机械能与弹簧综合练习题含答案精编版

合集下载

高考物理综合题3 - 弹簧问题(含答案,打印版)

高考物理综合题3 - 弹簧问题(含答案,打印版)

1.如图所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧.滑块压缩弹簧 到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已 知ab =0.8 m ,bc =0.4 m ,那么在整个过程中 ( )A .滑块动能的最大值是6 JB .弹簧弹性势能的最大值是6 JC .从c 到b 弹簧的弹力对滑块做的功是6 JD .滑块和弹簧组成的系统整个过程机械能守恒 解析:滑块能回到原出发点,所以机械能守恒,D 正确;以c 点为参考点,则a 点的机械能为6 J ,c 点时的速度为0,重力势能也为0,所以弹性势能的最大值为6 J ,从c 到b 弹簧的弹力对滑块做的功等于弹性势能的减小量,故为6 J ,所以B 、C 正确.由a →c 时,因重力势能不能全部转变为动能,故A 错.答案:BCD2. 如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P 点,已知物体的质量 为m =2.0 kg ,物体与水平面的动摩擦因数μ=0.4,弹簧的劲度系数k =200 N/m.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能E p =1.0 J ,物体处于静止状态,若取g =10 m/s 2,则撤去外力F 后 ( )A .物体向右滑动的距离可以达到12.5 cmB .物体向右滑动的距离一定小于12.5 cmC .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0解析:物体向右滑动到O 点摩擦力做功W F =μmgs =0.4×2×10×0.1 J =0.8 J <E p ,故物体回到O 点后速度不等零 ,还要继续向右压缩弹簧,此时有E p =μmgx +E p ′且E p ′>0,故x =E p -E p ′μmg <E pμmg=12.5 cm ,A 错误,B 正确;物体到达最右端时动能为零,但弹性势能不为零,故系统机械能不为零,D 正确;由kx -μmg =ma ,可知当a =0,物体速度最大时,弹簧的伸长量x =μmg k>0,故C 错误.答案:BD3.如图所示,在倾角为30°的光滑斜面上,有一劲度系数为k 的轻质弹簧,其一端固定在固定挡板C 上,另一端连接一质量为m 的物体A.有一细绳通过定滑轮,细绳的一端系在物体A 上(细绳与斜面平行),另一端系有一细绳套,物体A 处于静止状态.当在细绳套上轻轻挂上一个质量为m 的物体B 后,物体A 将沿斜面向上运动,试求:(1)未挂物体B 时,弹簧的形变量;(2)物体A 的最大速度值.解析 (1)设未挂物体B 时,弹簧的压缩量为x ,则有:mg sin 30°=kx 所以x =mg2k.(2)当A 的速度最大时,设弹簧的伸长量为x ′,则有mg sin 30°+kx ′=mg 所以x ′=x =mg2k对A 、B 和弹簧组成的系统,从刚挂上B 到A 的速度最大的过程,由机械能守恒定律得:mg·2x -mg·2x sin 30°=12·2mv 2m 解得v m = mg 22k . 答案 (1)mg 2k (2) mg 22k4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求: (1)弹簧开始时的弹性势能. (2)物体从B 点运动至C 点克服阻力做的功.(3)物体离开C 点后落回水平面时的动能.解析:(1)物体在B 点时,由牛顿第二定律得:F N -mg =m v B 2R,又F N =7mg ,可得E k B =12m v B 2=3mgR在物体从A 点至B 点的过程中,根据机械能守恒定律,弹簧的弹性势能E p =E k B =3mgR .(2)物体到达C 点仅受重力mg ,根据牛顿第二定律有mg =m v C 2R E k C =12m v C 2=12mgR物体从B 点到C 点只有重力和阻力做功,根据动能定理有:W 阻-mg ·2R =E k C -E k B解得W 阻=-12mgR所以物体从B 点运动至C 点克服阻力做的功为W =12mgR .(3)物体离开轨道后做平抛运动,仅有重力做功,根据机械能守恒定律有:E k =E k C +mg ·2R =52mgR .答案:(1)3mgR (2)12mgR (3)52mgR5.为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)【5题解答】固定时示数为F 1, 对小球F 1=mgsin θ ①整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ② 下滑时,对小球:mgsin θ-F 2=ma ③ 由式①、式②、式③得 μ=12F F tan θ6. 如图是为了检验某种防护罩承受冲击能力的装置,M 为半径为1.0R m =、固定于竖直平面内的1/4光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r 的1/4圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m k g =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取210/g m s =,求:(1)发射该钢珠前,弹簧的弹性势能p E 多大? (2)钢珠落到圆弧N上时的速度大小N v 是多少?(结果保留两位有效数字)【6题解答】(1)设钢珠在M 轨道最高点的速度为v ,在最高点,由题意2v mg mR= ① 2分从发射前到最高点,由机械能守恒定律得:212p E mgR mv =+② 2分(2)钢珠从最高点飞出后,做平抛运动x vt = ③ 1分212y gt =④ 1分 由几何关系222x y r += ⑤ 2分 从飞出M 到打在N 得圆弧面上,由机械能守恒定律:221122N mgy mv mv +=⑥ 2分联立①、③、④、⑤、⑥解出所求 5.0/N v m s =1分7.如图所示,质量为m 的滑块放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L .今将滑块缓慢向左压缩固定在平台上的轻弹簧,到达某处时突然释放,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ. 求:(1)试分析滑块在传送带上的运动情况;(2)若滑块离开弹簧时的速度大于传送带的速度,求释放滑块时弹簧具有的弹性势能; (3)若滑块离开弹簧时的速度大于传送带的速度,求滑块在传送带上滑行的整个过程中产生的热量.解析:(1)若滑块冲上传送带时的速度小于带速,则滑块由于受到向右的滑动摩擦力而做匀加速运动;若滑块冲上传送带时的速度大于带速,则滑块由于受到向左的滑动摩擦力而做匀减速运动.(2)设滑块冲上传送带时的速度为v ,由机械能守恒E p =12m v 2.设滑块在传送带上做匀减速运动的加速度大小为a ,由牛顿第二定律:μmg =ma .由运动学公式v 2-v 02=2aL 解得E p =12m v 02+μmgL .(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移s =v 0t ,v 0=v -at滑块相对传送带滑动的位移Δs =L -s 因相对滑动生成的热量Q =μmg ·Δs 解得Q =μmgL -m v 0(v 02+2μgL -v 0).答案:(1)见解析 (2)12m v 02+μmgL(3)μmgL-m v 0(v 02+2μgL -v 0)8.如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。

弹簧问题专项复习及练习题(含详细解答)

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。

问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。

2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。

3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。

弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。

有些问题要结合简谐运动的特点求解。

4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。

它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。

规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。

当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。

系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。

(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。

在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。

物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。

机械能守恒,弹簧和传送带综合题

机械能守恒,弹簧和传送带综合题

机械能守恒定律难点—弹簧和传送带综合题1、 (21分)如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。

圆轨道半径为。

凹槽的右端固定一原长为L的轻质弹簧P1,P1的左端与长为L质量为2m的圆筒相接触,但不栓接。

圆筒内部右端栓接一完全相同的弹簧P2,用直径略小于圆筒内径、质量为m的小球将弹簧P2压缩,再用销钉K将小球锁定在圆筒内(小球与P2不栓接)。

球与圆筒内壁间的动摩擦因数为u,圆筒与凹槽水平部分间的动摩擦因数为2u。

用圆筒将弹簧P1也压缩•,由静止释放,圆筒恰好不滑动。

现将销钉K突然拔掉,同时对圆筒施加一水平向左的拉力,使圆筒向左做匀加速运动,到B点时圆筒被卡住立刻停止运动,小球沿半圆形轨道从C点水平抛出。

设最大静摩擦力等于滑动摩擦力,重力加速度为g,小球可视为质点,圆筒壁的厚度忽略不计。

(1) 若小球通过半圆形轨道最高点C时,轨道对小球的压力是小球重力的3倍,求小球射出圆筒时的速度大小(2) 若使圆筒运动到B点之前,弹簧P2长度不变,求拉力初始值的取值范围(3) 若拉力的初始值为,且小球从C处平拋后,恰好未撞击圆筒,求圆筒从静止运动到B点过程中拉力所做的功2、(20分)如图所示,光滑水平面MN的左端M处有一弹射装置P(P为左端固定,处于压缩状态且锁定的轻质弹簧,当A与P碰撞时P立即解除锁定),右端N处与水平传送带恰平齐且很靠近,传送带沿逆时针方向以恒定速率υ = 5m/s匀速转动,水平部分长度L = 4m。

放在水平面上的两相同小物块A、B(均视为质点)间有一被压缩的轻质弹簧,弹性势能E p= 4J,弹簧与A相连接,与B不连接,A、B与传送带间的动摩擦因数μ= 0.2,物块质量m A = m B = 1kg。

现将A、B由静止开始释放,弹簧弹开,在B离开弹簧时,A未与P碰撞,B 未滑上传送带。

取g=10m/s2。

求:(1)B滑上传送带后,向右运动的最远处与N点间的距离sm;(2)B从滑上传送带到返回到N端的时间t和这一过程中B与传送带间因摩擦而产生的热能Q;(3)B回到水平面后压缩被弹射装置P弹回的A上的弹簧,B与弹簧分离然后再滑上传送带。

物理弹簧测试题及答案

物理弹簧测试题及答案

物理弹簧测试题及答案一、选择题1. 一个弹簧在没有外力作用时,其长度为L0。

当施加一个恒定的拉力F时,弹簧伸长到L1。

如果拉力增加到2F,弹簧的长度将变为:A. L0B. L1 + L0C. 2L1D. L1 + (L1 - L0)答案:D2. 根据胡克定律,弹簧的伸长量与施加的力成正比。

如果弹簧的劲度系数为k,当施加的力为F时,弹簧的伸长量为:A. k/FB. F/kC. FkD. kF答案:B3. 一个弹簧的劲度系数为k,其自然长度为L0。

当弹簧被压缩到长度为L0/2时,弹簧所受的力为:A. k/2B. 2kC. kD. 4k答案:B二、填空题4. 弹簧的劲度系数是指弹簧在单位形变下所受的力,其单位是______。

答案:牛顿/米(N/m)5. 当一个弹簧被拉伸或压缩时,其长度的变化量与所受力的关系遵循胡克定律,即F=______。

答案:kx三、计算题6. 一个弹簧的劲度系数为100 N/m,其自然长度为0.2 m。

当弹簧被拉伸到0.4 m时,求弹簧所受的力。

答案:弹簧被拉伸到0.4 m时,伸长量为0.4 m - 0.2 m = 0.2 m。

根据胡克定律,F = kx,所以F = 100 N/m * 0.2 m = 20 N。

7. 一个弹簧的劲度系数为500 N/m,其自然长度为0.5 m。

当弹簧被压缩到0.3 m时,求弹簧所受的力。

答案:弹簧被压缩到0.3 m时,压缩量为0.5 m - 0.3 m = 0.2 m。

根据胡克定律,F = kx,所以F = 500 N/m * 0.2 m = 100 N。

四、简答题8. 描述弹簧的胡克定律,并解释其物理意义。

答案:胡克定律是指在弹性限度内,弹簧的伸长量或压缩量与施加的力成正比。

物理意义是,弹簧的形变程度与作用在其上的力的大小直接相关,且这种关系是线性的,即力的增加会导致形变程度的线性增加。

专题31机械能+弹簧连接体+计算题-2023年高考物理机械能常用模型最新模拟题精练(解析版)

专题31机械能+弹簧连接体+计算题-2023年高考物理机械能常用模型最新模拟题精练(解析版)

高考物理《机械能》常用模型最新模拟题精练专题31机械能+弹簧连接体+计算题1.(2022天津大港期末)如图所示,AB 为倾角θ=37°的斜面轨道,轨道的AC 部分光滑,CB 部分粗糙。

BP 为圆心角等于143°,半径R =1m 的竖直光滑圆弧形轨道,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一自由端在斜面上C 点处,现有一质量m=2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后(不拴接)释放,物块经过C 点后,从C 点运动到B 点过程中的位移与时间的关系为x =12t -4t 2(式中x 单位是m ,t 单位是s ),假设物块第一次经过B 点后恰能到达P 点,(sin37°=0.6,cos37°=0.8,g 取10m/s 2)试求:(1)若CD =1m ,物块从D 点运动到C 点的过程中,弹簧对物块所做的功;(2)B 、C 两点间的距离x 。

(3)若BC 部分光滑,把物块仍然压缩到D 点释放,求物块运动到P 点时受到轨道的压力大小。

【参考答案】(1)156J ;(2)6.125m ;(3)49N 【名师解析】(1)由x =12t -4t 2知,物块在C 点速度为v 0=12m/s加速度大小a =8m/s 2设物块从D 点运动到C 点的过程中,弹簧对物块所做的功为W ,由动能定理得W -mg sin37°·2012C mv D代入数据得W =2012mv +mg sin37°·CD =156J 。

(2)物块在CB 段,根据牛顿第二定律,物块所受合力F =ma =16N物块在P 点的速度满足mg =2Pmv RC 到P 的过程,由动能定理得-Fx -mgR (1+cos37°)=2201122P mv mv -解得x =498m=6.125m 。

(3)物块从C 到P 的过程中,由动能定理得-mgx sin37°-mgR (1+cos37°)=212p mv '-2012mv 物块在P 点时满足F N +mg =2'Pmv R联立以上两式得F N =49N 。

中考物理压轴题专题功和机械能问题的经典综合题含答案精选全文完整版

中考物理压轴题专题功和机械能问题的经典综合题含答案精选全文完整版

可编辑修改精选全文完整版一、初中物理功和机械能问题1.如甲图所示,小球从竖直放置的弹簧上方一定高度处由静止开始下落,从a 处开始接触弹簧,压缩至c 处时弹簧最短.从a 至c 处的过程中,小球在b 处速度最大.小球的速度v 和弹簧被压缩的长度△L 之间的关系如乙图所示.不计空气阻力,则从a 至c 处的过程中,下列说法中正确的是( )A .小球所受重力始终大于弹簧的弹力B .小球的重力势能先减小后增大C .小球减少的机械能转化为弹簧的弹性势能D .小球的动能一直减小 【答案】C 【解析】 【详解】在小球向下压缩弹簧的过程中,小球受竖直向上的弹簧的弹力、竖直向下的重力;在ab 段,重力大于弹力,合力向下,小球速度越来越大;随着弹簧压缩量的增大,弹力逐渐增大,在b 处弹力与重力相等,小球的速度达到最大;小球再向下运动(bc 段),弹力大于重力,合力向上,小球速度减小;故A 错误;小球从a 至c 的过程中,高度一直减小,小球的重力势能一直在减小,故B 错误;小球下落压缩弹簧的过程中,不计空气阻力,机械能守恒,则小球减少的机械能转化为弹簧的弹性势能,故C 正确;由图乙可知,小球的速度先增大后减小,则小球的动能先增大后减小,故D 错误;故应选C .2.如图所示,粗糙的弧形轨道竖直固定于水平面上,小球由A 点以速度v 沿轨道滚下,经过另一侧高点B 后到达最高点C .下列分析不正确的是( )A .小球在A 、B 、C 三点的速度大小关系是C B A v v v <<B .小球在A 、B 两点的动能之差等于小球从A 点到B 点克服摩擦力做的功C .小球在A 、B 两点具有的重力势能相同D .整个过程只有重力对小球做功 【答案】D【解析】 【分析】 【详解】A .小球运动过程中会克服摩擦力做功,且质量不变,故从A 运动到C 的过程中,机械能减小,小球在A 与B 点的势能相同,故在A 点的动能大于B 点的动能,C 点最高,故小球在C 点的势能最大,动能最小,所以C B A v v v <<,故A 正确,不符合题意;BC .A 、B 两点高度相同,小球的质量不变,故小球的重力势能相同,小球从A 点运动到B 点,会克服摩擦力做功,动能减小,动能之差等于克服摩擦力所做的功,故B 、C 正确,不符合题意;D .整个过程中,摩擦力也会对小球做功,故D 错误,符合题意。

机械能守恒定律专题4-弹簧-教师版

机械能守恒定律专题4-弹簧-教师版

机械能守恒定律专题4 弹簧类问题例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。

若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。

)(B)A.B.C.D.试题分析:小球A下降h过程,根据动能定理,有mgh-W1=0;小球B下降h过程,根据动能定理,有,联立解得v=.选项B正确。

例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:(1):砝码A能够做匀加速运动的时间?(2):砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?小题1:小题2:(1)设初始状态弹簧压缩量为x1则kx1+mg=m×可得x1=……………(1分)当B以匀加速向下运动时,由于a<g,所以弹簧在压缩状态时A、B不会分离,分离时弹簧处于伸长状态. ……(2分)设此时弹簧伸长量为x2,则mg-kx2= m×可得x2=(1分)A匀加速运动的位移s=x1+x2=(1分)s=解得: …(2分)(2)∵x1=x2∴这一过程中弹簧对物体A的弹力做功为0…………(3分)A、B分离时(2分)由动能定理得:…(2分)代入得:(2分)例题3、如图甲,质量为m的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g.(1)图甲中,在线的另一端施加一竖直向下的大小为F的恒力,木块离开初始位置O由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P点时,速度大小为v,O、P两点间距离为s.求木块拉至P点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M的物块,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P点时的速度大小.(1)用力F拉木块至P点时,设此时弹簧的弹性势能为E P,根据功能关系有Fs=E P+1/2mv2…①代入数据可解得:E P=Fs-1/2mv2…(2)悬挂钩码M时,当木块运动到P点时,弹簧的弹性势能仍为E p,设木块的速度为v′,由机械能守恒定律得:Mgs=E P+1/2(m+M)v′2…③联立②③解得v′=√(mv2+2(Mg-F)s)/(M+m)例题4、如图,质量为m1的物体A 经一轻质弹簧与下方地面上的质量为m2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m1+ m3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D的速度的大小是多少?已知重力加速度为g解析:开始时,A、B 静止,设弹簧压缩量为1x,有11gkx m=挂C并释放后,C向下运动,A 向上运动,设B刚要离地时弹簧伸长量为2x,有22kx m g=B不再上升,表示此时A 和C的速度为零,C已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为312112=m()()E g x x m g x x∆+-+C换成D后,当B刚离地时弹簧势能的增量与前一次相同,由能量关系得311311211211()()()()2222m mυmυm m g x x m g x x E++=++-+-∆联立解得211213()(2)2m m m gυ=m m k++例题5、如图,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。

弹簧类动量守恒机械能守恒类习题精练

弹簧类动量守恒机械能守恒类习题精练

弹簧类机械能守恒动量守恒1.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但不连接,该整体静止在光滑水平地面上,并且C被锁定在地面上.现有一滑块A从光滑曲面上离地面h高处由静止开始下滑,与滑块B发生碰撞并粘连在一起压缩弹簧,当速度减为碰后速度一半时滑块C解除锁定.已知mA=m,mB=2m,mC="3m." 求:被压缩弹簧的最大弹性势能.2.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x,如图所示,一物块从钢板正上方距离为3x的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达最高点O点的距离.3.如图所示,在光滑水平面上,质量为m的小球A和质量为m的小球B通过轻弹簧连接并处于静止状态,弹簧处于原长;质量为m的小球C以初速度v沿AB连线向右匀速运动,并与小球A发生弹性碰撞. 在小球B的右侧某位置固定一块弹性挡板(图中未画出),当弹簧恢复原长时,小球B与挡板发生正碰并立刻将挡板撤走. 不计所有碰撞过程中的机械能损失,弹簧始终处于弹性限度内,小球B与挡板的碰撞时间极短,碰后小球B的速度大小不变,但方向相反。

在小球A向右运动过程中,求:(1)小球B与挡板碰撞前,弹簧弹性势能最大值;(2)小球B与挡板碰撞时,小球A、B速度分别多大?(3)小球B与挡板碰撞后弹簧弹性势能最大值。

4..(10分)如图所示,三个可视为质点的滑块质量分别为mA =m,mB=2m,mC=3m,放在光滑水平面上,三滑块均在同一直线上.一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,B、C均静止。

现滑块A以速度v=与滑块B发生碰撞(碰撞时间极短)后粘在一起,并压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平面上匀速运动,求:①被压缩弹簧的最大弹性势能②滑块C脱离弹簧后A、B、C三者的速度5.如图所示,质量为m=1kg的滑块A从光滑圆弧h=0.9m处由静止开始下滑,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上,B滑块与A滑块的质量相等,弹簧处在原长状态.滑块从P点进入水平导轨,滑行S=1m后与滑块B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回水平导轨的左端P点并停止.滑块A和B与水平导轨的滑动摩擦因数都为μ=0.1,g=10m/s求:(1)滑块A 与滑块B 碰撞前的速度(2)滑块A 与滑块B 碰撞过程的机械能损失 (3)运动过程中弹簧最大形变量 x .6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H=5m 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h=1.8m 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知m A =1kg ,m B =2kg ,m C =3kg ,g=10m/s 2,求: (1)滑块A 与滑块B 碰撞结束瞬间的速度; (2)被压缩弹簧的最大弹性势能;(3)滑块C 落地点与桌面边缘的水平距离.7. (II)如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静置在光滑水平面上.现有一滑块A 从光滑曲面上离水平面h 高处由静止开始滑下,与滑块B 发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C 向前运动,经过一段时间,滑块C 脱离弹簧,继续在水平面上做匀速运动.已知m A =m B =m ,m C =2m ,求: (1)滑块A 与滑块B 碰撞时的速度v 1大小;(2)滑块A 与滑块B 碰撞结束瞬间它们的速度v 2的大小; (3)滑块C 在水平面上匀速运动的速度的大小.8. 如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:开始时,A、B静止,设弹簧压缩量为x1,有
kx1=m1g①(2分)
挂C并释放后,C向下运动,A向上运动,设B刚要离地
时弹簧伸长量为x2,有
kx2=m2g②(2分)
B不再上升,表示此时A和C的速度为零,C已降到最低点.
由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为
③(3分)
C换成D后,当B刚离地时弹簧势能的增量与第一次相同,由能量关系得
(2)分析知:小球每次离开Q时的速度大小相同,等于小球第一次与Q接触时速度大小v,根据动能定理可得:qEL= (2分)
设小球与薄板Q碰撞n次后恰好向右运动到B板,则:qn (2分)
小球与薄板Q碰撞n次后向右运动从与Q分离到恰好到达B板的过程中,根据动能定理可得:- (2分)
由以上几式可得: (或取 的整数)(2分)
(1)欲使小球能通过最高点C,则半圆形轨道的半径最大为多少?
(2)欲使小球通过最高点C后落到水平面上的水平距离最大,则半
圆形轨道的半径为多大?落至B点的最大距离为多少?
3.如图是为了检验某种防护罩承受冲击能力的装置,M为半径为 、固定于竖直平面内的1/4光滑圆弧轨道,轨道上端切线水平,N为待检验的固定曲面,该曲面在竖直面内的截面为半径 的1/4圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点,M的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量 的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到N的某一点上,取g=10m/s2,求:
机械能与弹簧综合练习题含答案精编版
机械能与弹簧综合练习题
1、如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.
3.(1)设A、B下落H高度时速度为υ,由机械能守恒定律得:
B着地后,A先向下运动,再向上运动到,当A回到B着地时的高度时合外力为0,对此过程有:
解得:
(2)B物块恰能离开地面时,弹簧处于伸长状态,弹力大小等于mg,B物块刚着地解除弹簧锁定时,弹簧处于压缩状态,弹力大小等于mg.因此,两次弹簧形变量相同,则这两次弹簧弹性势能相同,设为EP.
解出所求
4.(18分)如图所示,将质量均为m厚度不计的两物块A、B用轻质弹簧相连接,现用手托着B物块于H高处,A在弹簧弹力的作用下处于静止后,将弹簧锁定.现由静止释放A、B两物块,B物块着地时速度立即变为零,与此同时解除弹簧锁定,在随后的过程中,当弹簧恢复到原长时A物块运动的速度为υ0,且过程中B物块恰能离开地面但不能继续上升.已知弹簧具有相同形变量时弹性势能也相同.求:
当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有

对A施加F力,分析A、B受力如右图所示
对A ②
对B ③
可知,当N≠0时,AB有共同加速度a=a′,由②式知欲使A匀加速运动,随N减小F增大.当N=0时,F取得了最大值Fm,

又当N=0时,A、B开始分离,由③式知,
又B物块恰能离开地面但不继续上升,此时A物块速度为0.
从B物块着地到B物块恰能离开地面但不继续上升的过程中,A物块和弹簧组成的系统机械能守恒,即:
解得:Δx=H
(3)因为B物块刚着地解除弹簧锁定时与B物块恰能离开地面时弹簧形变量相同,所以弹簧形变量
第一次从B物块着地到弹簧恢复原长过程中,弹簧和A物块组成的系统机械能守恒:
(1)若在小钩上挂质量为M的物块C并由静止释放,可使物块A对挡板P的压力恰
为零,但不会离开P,求物块C下降的最大距离h
(2)若C的质量为2M,则当A刚离开挡板P时,B的速度多大?
分析与解
通过物理过程的分析可知:当A刚离开挡板P时,弹力恰好与A所受电场力平衡,弹簧伸长量一定,前后两次改变的变化及弹性势能的改变相同,可以替代求解。
(1)B与A碰撞过程中损失的机械能。
(2)碰后C是否立即做圆周运动?如果是,求C运动到最高点时绳的拉力大小;如果不是,则C运动到什么位置时绳子再次绷紧?
24(20分)解:
(1)小球B在PM间运动时受到的摩擦力为 (2分)
由功能关系得,弹簧具有的最大弹性势能
设小球 运动到 点时速度为 ,由功能关系得
(4分)
此时,弹簧压缩量 ④
AB共同速度 ⑤
由题知,此过程弹性势能减少了WP=EP=
设F力功WF,对这一过程应用功能原理

联立①④⑤⑥,且注意到EP=可知,WF=×10-2J
6.(22分)如图所示,AB是两块竖直放置的平行金属板,相距为2L,分别带有等量的正、负电荷,在两板间形成电场强度大小为E的匀强电场。A板上有一小孔(它的存在对两板间匀强电场分布的影响可忽略不计),孔中有一条与板垂直的水平光滑绝缘轨道,一个质量为m,电荷量为q(q>0)的小球(可视为质点),在外力作用下静止在轨道的中点P处。一自然长度为L的轻弹簧左端固定在距A板左侧L处挡板上,右端固定一块轻小的绝缘材料制成的薄板Q。撤去外力释放带电小球,它将在电场力作用下由静止开始向左运动,穿过小孔后(不与金属板A接触)与薄板Q一起压缩弹簧,由于薄板Q及弹簧的质量都可以忽略不计,可认为小球与Q接触过程中不损失机械能。小球从接触Q开始,经过一段时间第一次把弹簧压缩至最短,然后又被弹簧弹回。由于薄板Q的绝缘性能有所欠缺,使得小球每次离开Q瞬间,小球的电荷量都损失一部分,而变成刚与Q接触时小球电荷量的1/k(k>l)。求:
(1)使木块A竖直做匀加速运动的过程中,力F的最大值;
(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了,求这一过程F对木块做的功。
分析与解
此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N=0时,恰好分离.
(l)弹簧第一次压缩到最左边时的弹性势能;
(2)小球在与B板相碰之前,最多能与薄板Q碰撞多少次;
(3)设A板的电势为零,当k=2、且小孔右侧的轨道粗糙与带电小球间的滑动摩擦力FJ= 时,求带电小球初、末状态的电势能变化量。
21.(22分)
(1)当P由静止开始释放到弹簧第一次压缩到最左边的过程中根据能的转化和守恒定律可得弹性势能:EP=qEL(6分)
⑴B物块着地后,A在随后的运动过程中,A所受合外力为零时的速度υ1;
⑵从B物块着地到B物块恰能离开地面但不继续上升的过程中,A物块运动的位移Δx;
⑶第二次用手拿着A、B两物块,使得弹簧竖直并处于原长状态,此时物块B离地面的距离也为H,然后由静止同时释放A、B两物块,B物块着地后速度同样立即变为零.求第二次释放A、B后,B刚要离地时A的速度υ2.
第二次释放A、B后,A、B均做自由落体运动,由机械能守恒得刚着地时A、B系统的速度为
从B物块着地到B刚要离地过程中,弹簧和A物块组成的系统机械能守恒:
联立以上各式得:
5、如图所示,A、B两木块叠放在竖直轻弹簧上,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100N/m,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).

由④—⑥式可解得A刚离开P时B的速度为:

说明研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用。
另外,有关弹簧的串、并联和弹性势能的公式,高考中不作定量要求,这里不再说明。
10、如图所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m的物体B相连,开始时A和B均处于静止状态,此时弹簧压缩量为x0,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A、另一端C握在手中,各段绳均处于刚好伸直状态,A上方的一段绳子沿竖直方向且足够长。现在C端施水平恒力F而使A从静止开始向上运动。(整个过程弹簧始终处在弹性限度以内)
(3)设小球第一次弹回两板间后向右运动最远距A板的距离为L1,则:
(2分)
设小球第2次弹回两板间后向右运动最远距A板的距离为L2,则:
(2分)
而此时电场力: ,即带电小球可保持静止。(2分)
所以带电小球初、末状态的电势能变化量: (2分)
7.(20分)如图所示,水平地面M点左侧粗糙,右侧光滑。整个空间有一场强大小E1=1 103N/C、方向竖直向下的匀强电场。质量mA=0.04kg的不带电小物块A用长为R=5m不可伸长的绝缘轻质细绳拴于O点,静止时与地面刚好接触。带正电的小物块B与左端固定在墙上的绝缘轻弹簧接触但不粘连,B的质量mB=0.02kg,带电量为q=+2 10-4C,与M左侧地面间动摩擦因数μ=。现用水平向左的推力将B由M点(弹簧原长处)缓慢推至P点(弹簧仍在弹性限度内),推力做功W=,MP之间的距离为L=50cm。撤去推力,B向右运动,随后与A发生正碰并瞬间成为一个整体C(A、B、C均可视为质点)。已知碰撞前后电荷量保持不变,碰后C的速度为碰前B速度的 。碰后立即把匀强电场方向变为竖直向上,场强大小变为E2=6×103N/C。(取g=10m/s2)求:
④(4分)
由③④式得
⑤(2分)
由①②⑤式得
⑥(2分)
9、如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带为+QA和+QB的电荷量,质量分别为mA和mB。两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接轻质小钩。整个装置处于场强为E、方向水平向左的匀强电场中,A、B开始时静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B不会碰到滑轮。
设开始时弹簧压缩量为x1
相关文档
最新文档