八年级数学上册 第14章 全等三角形整合与提升习题课件 (新版)沪科版
合集下载
2021秋八年级数学上册14、2三角形全等的判定1两边及其夹角分别相等的两个三角形授课课件新版沪科版

AB AB, ∵ABC ABC,
BC BC,
∴△ABC≌△A′B′C′. 要点精析:(1)全等的元素:两边及这两边的夹角; (2)在书写两个三角形全等的条件边角边时,要按边、 角、边的顺序来写,即把夹角相等写在中间,以突出两 边及其夹角对应相等.
知1-讲
3.易错警示:用两边一角证三角形全等时,角必须 是两边的夹角.两边和一边的对角分别相等时两 个三角形不一定全等,即不存在“边边角”.如图,
知1-讲
由上可知,确定一个三角形的形状、大小至 少需要有三个元素.确定三角形的形状、大小的 条件能否作为判定三角形全等的条件呢?
下面,我们利用尺规作图作出三角形,来研 究两个三角形全等的条件.
知1-讲
两边及其夹角分别相等的两个三角形 已知:△ABC[如图(1)]. 求作:△A′B′C′,使A′B′= AB,∠B′= ∠ B,B′C′=BC. 作法: (1)作 ∠MB′N= ∠B; (2)在B′M上截取B′A′=BA,在B′N上截取B′C′=BC; (3)连接 A′C′. 则△ A′B′C′[如图(2)]就是所求作的三角形. 将所作的△ A′B′C′与△ABC叠一叠,看看它们能否 完全重合?由此你能得到什么结论?
应用“SAS”判定两个三角形全等的“两点注意”: 对应:“SAS”包含“边”“角”两种元素,一定要注意元素的 “对应”关系. 顺序:在书写两个三角形全等的条件边角边时,要按边角 边的顺序来写,把夹角相等写在中间,以突出两边及其夹 角对应相等.绝不能出现两边及一边的对角分别相等的错 误,因为边边角(或角边边)不能保证两个三角形全等.
1 已知:如图,AB=AC,AD=AE. 求证:△ABE≌△ ACD.
知1-练
知1-练
2 如图,a,b,c分别表示△ABC的三边长,则下面与 △ABC一定全等的三角形是( )
BC BC,
∴△ABC≌△A′B′C′. 要点精析:(1)全等的元素:两边及这两边的夹角; (2)在书写两个三角形全等的条件边角边时,要按边、 角、边的顺序来写,即把夹角相等写在中间,以突出两 边及其夹角对应相等.
知1-讲
3.易错警示:用两边一角证三角形全等时,角必须 是两边的夹角.两边和一边的对角分别相等时两 个三角形不一定全等,即不存在“边边角”.如图,
知1-讲
由上可知,确定一个三角形的形状、大小至 少需要有三个元素.确定三角形的形状、大小的 条件能否作为判定三角形全等的条件呢?
下面,我们利用尺规作图作出三角形,来研 究两个三角形全等的条件.
知1-讲
两边及其夹角分别相等的两个三角形 已知:△ABC[如图(1)]. 求作:△A′B′C′,使A′B′= AB,∠B′= ∠ B,B′C′=BC. 作法: (1)作 ∠MB′N= ∠B; (2)在B′M上截取B′A′=BA,在B′N上截取B′C′=BC; (3)连接 A′C′. 则△ A′B′C′[如图(2)]就是所求作的三角形. 将所作的△ A′B′C′与△ABC叠一叠,看看它们能否 完全重合?由此你能得到什么结论?
应用“SAS”判定两个三角形全等的“两点注意”: 对应:“SAS”包含“边”“角”两种元素,一定要注意元素的 “对应”关系. 顺序:在书写两个三角形全等的条件边角边时,要按边角 边的顺序来写,把夹角相等写在中间,以突出两边及其夹 角对应相等.绝不能出现两边及一边的对角分别相等的错 误,因为边边角(或角边边)不能保证两个三角形全等.
1 已知:如图,AB=AC,AD=AE. 求证:△ABE≌△ ACD.
知1-练
知1-练
2 如图,a,b,c分别表示△ABC的三边长,则下面与 △ABC一定全等的三角形是( )
沪科版数学八上14.三角形全等的判定(SAS)课件(共26张)

例2 如图,有一池塘,要测池塘两端A、B的距离,可 先在平地上取一个可以直接到达A和B 的点C,连接AC并
延长到D, 使CD=CA.连接BC并延长到E,使CE=CB. 连接DE,
那么量出DE的长,就是A、B的距离.为什么?
证明:在△ABC 和△DEC中,
CA = CD, ∠ACB =∠DCE, CB =CE ,
3. 下列条件中,不能证明△ABC≌△DEF的是( C )
A.AB=DE,∠B=∠E,BC=EF B.AB=DE,∠A=∠D,AC=DF C.BC=EF,∠B=∠E,AC=DF D.BC=EF,∠C=∠F,AC=DF
解析:要判断能不能使△ABC≌△DEF,应看所给出的条件是不是两边 和这两边的夹角,只有选项C的条件不符合,故选C. 总结:在判断三角形全等时,注意两边与其中一边的对角相等的两个三角形 不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判 定三角形全等的.
C
A
B
E
C
C′
A
作法:
A′ B
D B′
(1)画∠DA'E=∠A;
(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;
(3)连接B'C '.
想一想:作图的结果反应了什么规律?你能用文字语言和符号语言概括吗?
三角形全等的基本事实:边角边(SAS)
文字语言:两边及其夹角分别相等的两个三角形全等.
∴△ABC ≌△DEC.(SAS)
A
B
C
∴AB=DE.(全等三角形的对应边相等)
E
D
例3 已知:如图,AC=AD,∠CAB=∠DAB.
八年级数学沪科版课件:14.2全等三角形的判定(1)

AD=CB,
∠DAC=∠BCA
∴△ABC≌△CDA.
二、新课讲解
我们知道,两边和它们的夹角对应相等的两 个三角形全等.由“两边及其中一边的对角对 应相等”的条件能判定两个三角形全等吗? 为什么?
做一做
画一个三角形,使它的一个内角为60º,这个角的对 边为 6厘米,另一条边长为5 厘米.
画一个三角形,使它的一个内角为45º,这个角的 对边为 3厘米,另一条边长为4厘米.
全等三角形的对应角相等,对应边也相等
学习目标:
1.理解并掌握三角形全等的判定方法1, 即“SAS”。 2.会运用“SAS”证明两三角形全等。
自学提纲:
自学课本97-100页内容,思考以下问题: 1、只给定1个或2个条件(元素)能判断 一个三角形的
形状和大小吗?
(1)只给一个元素 ①一条边长为4cm, ②一个角是45°, (2)只给定两个元素 ①两条边长为4cm、5cm,
4cm 45°
(2)只给定两个元素 ①两条边长为4cm、5cm, ②一条边长为4cm,一个角为45°, ③两个角分别为45°、50°.
45 °
45°
4cm
4cm
5 0°
通过上述操作,我们发现只给一个或者两个元 素,不能完全确定一个三角形的形状、大小,那么 还需增加什么条件才行呢?
确定一个三角形的形状、大小至少需要3个元素。
2023最新整理收集 do something
14.2 三角形全等的判定(1)
复习引入:
1、什么叫全等三角形? 2、全等三角形有哪些性质?
一、新课引入
1、 什么叫全等三角形?
能够完全重合的两个三角形叫 全等三角形.
2、 全等三角形有什么性质?
2023八年级数学上册第14章全等三角形14.1全等三角形教案(新版)沪科版

学生预习:
发放预习材料,引导学生提前了解全等三角形的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习全等三角形内容做好准备。
教师备课:
深入研究教材,明确全等三角形教学目标和全等三角形重难点。
准备教学用具和多媒体资源,确保全等三角形教学过程的顺利进行。
设计课堂互动环节,提高学生学习全等三角形的积极性。
2. 掌握全等三角形的性质:学习全等三角形对应边相等、对应角相等的性质,并能够运用这些性质解决实际问题。
3. 学会使用全等三角形解决几何问题:通过实际例题,引导学生运用全等三角形的性质解决几何问题,提高学生的几何思维能力和解决问题的能力。
4. 培养学生的合作学习和探究能力:在教学过程中,教师组织学生进行小组合作学习,引导学生主动探究全等三角形的性质和判定方法,培养学生的合作学习和探究能力。
5. 教学工具:准备投影仪、计算机、白板等教学工具,以便教师能够清晰地展示教学内容,并与学生进行互动。
6. 学习任务单:设计一份学习任务单,列出本节课的学习目标、任务和要求。学生可以通过完成学习任务单,巩固所学内容并进行自我评估。
7. 课堂练习题:准备一份课堂练习题,包括一些与全等三角形相关的实际问题。这些练习题应能够帮助学生巩固所学知识,并提高解决问题的能力。
3. 数学建模:培养学生运用全等三角形的性质解决实际问题的能力,提高学生的数学建模素养。
4. 数学交流:在小组合作学习和探究过程中,培养学生运用数学语言表达全等三角形的性质和判定方法,提高学生的数学交流能力。
5. 数学思维:通过解决几何问题,培养学生的数学思维能力,提高学生分析问题、解决问题的能力。
b. SAS(Side-Angle-Side):如果两个三角形有两组对应边和它们夹的对应角分别相等,那么这两个三角形全等;
发放预习材料,引导学生提前了解全等三角形的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习全等三角形内容做好准备。
教师备课:
深入研究教材,明确全等三角形教学目标和全等三角形重难点。
准备教学用具和多媒体资源,确保全等三角形教学过程的顺利进行。
设计课堂互动环节,提高学生学习全等三角形的积极性。
2. 掌握全等三角形的性质:学习全等三角形对应边相等、对应角相等的性质,并能够运用这些性质解决实际问题。
3. 学会使用全等三角形解决几何问题:通过实际例题,引导学生运用全等三角形的性质解决几何问题,提高学生的几何思维能力和解决问题的能力。
4. 培养学生的合作学习和探究能力:在教学过程中,教师组织学生进行小组合作学习,引导学生主动探究全等三角形的性质和判定方法,培养学生的合作学习和探究能力。
5. 教学工具:准备投影仪、计算机、白板等教学工具,以便教师能够清晰地展示教学内容,并与学生进行互动。
6. 学习任务单:设计一份学习任务单,列出本节课的学习目标、任务和要求。学生可以通过完成学习任务单,巩固所学内容并进行自我评估。
7. 课堂练习题:准备一份课堂练习题,包括一些与全等三角形相关的实际问题。这些练习题应能够帮助学生巩固所学知识,并提高解决问题的能力。
3. 数学建模:培养学生运用全等三角形的性质解决实际问题的能力,提高学生的数学建模素养。
4. 数学交流:在小组合作学习和探究过程中,培养学生运用数学语言表达全等三角形的性质和判定方法,提高学生的数学交流能力。
5. 数学思维:通过解决几何问题,培养学生的数学思维能力,提高学生分析问题、解决问题的能力。
b. SAS(Side-Angle-Side):如果两个三角形有两组对应边和它们夹的对应角分别相等,那么这两个三角形全等;
沪科版八年级上册数学课件(第14章 全等三角形)

所以△ADE≌△AFE,所以∠DAE=∠FAE.
因为∠BAF=56°,∠BAD=90°,所以
∠DAF=90°-∠BAF=90°-56°=34°,
所以∠DAE= 1 ∠DAF= 1 ×34°=17°.
2
2
总结
解决折叠问题的关键是弄清在折叠 过程中发生的是全等变换,即折叠前后 的两个图形(本例是三角形)全等,其折 叠前后的对应边相等,对应角相等.类 似地,还有平移和旋转问题.在此过程 中,往往产生了全等三角形,然后根据 全等三角形的性质解题.
第14章 全等三角形
14.2 三角形全等的判定
第1课时 两边及其夹角分别 相等的两个三角形
1 课堂讲解 判定两三角形全等的基本事实:边角边
全等三角形判定“边角边”的简单应用
2 课时流程
逐点 导讲练
知3-讲
解:∵Rt△ABC≌Rt△CDE, ∴∠BAC=∠DCE. 又∵在Rt△ABC中,∠B=90°, ∴∠ACB+∠BAC=90°. ∴∠ACB+∠ECD=90°. ∴∠ACE=180°-(∠ACB+∠ECD) =180°-90°=90°.
总结
(1)利用全等三角形的性质求角的度数的方法: 利用全等三角形的性质先确定两个三角形中角 的对应关系,由这种关系实现已知角和未知角 之间的转换,从而求出所要求的角的度数.
总结
两种解法的入手点分别是“同底等高、等底 等高的三角形面积相等”,这一结论要结合具体 图形理解.如图,l1∥l2,点A,B,F在l1上, AB =BF,点C,D,E是l2上任取的点,则根据上述 结论,知S△ABC=S△ABD=S△BFE.
知3-讲
知3-练
1 若△ABC与△DEF全等,点A和点E,点B和点D
知1-讲
第14章全等三角形期末复习PPT课件(沪科版)

第14章 全等三角形的判定
复习要点 1.全等三角形的定义
能够完全重合的两个三角形称为全等三角形. 2.全等三角形的性质:
全等三角形的对应边相等. 全等三角形的对应角相等. 全等三角形的对应边上的高相等. 全等三角形的对应边上的中线相等. 全等三角形的对应角的平分线相等.
复习要点 3.全等三角形的判定方法
C
D
∴BC=DC.
16. 如图,已知AC=BD, BC、AD相交于点E,且
BC⊥AC,BD⊥AD. AD 是∠BAC的平分线. 求证:BC
是∠ABD的平分线.
C
证明:∵ BC⊥AC,BD⊥AD,
D
∴∠C=∠D=90°.
在△RtABC和Rt△BAD中
AB=BA
A
B
AC=BD
∴ △RtABC ≌ Rt△BAD (HL)
要证:DE=AE-DC A 要证:AE=BD DC=BE 要证: △ABE≌△BCD
D 1E
∠ABE=∠BCD.
B
C
∠ABC=120° ∠D=60°
例2 如图,在△ABC中, ∠ABC=120°, AB=BC,
BD是∠ABC内的射线 ,若连接DC, ∠D=60°,点E是
线段BD上一点,且∠1=60°. 求证:DE=AE-DC.
一般三角形:SSS SAS ASA AAS 直角三角形:HL SAS ASA AAS
结论:判定两个三角形全等的条件中 至少有一组边对应相等.
复习要点
判定两个三角形全等的条件中至少有
一组边对应相等.
4. 判
S SSS
定
S
SAS
全 第一
等 的
找边S
A HL ASA
思
复习要点 1.全等三角形的定义
能够完全重合的两个三角形称为全等三角形. 2.全等三角形的性质:
全等三角形的对应边相等. 全等三角形的对应角相等. 全等三角形的对应边上的高相等. 全等三角形的对应边上的中线相等. 全等三角形的对应角的平分线相等.
复习要点 3.全等三角形的判定方法
C
D
∴BC=DC.
16. 如图,已知AC=BD, BC、AD相交于点E,且
BC⊥AC,BD⊥AD. AD 是∠BAC的平分线. 求证:BC
是∠ABD的平分线.
C
证明:∵ BC⊥AC,BD⊥AD,
D
∴∠C=∠D=90°.
在△RtABC和Rt△BAD中
AB=BA
A
B
AC=BD
∴ △RtABC ≌ Rt△BAD (HL)
要证:DE=AE-DC A 要证:AE=BD DC=BE 要证: △ABE≌△BCD
D 1E
∠ABE=∠BCD.
B
C
∠ABC=120° ∠D=60°
例2 如图,在△ABC中, ∠ABC=120°, AB=BC,
BD是∠ABC内的射线 ,若连接DC, ∠D=60°,点E是
线段BD上一点,且∠1=60°. 求证:DE=AE-DC.
一般三角形:SSS SAS ASA AAS 直角三角形:HL SAS ASA AAS
结论:判定两个三角形全等的条件中 至少有一组边对应相等.
复习要点
判定两个三角形全等的条件中至少有
一组边对应相等.
4. 判
S SSS
定
S
SAS
全 第一
等 的
找边S
A HL ASA
思
沪科版八年级数学上册 第14章 全等三角形 复习课件 (共22张PPT)

第14章 全等三角形
复习题
要点梳理
一、全等三角形的性质 能够完全重合的两个图形叫全等图形,能够完全重合的两个三角形叫全等三角形. 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点, 重合的边叫做对应边, 重合的角叫做对应角.
D B和 点E ,点C和_点F _是对应顶点. 其中点A和 点 ,点 AB和 DE ,BC和EF ,AC和 DF 是对应边.
∠BAO =∠CAO吗?为什么?
解: ∠BAO=∠CAO, 理由:∵ OB⊥AB,OC⊥AC,
B A C O
∴ ∠B=∠C=90°.
在Rt△ABO和Rt△ACO中,
OB=OC,AO=AO,
∴ Rt△ABO≌Rt△ACO ,(HL)
∴ ∠BAO=∠CAO.
热点四 利用全等三角形解决实际问题
例4 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面垂 直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的距离 相等吗? 【分析】将本题中的实际问题转化为数学问题 就是证明BD=CD.由已知条件可知AB=AC,
D.AB=DE,BC=EF, ∠ C= ∠ F
3.如图所示,AB与CD相交于点O, ∠A=∠B,OA=OB 添加 或∠AOC=∠BOD , 所以 条件 ∠C=∠D △AOC≌△BOD 理由是 AAS . 或ASA
C O A D
B
考点三 全等三角形的性质与判定的综合应用
例3 如图,在△ABC中,AD平分∠BAC,CE⊥AD于点G,交AB于点E,EF∥BC 交AC于点F, 求证:∠DEC=∠FEC.
A
D
BC=CB(公共边),
∠ACB=∠DBC(已知), ∴△ABC≌△DCB(ASA ).
B
C
复习题
要点梳理
一、全等三角形的性质 能够完全重合的两个图形叫全等图形,能够完全重合的两个三角形叫全等三角形. 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点, 重合的边叫做对应边, 重合的角叫做对应角.
D B和 点E ,点C和_点F _是对应顶点. 其中点A和 点 ,点 AB和 DE ,BC和EF ,AC和 DF 是对应边.
∠BAO =∠CAO吗?为什么?
解: ∠BAO=∠CAO, 理由:∵ OB⊥AB,OC⊥AC,
B A C O
∴ ∠B=∠C=90°.
在Rt△ABO和Rt△ACO中,
OB=OC,AO=AO,
∴ Rt△ABO≌Rt△ACO ,(HL)
∴ ∠BAO=∠CAO.
热点四 利用全等三角形解决实际问题
例4 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面垂 直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的距离 相等吗? 【分析】将本题中的实际问题转化为数学问题 就是证明BD=CD.由已知条件可知AB=AC,
D.AB=DE,BC=EF, ∠ C= ∠ F
3.如图所示,AB与CD相交于点O, ∠A=∠B,OA=OB 添加 或∠AOC=∠BOD , 所以 条件 ∠C=∠D △AOC≌△BOD 理由是 AAS . 或ASA
C O A D
B
考点三 全等三角形的性质与判定的综合应用
例3 如图,在△ABC中,AD平分∠BAC,CE⊥AD于点G,交AB于点E,EF∥BC 交AC于点F, 求证:∠DEC=∠FEC.
A
D
BC=CB(公共边),
∠ACB=∠DBC(已知), ∴△ABC≌△DCB(ASA ).
B
C
沪科版八年级数学上第14章全等三角形14

=60°,则∠ACD 的度数为
( B)
A.45° B.30° C.20° D.15°
自主学习
基础夯实
整合运用
思维拓展
第 13 页
八年级 数学 上册 沪科版
8.如图,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE 与 CD 相交于点 O,
且 AD=AE.有下列结论:①∠B=∠C;②△ADO≌△AEO;③△BOD≌△COE;
自主学习
基础夯实
整合运用
思维拓展
第 19 页
八年级 数学 上册 沪科版
解:根据直角三角形全等的判定方法 HL 可知 ①当 P 运动到 AC 的中点时,此时 AP=BC, ∵∠C=∠QAP=90°, 在 Rt△ABC 与 Rt△QPA 中, BC=AP,AB=PQ, ∴Rt△ABC≌Rt△QPA(HL), 即 AP=BC=10;
八年级 数学 上册 沪科版
14.2.5 两个直角三角形全等的判定
自主学习
基础夯实
整合运用
思维拓展
第1页
八年级 数学 上册 沪科版
要点感知 判定两个直角三角形全等,常用方法是:(1)找一个锐角和一条边对应相 等,其根据是 A AAS AS 或 ASASA A;(2)找两条直角边对应相等,其根据 是 SASAS S;(3)斜斜边 边和一条直直角角边 边对应相等的两个直角三角形 全等.这是直角三角形特殊的判定方法,简称为“斜边、直角边”或 HL HL.
思维拓展
第 21 页
八年级 数学 上册 沪科版
13.已知:点 O 到△ABC 的两边 AB,AC 所在直线的距离相等,且 OB=OC. (1)如图①,若点 O 在边 BC 上,求证:∠ABO=∠ACO; (2)如图②,若点 O 在△ABC 的内部,求证:∠ABO=∠ACO.