内压容器及开孔补强计算

合集下载

压力容器的开孔及补强

压力容器的开孔及补强

第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。

第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。

容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。

◆ 接管处容器壳体与接管形成结构不连续应力。

◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。

上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。

(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。

若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。

2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。

承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。

容器的开孔补强

容器的开孔补强
环保设 备
容器的开孔补强
一、开孔应力集中现象及其原因
由于各种工艺、结构、操作、维护检修等方面的要求,需要在压力容器上和封头上开孔或安装接 管。例如人孔、手孔、介质的出入口等。容器开孔之后,由于器壁金属的连续性受到破坏,在 孔边附近的局部地区,应力会急剧增加。这种局部的应力增长现象,称为“应力集中”。在应
力集中区城的最大应力值,称之为“应力峰值”。
容器的开孔补强
二、开孔补强设计Hale Waihona Puke 原则与补强结构1.补强设计原则
(1)等面积补强法的设计原则 (2)塑性失效补强原则
2.补强形式
目前采用的补强形式主要有:①内加强平齐接管;②外加强平齐接管;③对称加 强凸出接管;④密集补强
3.补强结构
(1)补强圈补强结构 (2)加强元件补强结构
(3)整体补强结构
4.等面积补强法的设计
(1)开孔有效补强范围的计算 (2)补强面积的计算
容器的开孔补强
环保设 备

压力容器的开孔与补强

压力容器的开孔与补强

第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。

第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。

容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。

◆ 接管处容器壳体与接管形成结构不连续应力。

◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。

上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。

(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。

若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。

2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。

承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。

使用SW6—2011计算压力容器开孔补强的几个问题

使用SW6—2011计算压力容器开孔补强的几个问题

使用SW6—2011计算压力容器开孔补强的几个问题【摘要】开孔补强是压力容器设计中必不可少的一部分,在压力容器结构设计前需要使用SW6-2011过程设备强度计算软件进行强度计算。

为保证计算的准确性,必须透彻理解SW6-2011软件计算的理论基础,但在实际工作中,一些设计者常常会忽视标准规范中的某些说明或者对计算理论的理解不够透彻而导致取值错误,直接影响了设备的安全可靠性。

本文列举了几个在日常工作中经常遇到的在使用SW6-2011计算压力容器开孔补强时需要注意的问题及通常的处理办法,提醒设计者在设计工作中引起足够重视。

【关键词】开孔补强;压力容器;SW6-20110 引言为满足工艺或结构需要,在压力容器设计中开孔是必不可少的。

容器开孔接管后会引起开孔或接管部位的应力集中,再加上接管上会有各种外载荷所产生的应力及热应力,以及容器材料和制造缺陷等各种因素的综合作用,使得开孔和接管附近就成为压力容器的薄弱部位。

虽然标准和规范对设计和计算都作了较为详细的规定,但在使用SW6-2011过程设备强度计算软件计算开孔补强时需要注意对标准规范中有关定义的理解和把握,灵活运用软件,必要时对有关数据进行调整,才能得到正确的结论,保证设备的安全可靠性。

1 补强方法及适用范围1.1 计算时应注意的问题在使用SW6-2011计算开孔补强之前要先判断接管的直径和壁厚是否满足GB150.3-2011中6.1.3不另行补强的最大开孔直径[1]的要求,满足要求的可以不进行计算,没有进行判断直接输入数据的,生成计算书会显示满足不另行补强的最大开孔直径的要求,不予进行计算。

还需要注意的是单个孔开孔补强计算合格,然而该孔的有效补强区B=2d范围内还有其他开孔,形成孔桥的,则应按孔桥处理。

在计算两相邻开孔中心的间距或者任意两孔中心的间距时对曲面间距应按弧长计算,按照弦长或中心线垂直距离计算是不正确的。

1.2 补强计算方法及适用范围的理解SW6-2011补强计算方法给出四种:等面积补强法、另一补强方法、分析方法和压力面积法。

压力容器设计开孔补强精品文档4页

压力容器设计开孔补强精品文档4页

开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。

有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。

(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。

■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。

为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。

s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。

(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。

压力容器大开孔补强计算

压力容器大开孔补强计算

压力容器大开孔补强计算【摘要】首先对压力容器大开孔补强计算中涉及的应力特点及强度分析进行阐述,然后将目前存在的三种主要的补强计算方法的计算原理、特点等做了详细的介绍,并对三种不同的方法的优缺点进行比较总结,从而要求设计的容器更加符合安全、经济等多方面的要求,实现优化设计的目的。

【关键词】压力容器大开孔补强等面积法分析法及有限元应力分析法在设计者设计容器及压力容器的过程中通常都需要设计计算壳体的大开孔补强,gb150-2011即钢制压力容器中规定了容器壳体开孔范围,根据壳体的内径不同,分别作了明确地规定,当内径小于1500毫米时,开孔的最大直径要小于等于二分之三的内径,且不能大于520毫米;而当其内径大于1500毫米时,开孔最大直径则应当小于等于三分之二的内径,且其直径不能大于1000毫米。

本文中的容器的大开孔指的是超过以上范围的开孔。

现如今,主要是通过等面积法、分析法及有限元应力分析法三种方法计算压力容器大开孔的补强。

1 大开孔应力特点及强度分析对压力容器的壳体做开孔后,容器开孔的边缘会形成较为复杂的应力状况,以下是对会引起的三种应力的详细描述。

1.1 局部薄膜应力一般来说压力容器的壳体承受的都是一次总体薄膜应力,指的是它承受的薄膜应力是均匀的。

而对其进行开孔后,会导致其面积的减少,即该截面的承载压力的面积减少,将会破坏其原有的均匀受力的情况,对开孔的周边其变化尤为明显,其应力会明显的增加,而对远离开孔的地方,其应力则基本不受影响。

此种仅在开孔附近发生变化的应力被称为局部薄膜应力,同时若这种应力引起失效,则被称为静力强度失效。

1.2 弯曲应力当容器开孔后,一般需要有另外的一个壳体与被开孔的容器相互贯通。

即需要设置接管、人孔。

两个相连通的壳体在压力的载荷作用下的直径的增大度一般来说不同,而当对其进行接管后,为了平衡、协调其不一致的变形,壳体自身通常会产生一种被称为边界内力的平衡力。

这些边界内力主要是通过在开孔的边缘或者接管的端部引起二次应力从而使其两部分在连接点上的变形能够相互协调。

压力容器开孔补强方法

压力容器开孔补强方法

压力容器开孔补强方法作者:马军伟来源:《中国新技术新产品》2015年第11期摘要:在工程应用中经常需要为满足各种工艺和结构上的要求在压力容器上开孔和安装接管。

容器开孔以后,开孔的地方会形成较大应力,这时需要进行补强,本文列举了一系列容器开孔方法,如等面积法、分析法以及压力面积法等。

关键词:大开孔;补强;压力容器中图分类号:TQ050 文献标识码:A1 前言随着石油化工技术以及海洋和空间等技术的发展,压力容器结构也不再像传统容器结构那样简单。

工艺以及结构需求的不同,使得容器的许多受压元件均要开孔接管,有时还需设计直径大于800mm的大开孔。

容器通过进行开孔,可以减弱其整体强度,使开孔边缘应力过于集中。

按照JB 4732规范提到的应力分类,容器开孔后的应力有以下几种:相贯线壳体变形造成的应力及峰值应力等等。

在容器设计制造中,国内对容器接管开孔补强一般采用以下几种方法:补强圈补强及厚壁接管补强等。

当补强圈补强与壳体厚度相等时,补强圈由于面积过大从而不能集中补强,而且壳体本身和壳体上的其它部件通常也会限制补强圈面积,因此补强圈补强一般适用于容器应力水平低,材料塑韧性好,且容器的工作条件比较优良的场合。

当采用厚壁接管补强时,由于接管与筒体的壁厚相差较大,增大了现场焊接难度和制造成本,若再出现接管力和接管弯矩作用时,接管的设计壁厚将急剧增加,将无法实现接管壁厚补强,因此接管壁厚补强一般适用于像仪表口等小直径接管的补强;而整体锻件补强由于受到锻件制造工艺的约束,目前一般用于封头人孔接管的补强,其结构尺寸大(DN500),成本高,制造难度大,周期长。

以上几种补强对小直径接管来说,优势非常明显。

但对于容器直径较大的(>800mm)开孔接管补强,会因为它的根部峰值应力过大,使得装置运行后,造成容器衬里脱落,甚至可能会造成装置停车。

从这个角度来看,传统的接管补强方法已经不能满足大型化装置。

针对以上情况本文介绍几种常用的压力容器大开孔计算方法。

压力容器大开孔补强计算方法对比

压力容器大开孔补强计算方法对比

关键词
压 力容器 大开孔
补强
现代化 承压 设备应 用 中, 由于 工 艺 和 结 构 的需 求 , 不 可避 免 地 出现 较大 的开孔 接
拉承 载 能 力相 平 衡 的计 算方 法 , 其 计 算方 法
只涉及 补 强材料 的薄 膜应 力 。
管, 而 容器 大 开孔 会 在 开孔 边 缘形 成 比较 复
图1用于设计计算的接管有效厚度比的限制
余 热 锅 炉 2 0 1 4 . 3
2 5
管 有 效 厚度 与 壳 体有 效 厚
度 之 比应 不超 过 图 1 查 处 的值 , 如 超 出, 超 出部 分 不
应 计 入 补 强 ;用 于 制 造
时, 即实 际 采用 厚 度 时 , 接
十- 尊
构, 接 管 与 壳 体 连 接 内 外 壁 应 避 免 尖 角 过
渡, 而采用 r 圆角 过渡 ;
图3圆筒壳体单个开孔且补强圈补强
计 算 公 式 :( Af t +A f w) ( [ O ] s - O . 5 p) +
Af p( 【 0】 p - 0 . 5 p) + Al p( [ O】 b - 0 . 5 p)≥p ×
处壳 体 曲率 直 径从 有 关 曲线 图中 查取 , 设 计
计算 时壁 厚 比最 大 为 2 , 制造 时 实 际采 用 的
壁 厚 比最 大 为 3 , 由此 说 明 制造 时不 要 随 意 增加壁厚, 不是壁厚越厚越好 , 太 厚 了不 仅
不经济, 而 对 应 力没 有 好 处 。 从 适 应 范 围 的
管 有效 厚度 与 壳体 有 效 厚
度 应 不 超 过 图 2查 出 的
值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆形平盖厚度 δ
p
K M
GB150 钢制压力容器
受内压标准椭圆形封头厚度 受内压非标准椭圆形封头厚度 δ δ 6.69 6.69 ㎜ ㎜ MPa ㎜ MPa ㎜
椭圆形封头的最大允许工作压力[Pw] 11.91 受内压碟形封头厚度 δ 53.40 1.52 12.27
蝶形封头的最大允许工作压力 [Pw] 受内压球冠形封头厚度 δ
温度下的计算厚度δp 受内压)(焊接)
70 105 1 172 0.3 ㎜ MPa MPa
厚度计算
76.92 ㎜
凸形封头设计温度下的计算厚度δ (仅受内压)
计算压力 Pc 10 137 1 180 45 1080 1200 1.8 204 8 1 1.33 ㎜ ㎜ ㎜ ㎜ ㎜ ㎜ MPa MPa
设计温度下封头材料的许用应力 [σ ]t
目录
圆形平盖设计温度下的计算厚度 (仅受内压)(焊接)
平盖计算压力 Pc
设计温度下封头材料的许用应力 [σ ]t
焊接接头系数 封头内直径 封头曲面深度 蝶形封头半径 球冠形封头球面部分内半径 球冠形封头计算系数 蝶形封头过渡段转角内半径 封头有效厚度Βιβλιοθήκη 椭圆形封头形状系数 蝶形封头形状系数
Φ Di hi Ri Ri Q r δ
e
焊接接头系数 平盖计算直径 圆形平盖结构特征系数
Φ Dc K
GB150 圆形平盖厚度计算
相关文档
最新文档