲高考系列数学三角函数1.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A C B +=_____. 542.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数3.在AB C ∆中,已知sinC=2sin(B+C)cosB,那么AB C ∆一定是 ( B ) A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形4.已知⎪⎭⎫ ⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x . (Ⅰ)求x sin 的值; (Ⅱ)求⎪⎭⎫⎝⎛+32sin πx 的值. 本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分. 【解】(Ⅰ)解法一:因为⎪⎭⎫⎝⎛∈43,2ππx ,所以⎪⎭⎫ ⎝⎛∈-2,44πππx ,于是10274cos 14sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-ππx x .sin sin sin cos cos sin 444444x x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭41021025=+=.解法二:x x +=,即1cos sin 5x x +=. 又22sin cos 1x x +=,225sin 5sin 120x x --=,解得4sin 5x =或3sin 5x =-. 因为,24x ππ3⎛⎫∈⎪⎝⎭,所以4sin 5x =. (Ⅱ)因为⎪⎭⎫ ⎝⎛∈43,2ππx ,故53541sin 1cos 22-=⎪⎭⎫ ⎝⎛--=--=x x .2571cos 22cos ,2524cos sin 22sin 2-=-=-==x x x x x . 所以5037243sin 2cos 3cos 2sin 32sin +-=+=⎪⎭⎫⎝⎛+πππx x x .5.已知函数)(,2cos 4sin 5cos 6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.解:由Z k k x k x x∈+≠+≠≠,42,2202cos ππππ解得得. 所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且 因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos 624x f x f xx x 所以=-+=是偶函数.当x x x x f Z k k x 2cos 4sin 5cos 6)(,,4224-+=∈+≠时ππ 1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x , 所以)(x f 的值域为}221211|{≤<<≤-y y y 或6.在ABC △中,已知内角A π=3,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 由正弦定理知sin sin 4sin sin sin BC AC B x xA ===π3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭, (2)14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭, 所以,当x ππ+=62,即x π=3时,y取得最大值7.向量x f x x xx ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ. 是否存在实数?))()((0)()(],,0[的导函数是其中使x f x f x f x f x '='+∈π若存在,则求出x 的值;若不存在,则证明之. 解:)42tan()42tan()42sin(2cos 22)(πππ-+++=⋅=x x x x x f12cos 22cos 2sin 22tan112tan 2tan 12tan1)2cos 222sin 22(2cos 222-+=+-⋅-+++=x x x x xx x x x x.cos sin x x +=()()0,:()()sin cos cos sin f x f x f x f x x x x x ''+=+=++-令即.0cos 2==x.0)()(],,0[2,2='+∈==x f x f x x 使所以存在实数可得πππ。

浙江新高考学考考纲考试标准数学学考选考标准

浙江新高考学考考纲考试标准数学学考选考标准

数学一、考试性质与对象浙江省普通高中数学学业水平考试是在教育部指导下,由省教育行政部门组织实施的全面衡量普通高中学生数学学业水平的考试。

考试成绩是普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。

浙江省普通高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。

考试的对象是2014年秋季入学的高中在校学生,以及相关的往届生、社会人员和外省在我省异地高考学生。

二、考核目标、要求与等级(一)考核目标普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到《课程标准》所规定的基本要求和所必须具备的数学素养的检测考试。

(二)考核要求根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。

突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。

关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。

充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平.全面检测学生的数学素养。

1.知识要求知识是指《教学指导意见》所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。

对知识的要求从低到高分为四个层次,依次为:了解、理解、掌握、综合应用,其含义如下:(1)了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。

这一层次所涉及的主要行为动词有:了解、知道、识别、模仿、会求、会解等。

(2)理解:要求对所列知识内容有较深刻的理性认识.知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的能力。

2024高中数学高考考纲

2024高中数学高考考纲

2024高中数学高考考纲一、考试性质本考试旨在评估高中生对数学基础知识和基本技能的掌握程度,以及运用数学思维解决问题的能力。

二、考试目标1、掌握高中数学的核心概念、原理、方法和技能。

2、培养数学思维和解决问题的能力。

3、检测学生对数学知识的理解和应用能力。

三、考试内容与要求1、代数•集合与逻辑•函数及其性质•指数函数与对数函数•三角函数及其性质•数列与数列的极限•排列组合与概率初步2、几何•平面几何:三角形、四边形、圆的性质和定理•立体几何:空间几何体的性质、三视图与直观图•解析几何:直线、圆、圆锥曲线的方程及其性质3、概率与统计•概率论初步:随机事件、概率及其性质•统计初步:数据的收集、整理与描述,以及简单的统计分析4、微积分初步•极限的概念与性质•导数的概念与应用•定积分及其应用四、考试形式与试卷结构1、考试形式:闭卷,笔试。

考试时间为120分钟。

2、题型结构:选择题、填空题、解答题。

其中选择题和填空题占60%,解答题占40%。

3、分值分布:总分为150分。

代数部分占40%,几何部分占40%,概率与统计占15%,微积分初步占5%。

五、考试评价标准1、基础知识的掌握:要求考生对高中数学的基本概念、定理和公式有清晰的理解和掌握。

2、计算能力:能够准确、快速地进行基本的数学运算。

3、逻辑思维与分析能力:能够运用数学思维,分析问题,找到解决方案。

4、问题解决能力:能够运用所学知识解决实际问题或数学问题。

5、创新与应用能力:能够将数学知识应用于日常生活或其他学科中,具有一定的创新意识和能力。

以上是一个简略的2024年高中数学高考考纲草案。

在撰写完整考纲时,您需要进一步细化每个部分的内容,明确每个知识点的要求和标准,并给出具体的题型示例和分值分布。

同时,为了确保考纲的科学性和有效性,建议您在制定过程中充分征求教师、学生和课程专家的意见,并进行试测和反馈修订。

2023年高考数学考试大纲

2023年高考数学考试大纲

2023年高考数学考试大纲
1、增加了数学文化的要求。

2、在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。

3、在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》、《不等式选讲》2个模块中任选1个作答。

总体上,这些变化对2023年高考数学考试影响不大。

基于两个原因:
一是在这次高考考纲修订基本原则“坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。

2015年、2016年全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,2020年高考仍然还会沿用这种思路命制试卷。

二是近两年高考试卷已先于2023年高考考纲在命题中渗透了一些变化与创新,全国数学2卷最大的变化点是,突出了社会主义核心价值观,强调了中国传统数学文化精髓。

在数学文化方面,2016年高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋著名数学家秦九韶提出的多项式求值的算法,2015
年高考全国2卷文、理科数学的第8题涉及到了我国古代数学名著《九章算术》中的“更相减损术”。

这就是说,今年考纲中所提到的新要求、新变化,在两年前的高考中就已经有所体现了,所以2023年高考对我们而言变化不会很大。

而第三项变化是选考题由“三选一”变为“二选一”,这将减轻学生的课业负担。

高考数学考纲

高考数学考纲

高考数学考纲
高考数学考纲包含以下内容:
1. 函数与方程
- 函数与函数的表示:定义域、值域、图像、性质等。

- 一次函数、二次函数、指数函数、对数函数和幂函数的性质与应用。

- 方程:一元二次方程、一次方程组、二元二次方程组等的解法与应用。

2. 数学关系与变量
- 函数的运算与复合函数。

- 等差数列与等比数列的性质与应用。

- 概率与统计:事件的概率、频率、期望、样本调查等。

3. 三角函数与解三角形
- 角度的度量与弧度制。

- 三角函数的概念、性质与应用。

- 解三角形的基本方法与题型:余弦定理、正弦定理、海伦公式等。

4. 导数与微分
- 导数的概念与计算。

- 函数的单调性、极值、凹凸性与应用。

- 微分的概念与计算:函数值的改变与函数增量的比较。

5. 空间几何与图形变换
- 空间几何中的直线、平面与曲面的性质。

- 二维图形与三维图形的变换:平移、旋转、缩放等。

6. 排列与组合
- 排列、组合的概念与计算。

- 集合的运算与集合的性质。

7. 线性代数与矩阵
- 矩阵的概念、运算与性质。

- 线性方程组的解法与应用。

- 向量与向量的运算、平面向量与空间向量的性质。

8. 数列与数学归纳法
- 数列的概念、性质与应用。

- 数学归纳法的原理与应用。

需要注意的是,以上内容仅为一般高考数学考纲的概述,具体考纲内容可能会有所调整和变化。

建议参加高考的同学们以当年所规定的考纲为准进行备考。

高考数学考纲

高考数学考纲

高考数学考纲
(一)统计
1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2.用样本估计总体
(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差.
(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3.变量的相关性
(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).
(二)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.
2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(三)统计案例
(1)通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.
(2)通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高考数学考纲
一)命题指导思想
1.命题应依据教育部《普通高中数学课程标准(实验)》和《2007年普通高等学校招生全国统一考试新课程标准数学科考试大纲》(待发),并结合我省普通高中数学教学实际,体现数学学科的性质和特点。

2.命题注重考查考生的数学基础知识、基本技能和数学思想、数学方法、数学能力,体现知识与能力、过程与方法、情感态度与价值观等目标要求。

3.命题既要实现平稳过渡,又要体现新课程理念。

4.注重试题的创新性、多样性和选择性,具有一定的探究性和开放性。

5.命题要坚持公正、公平原则。

试题要切合我省中学数学教学实际,数学问题的难度、问题的情景等要符合考生的实际水平。

应用题要“贴近生活,背景公平,控制难度”。

6.命题要注意必修内容和选修内容的有机联系与适当差异,注重数学学科知识的内在联系。

7.试卷要有较高的信度、效度和必要的区分度以及适当的难度,难度系数控制在0.55—0.65之内。

(二)知识和能力要求
1.知识要求
对知识的要求由低到高分为三个层次,依次是感知和了解、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。

(1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。

(2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。

(3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。

2.能力要求
能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。

(1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷的运算途径。

(2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算。

(3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关系;会运用图形与图表等手段形象地揭示问题的本质。

(4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

(5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性。

(6)实践能力:能够对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题,并能用数学语言正确地表述、说明。

(7)创新意识:能够独立思考,灵活和综合地运用所学数学的知识、思想和方法,提出问题、分析问题和解决问题。

(三)考试范围及要求
1.考试范围
(1)文科
《普通高中数学课程标准(实验)》中的必修课程内容和选修系列1内容。

数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。

数学2:立体几何初步、平面解析几何初步。

数学3:算法初步、统计、概率。

数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。

数学5:解三角形、数列、不等式。

选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1-2:统计案例、推理与证明、数系的扩充及复数的引入、框图。

(2)理科
《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2内容。

数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。

数学2:立体几何初步、平面解析几何初步。

数学3:算法初步、统计、概率。

数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。

数学5:解三角形、数列、不等式。

选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。

选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。

选修2-3:计数原理、统计案例、概率。

2.具体考试内容及其要求(略)
(四)考试形式与试卷结构
1.考试形式
考试采用闭卷、笔试形式。

试卷满分为150分,考试时间为120分钟。

考试不允许使用计算器。

2.试卷结构
试卷包括第Ⅰ卷和第Ⅱ卷。

试题分选择题、填空题和解答题三种题型。

第Ⅰ卷以单项选择题题型呈现,主要考查必修内容中的基本知识和基本技能,共12题,分值为60分。

第Ⅱ卷以填空题和解答题题型出现,主要考查数学的思想、方法和能力,必修内容和选修内容都在考查之列。

填空题只要求直接填写结果,不必写出计算过程或推证过程,填空题共4题,分值为16分。

解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程,解答题共6题,分值为74分。

试卷包括容易题、中等难度题和难题,以中等难度题为主。

相关文档
最新文档