2019年高考数学考试大纲解读(理科数学)
解读2019高考数学考试大纲及考试说明

(五)高考数学试题来源:
①课本是试题的基本来源(旧题翻新);
②历届高考试题成为新高考试题的借鉴; ③课本与《课程标准》的交集成为试题的创新地带; ④高等数学的基本思想、基本问题为高考题的命制提 供背景; ⑤国内外竞赛试题改编。
3
(一)课程基本理念
这些课程理念,必将在今后相当长的一段 时间内,引领高中数学教师瞄准育人目标,明确 教学内容,规范教学行为,完成教学任务.与此 相应的高考,必将把考查学生的数学素养、数学 思想、数学应用、数学文化等作为数学高考的重 要任务,并在试题中鲜明地体现出来。
4
(二)大纲解读:
2019年的考试大纲与2018年相比,在考核目标、 考试范围与要求等方面都没有变动,总体来看, 《2019年高考数学考试大纲》在指导思想、考核要 求及考试范围方面延续了2018年的要求: 1.继续坚持“一体四层四翼”的命题指导思想,注重顶 层设计,继续明确了“立德树人、服务选才、引导教 学”这一高考核心功能;通过明确“必备知识、关键能 力、学科素养、核心价值”四层考查内容以及“基础性、 综合性、应用性、创新性”四个方面的考查要求,回 答了高考“考什么”和“怎么考”的问题。
4.在现行考试大纲三个选考模块中删 去《几何证明选讲》,其余2个选考 模块的内容和范围都不变,考生从 《坐标系与参数方程》、《不等式选 讲》2个模块中任选1个作答。
(四)高考数学新课标卷命题指导思想
坚持“有助于高校科学公正地选拔人才,有助于推进普通高中 课程改革,实施素质教育”的原则,体现普通高中课程标准的基本 理念,以能力立意,将知识、能力和素质融为一体,全面检测考生 的数学核心素养. 发挥数学作为主要基础学科的作用, 考查考生对中 学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方 法和数学本质的理解水平,以及进入高等学校继续学习的潜能.
2019年高考理科全国1卷数学-解析

2019 年普通高等学校招生全国统一考试理科数学1.已知集合Mx 4 x 2 , N { x x2x 6 0 ,则MN =A. { x4 x 3B. { x4 x2C. { x2 x 2D.{ x 2 x3【答案】 C【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,Mx 4 x 2 , Nx 2 x 3 ,则M Nx 2 x2 .故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数 z 满足z i =1,z在复平面内对应的点为(x,y) ,则A.( x+1)2y21B. ( x 1)2y 21C. x2( y 1)21D. x2( y+1)21【答案】 C【解析】【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0, 1)之间的距离为1,可选正确答案C.【详解】 z x yi , z i x ( y 1)i , zix2( y 1)21, 则x2( y 1)21.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知alog 2 0.2, b 2 0.2, c0.20.3,则A.a b cB. a cbC. c a bD.b c a【答案】 B【解析】【分析】运用中间量0 比较a , c,运用中间量1比较b , c【详解】 a log2 0.2 log 2 10, b 20.2201, 0 0.20.30.201, 则0c1,a c b .故选B.【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512(5 1≈ 0.618,称为黄金分割比例 ),著名的“断臂维纳斯”便是如此.此外,最美人体2的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51.若某人满足上述两个黄金分割2比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm 【答案】 B【解析】【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则26 2 6 x 5 1 42.07cm, y 5.15 cm .又其腿长为105cm ,头顶至脖子下xy 1 0 5,得 x2端的长度为 26cm ,所以其身高约为 42.07+5.15+105+26=178 .22,接近 175cm .故选 B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.sin x x5.函数 f( x)= cos x x 2在[— π, π]的图像大致为A.B.C.D.【答案】【解析】【分析】D先判断函数的奇偶性,得 f (x)是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.sin( x) ( x) sin x x f ( x) ,得f ( x)是奇函数,其图象关【详解】由 f ( x)x)( x)2cos x x 2cos(于原点对称.又 f ( )12422 0.故选D.21, f ( )12()22【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6 个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3 个阳爻的概率是5112111 A. B. C. D.16323216【答案】 A【解析】【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3 个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有 2 中情况,一重卦的 6 爻有26情况,其中 6 爻中恰有 3 个阳爻情况有 C63,所以该重卦恰有 3 个阳爻的概率为C63=5,故选A.2616【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a, b 满足a = 2 b ,且(a–b)b,则 a 与 b 的夹角为π π 2π 5π A.B.C.D.6336【答案】 B【解析】【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由 (a b) b 得出向量a,b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为(a b) b ,所以 (ab) b a b b 2 =0 ,所以a b b 2,所以cos =a b | b |2 1 a 与b 的夹角为 ,故选 B .a b2 | b |2,所以23【点睛】对向量夹角的计算, 先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0, ].1 8.如图是求21的程序框图,图中空白框中应填入2 121 B. A=21 1 A. A=C. A=D. A=2 AA1 2 A112 A【答案】 A【解析】【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.1 , k 11, k k1【详解】执行第 1次, A 1 2 是,因为第一次应该计算1=2222A1=2,循环,执行第 2 次,k2 2 ,是,因为第二次应该计算1=1, k k1 2122A2=3,循环,执行第 3 次,k2 2 ,否,输出,故循环体为1,故选 A.AA21【点睛】秒杀速解认真观察计算式子的结构特点,可知循环体为A.2A9.记S n为等差数列 { a n} 的前n项和.已知 S40,a5 5 ,则A.a n2n5B. a n3n 10C.S n 2n28nD.S n 1 n22n2【答案】 A【解析】【分析】等差数列通项公式与前 n项和公式.本题还可用排除,对 B ,a5 5 ,S44(72)100 ,排除B,对C,S40, a5S5S4 2 5285010 5 ,2排除 C.对 D,S40, a5S5S4152 2 505 5 ,排除D,故选A.22S44a1d430a13a n n5 ,故选【详解】由题知,2,解得,∴A.2a5a14d5d2【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10. 已知椭圆 C 的焦点为F1( 1,0) , F2( 1,0) ,过F2的直线与C 交于,两点若A B.│ AF│22│F2B│1,│ AB│ │ BF│,则C的方程为A.x2y21x2y2x2y2D. 2B.1C.13243x2y2154【答案】 B【解析】【分析】可以运用下面方法求解:如图,由已知可设F2 B n ,则 AF22n , BF1AB3n,由椭圆的定义有2a BF1BF24n ,AF12a AF22n.在△ 1 2△BF F中,AF F和 1 2由余弦定理得4n24 2 2n 2 cos AF2 F14n2 ,,又 AF F,BF F互补,n24 2 n 2 cos BF2 F19n22121c o s A F F c o s B F F ,0两式消去cos AF F , cos BF F,得3n2611n2,21212121解得n 3 .2a4n 2 3 , a 3 ,b2a2c231 2 ,所求椭圆方程为2x2y21,故选B.32【详解】如图,由已知可设F2 B n ,则 AF22n , BF1AB3n,由椭圆的定义有2a BF1BF24n , AF12a AF22n .在△A F1 B 中,由余弦定理推论得cos F1 AB 4n29n29n2122214 ,22n3n.在△AF1F2中,由余弦定理得4n4n2n 2n33解得n 3 .22a 4n 2 3 , a3 , b2a2c2 3 1 2 ,所求椭圆方程为x2y21,32故选 B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11. 关于函数f ( x)sin | x | | sin x |有下述四个结论:① f(x)是偶函数② f(x)在区间(, )单调递增2③ f(x)在[ ,]有4个零点④ f(x)的最大值为 2其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③【答案】 C【解析】【分析】化简函数 f x sin x sin x ,研究它的性质从而得出正确答案.【详解】f x sin x sin xsin x sin x f x , f x为偶函数,故①正确.当2x时, f x2sin x,它在区间,单调递减,故②错误.当 0 x2时,f x2s i nx0;当x0时,,它有两个零点:f x s i n x s i x n ,它2有x一s个i零n点:,故 f x 在,有 3个零点:0,故③错误.当 x 2k , 2k k N时, f x 2 s i nx;当x 2k, 2k2k N时, f x si n x si nx ,0 又 f x 为偶函数,f x的最大值为2,故④正确.综上所述,①④正确,故选 C.【点睛】画出函数f x sin x sin x 的图象,由图象可得①④正确,故选C.12. 已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ ABC 是边长为2 的正三角形,E, F 分别是PA, PB 的中点,∠CEF =90 °,则球O 的体积为A.86B.46C.26D.6【答案】D【解析】【分析】先证得PB 平面PAC ,再求得PAPBPC2,从而得PABC为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一 :PA PB PC,ABC 为边长为2的等边三角形,P ABC 为正三棱锥,PB AC ,又 E ,F分别为 PA、 AB 中点,EF //PB,EF AC,又 EF CE ,CEAC C ,EF平面 PAC , PB平面 PAC ,PAB PA PB PC 2 ,P ABC 为正方体一部分,2R 2 2 26,即 R 6 ,V4R34 6 6 6 ,故选D.2338解法二 :设 PA PB PC2x , E, F 分别为PA, AB中点,EF //PB,且EF 1PB x ,ABC 为边长为 2 的等边三角形,2CF 3 又CEF90CE3x2,AE 1PA x 2AEC 中余弦定理 cos EAC x243x2,作 PD AC于D,PA PC,2 2xAD1x243x2 1 ,Q D 为 AC 中点,cos EAC,PA2x 4 x2x2x2 1 2x21x 2 ,PA PB PC2,又 AB=BC =AC=2 ,22PA , PB , PC 两两垂直,2R222 6 ,R 6 ,2V 4 R3466 6 ,故选D.338【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题:本题共 4 小题,每小题5 分,共 20 分。
2019年全国统一高考数学试卷(理科)以及答案解析(全国1卷)

绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5B.a n=3n﹣10C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。
2019年陕西省高考数学试题(理科)及答案解析

2019年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题.2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x =M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 613. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13(D) 145. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D) 4π6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = (B) 若12z z =, 则12z z =(C) 若12||z z =, 则2112··z z z z = (D) 若12||z z =, 则2122z z =7. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D) 不确定8.设函数41,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为 (A) -20(B) 20 (C) -15(D) 159. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25](C) [10,30](D) [20,30]10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有(A) [-x ] = -[x ] (B) [2x ] = 2[x ] (C) [x +y ]≤[x ]+[y ] (D) [x -y ]≤[x ]-[y]二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 双曲线22116x y m -=的离心率为54, 则m 等于 .12. 某几何体的三视图如图所示, 则其体积为.13. 若点(x, y)位于曲线|1|=-与y=2所围成的封闭区域, 则2x-y的最小值为.y x14. 观察下列等式:2=1122-=-123222-=+31262222+-=-310-124…照此规律, 第n个等式可为.15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A. (不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为 .B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE = .C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为.x三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.17. (本小题满分12分) 设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.18. (本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==1A(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.19. (本小题满分12分)在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.20. (本小题满分13分)已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.(Ⅰ) 求动圆圆心的轨迹C的方程;(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是PBQ的角平分线, 证明直线l过定点.21. (本小题满分14分) 已知函数()e ,x f x x =∈R . (Ⅰ) 若直线y =kx +1与f (x)的反函数的图像相切, 求实数k 的值; (Ⅱ) 设x >0, 讨论曲线y =f (x) 与曲线2(0)y mx m => 公共点的个数. (Ⅲ) 设a <b , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.。
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)

【答案】2.
【思路引导】
通过向量关系得到 和 ,得到 ,结合双曲线的渐近线可得 从而由 可求离心率.
【解析】如图,
由 得 又 得OA是三角形 的中位线,即 由 ,得 则 有 ,
【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
7.已知非零向量a,b满足 =2 ,且(a–b) b,则a与b的夹角为
A. B. C. D.
【答案】B
【思路引导】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由 得出向量 数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【解为 ,故选B.
【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为 .
1.已知集合 ,则 =
A. B. C. D.
【答案】C
【思路引导】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【解析】由题意得, ,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.
2019年北京市高考数学试卷(理科)以及答案解析

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试(北京卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(5分)已知复数z=2+i,则z•=()A.B.C.3D.52.(5分)执行如图所示的程序框图,输出的s值为()A.1B.2C.3D.43.(5分)已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是()A.B.C.D.4.(5分)已知椭圆+=1(a>b>0)的离心率为,则()A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b5.(5分)若x,y满足|x|≤1﹣y,且y≥﹣1,则3x+y的最大值为()A.﹣7B.1C.5D.76.(5分)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.17.(5分)设点A,B,C不共线,则“与的夹角为锐角”是“|+|>||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③二、填空题共6小题,每小题5分,共30分。
2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
2019全国2卷高考数学理科含答案详解(珍藏版)

绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试说明对比考试大纲重要区别
一、数学基础知识 增加“数学基础知识”的详细讲解 二、数学思想方法 增加“数学思想方法”的详细讲解 三、数学能力 增加例题对”数学能力“进行的示例讲解
考试 范围 与要 求
函数概念与基本初 等函数
增加内容 1、会画底数为2、3、10、1/2、1/3的指数函数图像 函数概念与基本初 2、会画底数为2、3、10、1/2的对数函数图像 等函数 减少内容 根据具体函数的图像,能够用二分法求相应方程的近似解 减少内容 1、会用中心投影的方法画出简单空间图形的三视图和直观 图 2、会画某些建筑物的视图和直观图
2
客观题(选择、填空)
1、考查直线的倾斜角与斜率、直线的方程、圆的方程、 直线与直线、直线与圆及圆与圆的位置关系. 2、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质 及直线与三种曲线的位置关系。 3、圆与向量、线性规划等知识的结合. 4、客观题部分重点关注平面图形的性质以规避复杂的运算.
考 纲 解 读
增加内容 能将代数形式的复数在复平面用点和向 量表示,并能将复平面上复数的点或向 量对应的复数用代数形式表示 减少内容 能用计数原理证明二项式定理
概论与统计
概论与统计
增加内容 会求某些取有限个值的离散型随机变量 的分布列
对照栏目
2019年考 2019年考试说 试大纲内 明内容 容
考试说明对比考试大纲重要区别
总体来看,《2019理科数学考试大纲》在指导思想ห้องสมุดไป่ตู้ 考核要求及考试范围方面延续了2018年的要求。并 且,通过对考纲和考试说明的分析和对比,我认为 2019年高考理科数学的命题仍然会保持相对稳定。
圆锥曲线部分考纲解读及预测
03
1
考 纲 原 文
(四)平面解析几何初步 1.直线与方程 2.圆与方程 3.空间直角坐标系 (十五)圆锥曲线与方程 1、圆锥曲线 (1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际 问题中的作用. (2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. (3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. (4)了解圆锥曲线的简单应用. (5)理解数形结合的思想. 2、曲线与方程 了解方程的曲线与曲线的方程的对应关系.
11.双曲线离心率
16.椭圆与圆结合 10.抛物线与向量结合
20.椭圆面积范围问题
20.抛物线存在性问题 20.直线与椭圆位置关系、已 知面积最值逆向求直线方程
年份
小题
小题
大题
4
观考点 明规律 扣考纲
18
1、解答题椭圆5年4考. 2、5年3考所有的三种曲线.三年 都考到了圆. 3、直线与三种曲线的位置关系考 得最多. 4、每年都是一大两小22分,由题 目的位置来看近两年小题由增加 难度而解答题由降低难度的趋势.
考 纲 解 读
3 近5年考题涉及的考点分布情况
年份
18 17
小题
小题
大题
8.抛物线与直线的位置 15.直线与圆相关求弦长 19.直线与椭圆位置关系、证 关系、向量内积 明角的相等 10.直线与抛物线位置 关系、最值 15.双曲线离心率 20.椭圆定值定点问题
16
15 14
4.直线与圆的距离问题
5. 双曲线与向量结合 4.双曲线的渐近线问题
2
主观题(解答题)
1、综合考查椭圆、抛物线的定义、标准方程、直线与圆锥曲线 的位置关系 2、从考查热点来看,直线与圆锥曲线的位置关系仍然是高考命题 的热点,利用直线与圆锥曲线的位置关系,通过直线方程与圆 锥曲线方程的联立结合韦达定理求解相关的定值定点、面积范 围、斜率范围及探索性等问题,重点突出考查学生的运算能力, 体现了数形结合的思想.
2019年高考数学考试 大纲解读(理科数学)
考纲对比
考试说明对比考试大纲的重要区别
目录
圆锥曲线部分考纲解读及预测
备考策略
考
01
纲
对
比
变化地方: 考核目标与要求
变化地方: 考查要求
考试说明对比考试大纲的重要的区别
02
对照栏 2019年考试 2019年考试 目 大纲内容 说明内容 考核目 标与要 求
2
2019年考纲解读
考 纲 解 读
从考纲中的行为动词来看,圆锥曲线部分主要考察三种曲线的 定义、标准方程、简单几何性质及直线与三种曲线的位置关系问题. 由于双曲线的知识处于了解层面,所以我认为2019年高考重点考 察椭圆和抛物线的相关知识,在这两种曲线的考察难度上会略高于 双曲线. 圆锥曲线部分是利用代数方法研究几何问题的良好载体,试题 综合性较强.综合考察数形结合思想、函数与方程思想、特殊与一般 思想,突出考察学生的推理论证能力和运算求解能力。
17
8.抛物线与 15.直线与圆相关 19.直线与椭圆位置 直线的位置 求弦长 关系、证明角的相 关系、向量 等 内积 10.直线与抛 15.双曲线离心率 20.椭圆定值定点问 物线位置关 题 系、最值
4.直线与圆 11.双曲线离心率 20.椭圆面积范围问 的距离问题 题 5. 双曲线与 16.椭圆与圆结合 20.抛物线存在性问 向量结合 题 4.双曲线的 10.抛物线与向量 20.直线与椭圆位置 渐近线问题 结合 关系、已知面积最 值逆向求直线方程
立体几何初步
立体几何初步
平面解析几何初步 平面解析几何初步 改变内容 空间两点间的距离公式由“推导”变为“简单应用”,加深了考 查力度
对照栏目
2019年考试大纲内容
2019年考试说明内容
考试说明对比考试大纲重要区别
统计
统计
增加内容 线性回归方程系数公式不要求记忆
考试范 围与要 求
数系的扩充和 数系的扩充和 复数的引入 复数的引入 计数原理 计数原理
坐标系 坐标系与参 改变内容 数方程 “能选择适当的参数方程写出圆锥曲线的参数方程 与参数 方程 (考试大纲)”改为“能选择适当的参数方程写出椭圆 的参数方程(考试说明)”
考试 范围 与要 求
不等式 不等式选讲 减少内容 选讲 了解证明不等式的基本方法:反证法、放缩法 了解数学归纳法的原理及其使用范围,会用数学归纳 法证明一些简单问题 会用参数配方的方法讨论柯西不等式的一般形式 会用向量递归方法讨论排序不等式 数学归纳法证明伯努利不等式 了解柯西不等式的几种不同形式,理解它们的几何意 义,并会证明