轴的设计

合集下载

机械设计-轴

机械设计-轴

第十三章 轴 轴设计的基本要求: 1、轴与轴上零件要有准确的相对位置,轴向、 周向定位可靠;
17
2、轴的加工、装配有良好的工艺性; 3、受力合理,轴结构有利于提高轴的强度和刚 度、减少应力集中;
第十三章 轴
18
一、轴上零件的轴向定位和固定
零件轴向定位的方式常取决于轴向力的大小
h h h
1.轴肩和轴环 要求: r<C<h r<R<h h=(0.07~0.1)d b=1.4h
第十三章 轴
34
四、阶梯轴的结构设计实例分析
F
等强度 1、拟定轴上零件装配方案 轴颈:装轴承处
阶梯轴
尺寸= 轴承内径; 直径与轮毂内径相当;
组成 轴头:装轮毂处
轴身:联接轴颈和轴头部分。
第十三章 轴
35
第十三章 轴
36
装配方案的比较:
第十三章 轴
37
例题:指出图中轴结构设计中的不合理之处,并绘 出改进后的结构图。 1.轴两端均未倒角;
3
Fa Ft tg 1960 tg12o 417N
d 118 3 4 / 130 36.78mm
考虑到联轴器的影响以及联轴器孔径系 列标准,取d=38mm
第十三章 轴 3. 齿轮上作用力的计算
50
T 9.55 106 4 / 130 294 103 Nmm
Ft 2T / d 2 29410 / 300 1960N
2.齿轮右侧未作轴向固定; 3.齿轮处键槽太短; 5.左轴承无法拆卸; 6.齿轮与右轴承装卸不便; 7.轴端挡圈未直接压在轴 端轮毂上。
4.键槽应开在同一条直线上;
第十三章 轴 轴系结构改错
38
四处错误

轴的设计实例

轴的设计实例

7)画扭矩图
8)画当量弯矩图
2 M ca = M 2 + αT) 单向运转, α = 0.6 (
α
3.按弯、扭合成强度校核计算
当量弯矩最大截面如C截面 1)确定危险截面位置 当量弯矩不大,但直径较小的截面如D截面
C 2)强度校核计算: 截面:σ C =
M C右
3 0.1d C
=
613.37 × 1000 = 14.54MPa〈[σ −1b ] = 60MPa 3 0.1 × 75
d 4 = d 3 + 2h′3 = d 3 + 2 × 2.5 = 70 + 5mm = 75mm
d7
d6
d2
d1
各段轴直径: 各段轴直径:
d 1 = d min = 55 mm
d 2 = d1 + 2h1 = d1 + 2 × 0.08d1 = 55×1.16mm = 63.8mm, 取d 2 = 65mm
d 3 = d 2 + 2 h ′2 = d 2 + 2 × 2 .5 = 65 + 5 mm = 70 mm (滚动轴承孔径为 5倍数)
d 4 = d 3 + 2h′3 = d 3 + 2 × 2.5 = 70 + 5mm = 75mm
d 5 = d 4 + 2h4 = d 4 + 2 × 0.08d 4 = 75 × 1.16mm = 87mm, 取d 5 = 85mm
滚动轴承 大齿轮 滚动轴承 联轴器
2)考虑轴上零件的装拆、定位、固定要求,应轴制成阶梯轴
滚动轴承 大齿轮 滚动轴承 联轴器
考虑左轴承和大齿轮的定位及固定,应制轴肩和轴环 考虑左轴承和大齿轮的定位及固定,应有套筒

轴的设计

轴的设计
T M 9550 P 10 9550 795 .8 N m n 120
(2)设计轴的直径

max
T WP
得:
实心轴直径
T 795.8 103 d 3 3 46.3 m m 0.2[ ] 0.2 40
T 795.8 103 D1 3 3 48.5 m m 4 4 0.2 1 ) ] ( [ 0.2 1 ) 40 (
汽车的传动轴
自行车前轴
铁路车辆的轴
B、按轴的形状分类
直轴 光轴 曲轴 挠性钢丝轴
定位方便准确,符合等强度原则; 阶梯轴 有应力集中。
结构简单,应力集中较少,互换 性好;定位不便。
应力状态不一样
阶梯轴
光轴
刚性轴:工作转速低于一阶
C、按轴的工作频率
临界转速:轴发生共振时的转速。
临界转速的轴。
挠性轴:工作转速超过一阶
例6-1
某机械传动轴,输入轮MB=3kN· m,输出两轮 MA=1.8kN· m、Mc=1.2kN· m,求出截面1-1、2-2 的扭矩,并画扭矩图。
取截面2-2右侧为研究对象, 可得
M 0
T22 M C 0
或,T22 M A M B 0
T22 M C 1.2 KN 1.2 KN m
ቤተ መጻሕፍቲ ባይዱ

IP WP R
max
T WP
IP WP
WP

16
极惯性矩与抗扭截面模量表 示截面的几何性质,其大小与截 面的形状和几何尺寸有关。

32
D14 1 4 0.1D14 1 4 ( ) ( )
3 3 D( 4 0.2 D( 4 1 ) ) 1 1 1

轴设计

轴设计

轴设计主要内容1、轴的结构设计:影响轴结构的因素;轴的台阶化设计;轴的设计步骤。

2、轴的强度与刚度计算:轴上载荷及应力分析;轴的强度计算、刚度计算等。

基本要求1、了解轴的功用、类型、特点及应用。

2、掌握轴的结构设计方法。

3、掌握轴的三种强度计算方法:按扭转强度计算、按弯扭合成强度计算、按疲劳强度进行安全系数校核计算。

重点难点1、轴的结构设计,强度计算。

2、转轴设计程序问题。

3、弯扭合成强度计算中的应力校正系数 。

§7-1 轴概述一、轴的功能和分类轴是组成机器的重要零件之一,其主要功能是支持作回转运动的传动零件(如齿轮、蜗轮等),并传递运动和动力。

1、按受载情况分根据轴的受载情况的不同轴可分为转轴、传动轴和心轴三类。

转轴:既受弯矩又受转矩的轴;传动轴:主要受转矩,不受弯矩或弯矩很小的轴;心轴:只受弯矩而不受转矩的轴;根据轴工作时是否转动,心轴又可分为转动心轴和固定心轴。

转动心轴:工作时轴承受弯矩,且轴转动固定心轴:工作时轴承受弯矩,且轴固定2、按轴线形状分根据轴线形状的不同轴又可分为曲轴、直轴和钢丝软轴。

图7-2 曲轴曲轴:各轴段轴线不在同一直线上,主要用于有往复式运动的机械中,如内燃机中的曲轴(图7-2)。

图7-3 直轴直轴:各轴段轴线为同一直线。

直轴按外形不同又可分为:光轴:形状简单,应力集中少,易加工,但轴上零件不易装配和定位。

常用于心轴和传动轴(图7-3左)。

阶梯轴:特点与光轴相反,常用于转轴(图7-3右)。

图7-4 钢丝软轴钢丝软轴:由多组钢丝分层卷绕而成,具有良好挠性,可将回转运动灵活地传到不开敞的空间位置。

二、轴的材料及选择轴的材料种类很多,选择时应主要考虑如下因素:1、轴的强度、刚度及耐磨性要求;2、轴的热处理方法及机加工工艺性的要求;3、轴的材料来源和经济性等。

轴的常用材料是碳钢和合金钢。

碳钢比合金钢价格低廉,对应力集中的敏感性低,可通过热处理改善其综合性能,加工工艺性好,故应用最广,一般用途的轴,多用含碳量为0.25~0.5%的中碳钢。

轴的加工工艺规程设计及夹具设计

轴的加工工艺规程设计及夹具设计

轴的加工工艺规程设计及夹具设计一、轴的加工工艺规程设计轴是机械传动中常用的零件,加工工艺规程的设计对于保证轴的加工质量、提高加工效率和降低生产成本都具有重要意义。

下面我将为大家介绍轴的加工工艺规程设计的一般步骤。

1.确定轴的加工材料和加工要求:首先需要根据轴的功能和实际使用要求确定适合的材料,并结合轴的形状、尺寸和精度要求,确定轴的加工工艺。

2.制定轴的工艺流程:根据轴的形状和加工要求,制定轴的加工工艺流程,包括粗加工、精加工、热处理和表面处理等工序。

3.确定轴的加工工序和加工顺序:在制定工艺流程的基础上,根据轴的加工要求和工艺装备的条件,确定轴的加工工序和加工顺序。

4.制定轴的工艺参数:根据轴的材料特性和加工要求,确定轴的切削速度、进给量、切削深度和切削力等工艺参数。

5.设计轴的加工夹具:根据轴的形状和加工要求,设计轴的加工夹具,确保夹紧力的均匀分布、加工时的稳定性和加工精度的可靠性。

6.确定轴的测量方法和检验标准:制定轴的测量方法,包括使用测量工具和设备,并确定轴的检验标准,以保证轴的加工质量。

二、轴的夹具设计在轴的加工过程中,加工夹具的设计对于保证加工精度和加工效率具有重要影响。

下面我将为大家介绍轴的夹具设计的一般步骤。

1.夹具加工准备:根据轴的形状和加工要求,准备夹具的加工材料和加工工艺,制定夹具的加工流程和工艺参数。

2.夹具的结构设计:根据轴的形状和加工要求,设计夹具的结构,包括夹紧方式、定位方式和支撑方式等,以确保轴在加工过程中的稳定性和精度。

3.夹具的零件设计和加工:根据夹具的结构设计,制定夹具各个零部件的形状、尺寸和精度要求,并进行相应的加工和装配。

4.夹具的调试和试验:对完成的夹具进行调试和试验,测试夹具的夹紧行为和加工精度,确保夹具的正常使用。

5.夹具的安全规程和操作说明书编制:编写夹具的安全规程和操作说明书,包括夹具的使用方法、维护保养和注意事项等,以保证夹具的安全和正常使用。

轴的结构设计

轴的结构设计

机械设计基础
Machine Design Foundation
轴的结构设计
4 轴的结构工艺性 轴的结构工艺性是指所轴的结构形式应便于加工和
装配轴上的零件,并且生产率高,成本低。为了使轴的 工艺性好,轴的结构设计应注意以下几个问题。
(1) 为便于零件的装拆,轴端应有45°的倒角,零件装 拆时所经过的各段轴径都要小于零件的孔径;
(2) 轴肩或轴环定位时,其高度必须小于轴承内圈端 部的厚度; (3) 用套筒、圆螺母、轴端挡圈作轴向定位时,一般 装配零件的轴头长度应比零件的轮毂长度短2~3mm, 以确保套筒、螺母或轴端挡圈能靠紧零件端面;
机械设计基础
Machine Design Foundation
轴的结构设计
(4) 轴上的圆角、倒角和退刀槽应尽可能取相同尺寸, 以减少刀具数量和换刀时间。为了减少轴的装夹次数, 轴上有两个以上键槽时,应尽可能布置在同一条母线上; (5) 轴上磨削的轴段和车制螺纹的轴段,应分别留有螺 纹退刀槽和砂轮越程槽;且后轴段的直径小于轴颈处的 直径,来减少应力集中,提高疲劳强度; (6) 装配段不宜太长。
机械设计基础
Machine Design Foundation
轴的结构设计
2) 轴段长度的确定 (1) 在安装齿轮时为了使齿轮固定可靠,应使齿轮轮毂 宽度大于与之相配合的轴段长度,一般两者的差取2~ 3 mm。 (2) 装滚动轴承处的轴长,查手册按轴承宽度来确定。 (3) 轴上回转零件与其他零件之间的轴向距离推荐:两 回转件间的距离取10~20 mm;回转件与内壁之距离取 10~20 mm;轴承端面至箱体内壁之距离为当减速器齿轮 圆周速度v>2 m/s时,轴承采用油液飞溅润滑,取5~ 10 mm;当减速器齿轮圆周速度v<2 m/s时,轴承采用油 脂润滑,还需加挡油环,防止油脂被稀释,取10~15mm; 外伸件距箱体轴承盖的距离,考虑应留有螺钉装拆及扳 手空间位置,取20~35mm。

轴的结构设计

图1-9 阶梯轴结构示例
轴的结构设计
• 1.2 轴的结构设计
轴的结构设计就是确定轴的外型和全部结构尺寸。影响轴结构的因 素很多,设计时应对不同情况进行具体分析。对一般轴结构设计的基 本要求是:
1.便于轴上零件的装配
2.保证轴上零件的准确定位和可靠固定 3. 轴的加工和装配工艺性好 4.减少应力集中,改善轴的受力情况
轴的结构设计
• 1.2 轴的结构设计
1.便于轴上零件的装配 为便于轴上零件的装拆,将轴做成阶梯轴。对于剖分式箱体,轴的
直径由中间向两端逐渐变小。如图1-9所示,首先将平键装在轴上,再 从左端依次装入齿轮、套筒、左端轴承,从右端装入右端轴承,然后 将轴置于箱体的轴承孔内,装上左、右轴承端盖,再从左端装入平键、 带轮。
采用定位套筒代替圆螺母和弹性挡圈使零件轴向固定,可避免在轴上 制出螺纹、环形槽等,能有效地提高轴的疲劳强度。
轴的表面质量对轴的疲劳强度影响很大。因轴工作时,最大应力发生 在轴的表面处,另一方面,由于加工等原因,轴表面易产生微小裂纹, 引起应力集中,因此轴的破坏常从表面开始。减小轴的表面粗糙度,或 采用渗碳,高频淬火等方式进行表面强化处理,均可以显著提高轴的疲 劳强度。
②套筒和圆螺母 当轴上零件距离较近时用套筒作相对固定,可简化轴 的结构,减少轴径的变化,减少轴的应力集中,如图1-9所示。
当套筒太长时,可采用圆螺母作轴向固定。此时须在轴上加工螺纹, 将会引起较大的应力集中,轴段横截面面积减小,影响轴的疲劳寿命, 如图1-11所示。
轴的结构设计
图1-10 轴肩
图1-11 圆螺母定位
d=(0.8~1.2)D; 各级低速轴段直径可按同级齿轮的中心距a估算,
d=(0.3~0.4)a。

减速器 轴的设计

F t1=2T 1d 1=2×6.65×10454.94N =2.42×103 N F r1=F t1tan αn cos β=2.42×103×tan 20°cos 17°8′45′′N =922 NF a1=F t1tan β=2.42×103×tan 17°8′45′′ N =477 N(3)初步确定轴的最小直径选取轴的材料为45钢,调质处理,查表得:取A 0=125d min=A 0√P 1n 13=125×√ 3.58514.293 mm =23.86 mm输入轴的最小直径d Ⅰ−Ⅱ是安装大带轮处的轴径,由于需要开键槽,将该段轴径增大5%,考虑到轴的承载能力,并将其过量圆整为d 12=30 mm 。

(4)轴的结构设计 1)拟定轴上零件的装配方案 方案1:齿轮、右侧轴套、右端轴承、轴承端盖依次从右向左安装,左侧轴套、左端轴承、轴承端盖、大带轮、轴端挡圈依次从左向右安装。

方案2:轴套、右端轴承、轴承端盖依次从轴的右端向左端安装,轴套、左端轴承、轴承端盖、大带轮、轴端挡圈依次从轴的左端向右端安装,高速级小齿轮与轴做成一体。

经过比较,由于齿轮的直径较小,应该保证齿轮轮体的强度,故最终采用方案2。

2)根据轴向定位的要求确定轴的各段直径和长度·为了满足左端大带轮的轴向定位要求,I-II轴段右端需制出一定位轴肩,定位轴肩高度h一般取(2~3)C或(2~3)R。

查表得:取I-II轴段右=1.2 mm,进而取h23=3 mm,故d23=36 mm。

左端用端圆角半径RⅡ轴端挡圈定位,按轴端直径取挡圈直径D=40 mm。

为保证轴向定位可靠,与大带轮配合部分的轴端长度一般应比带轮宽度B短2~3 mm,故取L12= 45 mm。

·初步选择滚动轴承。

因轴承同时受径向力和轴向力的作用,故选用单列圆锥滚子轴承。

《机械设计》实验四(轴系结构实验)

综合性实验指导书实验名称:轴系结构实验实验简介:轴系主要包括轴、轴承和轴上零件,它是机器的重要组成部分。

轴的主要功用是支持旋转零件和传递扭矩。

轴的设计一方面要保证具有足够的工作能力,即满足强度、刚度和振动稳定性等要求。

另一方面,要根据制造、装拆使用等要求定出轴的合理外形和全都结构尺寸,即进行轴的结构设计。

轴承是轴的支承,分为滚动轴承和滑动轴承两大类。

滚动轴承已标准化,设计时只需根据工作条件选择合适的类型和尺寸,并进行轴承装置的设计。

通过本实验学生将进一步定性地对轴系设计结构理论进行深入了解。

适用课程:机械设计实验目的:了解并正确处理轴、轴承和轴上零件间的相关关系,如轴与铀承及轴上零件的定位、固定、装拆及调整方式等,以建立对抽系结构的感性认识并加深对轴系结构设计理论的理解。

面向专业:机械类实验项目性质:综合性(课内必做)计划学时: 2学时实验要求:A预习《机械设计》等课程的相关知识点内容;B预习《机械设计实验指导书》中实验目的、原理、设备、操作步骤或说明,并写出预习报告;实验前没有预习报告者不能够进行实验;C 进行实验时衣着整齐,遵守实验室管理规定、学生实验守则、仪器设备操作规定等相关规定,服从实验技术人员或实验教师的指导与管理。

知识点:A《机械设计》课程传动轴内容;B 《机械设计》课程键、螺纹连接内容;C《机械设计》课程滚动轴承内容;D 《机械设计》课程齿轮传动内容; E 《机械设计》课程蜗轮蜗杆传动内容;F《机械设计》课程润滑、密封内容;G《机械制图》课程相关知识内容。

实验分组:1人/组《机械设计》课程实验实验四轴系结构实验一、概述轴系主要包括轴、轴承和轴上零件,它是机器的重要组成部分。

轴的主要功用是支持旋转零件和传递扭矩。

它与轴承孔配合的轴段称为轴颈,安装传动件轮毂的轴段称为轴头,联接轴颈和轴头的轴段称为轴身。

轴颈和轴头表面都是配合表面,须有相应的加工精度和表面粗糙度。

轴的设计一方面要保证具有足够的工作能力,即满足强度、刚度和振动稳定性等要求。

轴的精度设计以及配合的选用


6~8
齿轮、轴承定位的端面跳动度
6~7
键槽的对称度
8~9
形位公差的确定方法:类比法,计算法参 考公差及有关手册
3、表面粗糙度 轴的所有表面都要加工。
12.5
其余
轴的精度设计
6、技术要求 在图上不便表示而在制造时又必须遵循的要求和条
件。 主要内容: ①对材料的机械性能和化学成分的要求及允许代用的材 料; ②对材料表面机械性能的要求,如热处理方法,对处理 后的硬度、渗碳深度及淬火深度等; ③对机械加工的要求 ④对未注明倒角、圆角半径的说明。
D7 E7 F7 (G7) (H7) J7 JS7 (K7) M7 (N7) (P7) R7 (S7) T7 (U7) V7 X7 Y7 Z7
C8 D8 E8 (F8) G8 (H8) J8 JS8 K8 M8 N8 P8 R8 S8 T8 U8 V8 X8 Y8 Z8
A9 B9 C9 (D9) E9 F9
13
配合的选用
表2-23 轴的基本偏差选用说明
14
配合的选用
表2-23 轴的基本偏差选用说明
15
配合的选用
轴的基本偏差选用说明
16
轴的精度设计
1、视图 一般只需一个主视图; 在有键槽和孔的地方——增加必要的局部剖面图; 细小结构(如退刀槽、中心孔)——局部放大图。 设计时选用比例1:1。
h10 js10
a11 b11 (c11) d11
(h11) js11
a12 b12 c12
h12 js12
a13 b13
h13 js13
8
不大于500mm的一般、常用和优先孔公差带
H1
JS1
H2
JS2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档