初中数学教学设计案例
初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。
初中数学课堂教学设计(7篇)

初中数学课堂教学设计(7篇)初中数学课堂教学设计(篇1)一、教学目标1、了解二次根式的意义;2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3、掌握二次根式的性质和,并能灵活应用;4、通过二次根式的计算培养学生的逻辑思维能力;5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法启发式、讲练结合。
四、教学过程(一)复习提问1、什么叫平方根、算术平方根?2、说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”。
请学生举出几个二次根式的例子,并说明为什么是二次根式。
下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?例2 x是怎样的实数时,式子在实数范围有意义?解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x0,当x0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x2。
当x2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。
初中数学教学设计(优秀5篇)

初中数学教学设计(优秀5篇)初中数学设计教案篇一一、教学目标(一)基础知识目标:1.理解方程的概念,掌握如何判断方程。
2.理解用字母表示数的好处。
(二)能力目标体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标增强用数学的意识,激发学习数学的热情。
二、教学重点知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点如何找相等关系列方程四、教学过程我们知道方程是一个含有未知数的'等式,而等式表示了一个相等关系。
因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
师生共同分析、研究一元一次方程解简单应用题的方法和步骤例1 某面粉仓库存放的面粉运出15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x—15%x=42 500,此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意。
初中数学实践课教学设计(3篇)

第1篇1. 知识与技能:掌握平方根的概念,理解平方根的性质,并能进行简单的平方根运算。
2. 过程与方法:通过小组合作、探究实验等方法,培养学生自主学习和合作探究的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生严谨的科学态度和良好的学习习惯。
二、教学重难点1. 教学重点:平方根的概念、性质和运算。
2. 教学难点:平方根的性质理解和应用。
三、教学过程(一)导入新课1. 复习平方的概念:引导学生回顾平方的概念,即一个数乘以自己。
2. 提出问题:如果一个数的平方是4,那么这个数是多少?引导学生思考,得出2和-2的平方都是4。
3. 引入平方根的概念:如果一个数的平方是4,那么这个数叫做4的平方根。
(二)探究平方根的性质1. 引导学生观察4的平方根2和-2,发现它们的平方都是4。
2. 提出问题:平方根有什么性质?引导学生进行小组讨论,得出以下性质:(1)平方根的值是正数或0;(2)平方根的平方等于被开方数;(3)一个正数的平方根有两个,它们互为相反数;(4)0的平方根是0;(5)负数没有平方根。
3. 通过举例验证这些性质,让学生进一步理解平方根的性质。
(三)平方根的运算1. 引导学生回顾平方根的概念和性质,为平方根的运算做准备。
2. 介绍平方根的运算方法:(1)求一个数的平方根,即找到一个数,使得它的平方等于这个数;(2)平方根的乘除法运算,即求两个平方根的乘积或商的平方根;(3)平方根的加减法运算,即求两个平方根的和或差的平方根。
3. 通过例题讲解,让学生掌握平方根的运算方法。
(四)巩固练习1. 布置课堂练习题,让学生巩固所学知识。
2. 引导学生相互讨论,共同解决练习题中的问题。
(五)课堂小结1. 总结本节课的学习内容,强调平方根的概念、性质和运算。
2. 引导学生反思学习过程,提出改进建议。
(六)课后作业1. 完成课后练习题,巩固所学知识。
2. 预习下一节课的内容,为下一节课的学习做好准备。
初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)初中数学教学设计1(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的.依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。
初中数学教学设计 初中数学设计教案(优秀5篇)

初中数学教学设计初中数学设计教案(优秀5篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。
那么教学设计应该怎么写才合适呢?作者整理了5篇初中数学设计教案,希望您在阅读之后,能够更好的写作初中数学教学设计。
初中数学教学设计篇一为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。
努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:一、教学目标:通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。
对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的较大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物的熏陶,提高学生素质。
二、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十六章分式本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
第十七章反比例函数函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。
学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。
初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)篇一:初中数学教学设计篇一一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11U20距离a地50km,要在12U00之前驶过a地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式3.不等式的解集设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?<的解集,也是不等式>502、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计1.填空下列式子中属于不等式的有___________________________①x +7>②x≥ y + 2 = 0③ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7② a的与b的3倍的和是非负数③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.篇二:初中数学教学设计模板篇二教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。
初中数学优秀教案案例5篇

初中数学优秀教案案例5篇初中数学优秀教案案例篇1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k ≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx 平行的一条直线。
基础训练:1、写出一个图象经过点(1,—3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:5、过点(0,2)且与直线y=3x平行的直线是:6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。
8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学设计
教材分析:
1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角
形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形
成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等
腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深
对称思想的理解有重要意义。
5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究
的问题。
6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可
以认真研究。
7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力
都有重要的意义。
8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争
的意识。
学情分析:
1、授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平
衡。
3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动
学生的积极性。
教学目标:
知识目标:等腰三角形的相关概念,两个定理的理解及应用。
技能目标:理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
情感目标:体会数学的对称美,体验团队精神,培养合作精神。
教学中的重点、难点:
重点:1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点:1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
教学手段:1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作:1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现
一些灵活性。
3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动
为主体的教学过程。
教学步骤及说明
学生活动教师活动教学目标教学说明
预习相关概念及定培养学生良好的学习
理。
习惯。
课题引入:
观察并回答。
让学生观察两把三角从直观图形上,回忆小在小学知识和第八章
尺,从三角形分类思考学知识,体会等腰三角三角形知识的基础上,
“两把三角尺的形状除形。
学生比较容易得到结
了角度不同外还有什么论。
区别”
在对学生思考结果的总
结基础上,引入新课题。
学生同步回答新授:
1、等腰三角形的相关概
念,腰,底边,顶角,理解等腰三角形相关概
底角。
念。
学生运用直尺或圆2、指导学生做一做,要深入体会,等腰三角形
规和剪刀进行绘图求:在事先准备的纸上,的构成和画三角形的方
和剪切。
画一个腰长为 a 的等腰法。
三角形,并将它剪下来,
与组内其他成员的作品
放在一起,并观察和回
答问题。
学生观察并思考,然 3、第一个问题:观察所1、直观体会钝角等腰
后讨论,然后积极回剪得的三角形形状是否三角形,锐角等腰三角
答。
相同,在满足条件的情形,直角等腰三角形的
况下,可以画几个不同不同特点。
类的等腰三角形。
2、体会已知两边不能
确定三角形,为理解全
等或三角形的构成作铺
垫。
学生以小组形式进行操作和讨论
然后努力向结果慢4、第二个问题:将这些慢前进。
三角形放在一起,并且
使顶点重合,观察另外
的一些顶点,看看有什
么特点和发现。
学生对自己剪得的
等腰三角形作操作,
体会对称的思想。
在讨论的基础上,回 5、问题:等腰三角形是答更高层次的问题。
否为轴对称图形,如何
通过具体的操作体现他
是轴对称,并指出对称
轴。
学生观察,并且以小问题:等边三角形是组竞赛的方式进行否为轴对称图形,对称大范围的搜索和体轴有几条。
验。
等腰三角形的对称轴
有几条。
6、通过刚才的折叠结
合学生观察,体验,领屏幕上图形的字母,说
会新概念。
明轴对称图形的等量关
系和位置关系。
集体讨论并互相帮
助记忆重要的结论。
每个小组抽查记忆。
7、在总结刚才观察结论
的基础上,引出两条重
要的定理。
学生思考,看书理
解,然后讨论每一步通过小组竞争的方式要的理由。
求每个同学清晰记忆和理
解定理 2 中的具体条
件。
小组讨论,并且竞争1、培养学生的观察,
猜测,总结的能力。
2、体验等腰三角形在
圆中的存在
3、体会合作的乐趣。
4、体会从特殊到一般
的过程,为今后的轨迹
思想做一些准备。
1、从轴对称角度理解
等腰三角形,为后面的
等量关系的得出做铺
垫。
2、体验学习过程。
3、加深对一般情况和
特殊情况的理解,提高
学生对两解问题的敏感度。
1、体会轴对称图形中的
等量关系和由此得到的
特殊位置关系。
为下面
定理的引出得出有用的
结论。
2、感受组间竞争。
1、体验从特殊到一般的
过程。
2、体验合作和竞争的关系。
3、体验原定理和逆定理
的关系。
(不作任何表述,只做理解)
1、完成对定理1 的应用。
体会定理在几何计算中
回答。
的运用。
8、完成例题:已知:在 2、体会合作精神。
△ABC 中,AB=AC ,∠
B= 80°.求∠ C 和∠ A
的度数.1、体会两解可能性的
运用,培养思维的严密
9、完成例题:如果等腰性。
学生讨论,并且试图三角形的一个外角等于2、注意分类表达的合写出过程。
140 °,那么等腰三角形理性和清晰性。
三个内角等于多少度?
1、对三线合一的使用
2、结合学生的过程书
学生讨论,通过讨论,体会数学定理的使用和数学语言的组织。
10、完成例题:在△ABC 写,体会合情推理。
中, AB= AC ,D 是 BC
边上的中点,∠ B= 30°,
求∠ 1 和∠ ADC 的度数
11、完成例题:建筑工
人在盖房子的时候,要 1、体会三线合一在生看房梁是否水平,可以活中的使用。
用一块等腰三角形放在 2、体验数学语言的精梁上,从顶点系一重物,练和准确
如果系重物的绳子正好
经过三角板的底边中
点,那么房梁就是水平
的,为什么?
学生在自己剪得的等腰三角形上画上已知条件,并且观察是否相等,然后进行相应证明的思考,并积极讨论。
12、完成例题:等腰
△ABC 中,AB= AC ,D、
E 是 BC 上的两点,若
BD=CE ,那么AD 和
AE 相等吗?为什么1、直观体验轴对称的
概念,以及应用对称思
想实现辅助线的寻找13、课堂小结:通过今2、继续体验合情推理天的学习,你体会到什的使用。
么?
14、有益的思考:通过
学生小组讨论后发今天
的学习,你有哪些
言。
方法判断剪得的三角形
是等腰三角形。
回顾知识。
开放性问题,自由发
言。
培养学生开放性思维的
运用。