8年级数学人教版上册同步练习-整式的乘法(含答案解析)

合集下载

八年级数学上册《第十四章 整式的乘法》同步练习题及答案(人教版)

八年级数学上册《第十四章 整式的乘法》同步练习题及答案(人教版)

八年级数学上册《第十四章 整式的乘法》同步练习题及答案(人教版)班级 姓名 学号一、选择题:1.()101100133⎛⎫-⨯- ⎪⎝⎭等于( ) A .-1 B .1 C .13-D .13 2.计算x 2•4x 3的结果是( )A .4x 3B .4x 4C .4x 5D .4x 6 3.下列运算正确的是( )A .x 2+x 2=2x 4B .x 2∙x 3=x 6C .(x 2)3=x 6D .(-2x)2=-4x 24.已知单项式233x y 与22xy -的积为3n mx y ,那么m-n=( )A .-11B .5C .1D .-1 5.如果(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( )A .﹣3B .3C .0D .1 6.已知x+y=﹣10,xy=16,那么(x+2)(y+2)的值为( )A .30B .-4C .0D .10 7.化简 ()()22223232ab a b ab ab ab a ab a -+--+ 的结果是( )A .3222a b a b +B .2232a b a b -C .3223226a b a b a b -+D .3222a b a b -8.已知-4a 与一个多项式的积是 3216124a a a ++ ,则这个多项式是()A .243a a -+B .243a a -C .2431a a -+D .2431a a ---二、填空题:9.计算(a+b )(a 2﹣ab+b 2)=10.已知15273m =,则m 的值是 .11.已知a m =2,a n =6,则a 2m ﹣n 的值是 .12.41x y += 和 216x y ⨯= .13.已知()()24936x x x mx +-=+-,则m 的值为 .14.计算(x 2+nx+3)(x 2﹣3x )的结果不含x 3的项,那么n= .三、解答题:15.化简 2211222x y xy xy xy --÷()16.已知(a 2+pa+6)与(a 2﹣2a+q )的乘积中不含a 3和a 2项,求p 、q 的值.17.先化简,再求值:3(2x 2y-xy 2)-(5x 2y+2xy 2),其中|x+1|+(y ﹣2)2=0.18.如图,某市区有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,现准备进行绿化,中间的有一边长为(a+b )米的正方形区域将修建一座雕像,则绿化的面积是多少平方米?并求出当a=5,b=3时的绿化面积.19.小明与小乐两人共同计算 (2)(3)x a x b ++ .小明抄错为 (2)(3)x a x b -+ ,得到的结果为 26136x x -+ ;小乐抄错为 (2)()x a x b ++ ,得到的结果为 226x x -- .(1)式子中的a ,b 的值各是多少?(2)请计算出原题的答案.参考答案:1.C 2.C 3.C 4.A 5.A 6.C 7.A 8.D9.a 3+b 310.511.2312.213.﹣514.315.解:原式=2x-y+4.16.解:(a 2+pa+6)(a 2﹣2a+q )=a 4﹣2a 3+a 2q+pa 3﹣2a 2p+pqa+6a 2﹣12a+6q=a 4+(﹣2+p )a 3)+(q ﹣2p+6)a 2+(pq ﹣12)a+6q∵(a 2+pa+6)与(a 2﹣2a+q )的乘积中不含a 3和a 2项∴﹣2+p=0,q ﹣2p+6=0解得p=2,q=﹣2.17.解:原式=6x 2y-3xy 2-5x 2y-2xy 2=x 2y-5xy2 ∵|x+1|+(y-2)2=0∴x=﹣1,y=2时则原式=2+20=2218.解:由题意可知:(3a+b )(2a+b )﹣(a+b )(a+b )=6a 2+5ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab把a=5,b=3代入上式∴原式=125+45=170所以绿化的面积为170平方米.19.(1)解:∵22(2)(3)6(23)6136x a x b x b a x ab x x -+=+--=-+ ∴2313b a -=- .①∵22(2)()2(2)26x a x b x b a x ab x x ++=+++=--∴21b a +=-②联立方程①② 可得 231321b a b a -=-⎧⎨+=-⎩,, 解得 32.a b =⎧⎨=-⎩, (2)解: (2)(3)x a x b ++(23)(32)x x =+-2656x x =+-。

八年级数学上册《第十四章 整式的乘法》同步练习题含答案(人教版)

八年级数学上册《第十四章 整式的乘法》同步练习题含答案(人教版)

八年级数学上册《第十四章整式的乘法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算结果为2x3的是()A.x3•x3B.x3+x3C.2x•2x•2x D.2x6÷x22.下列运算正确的是()A.3a2+a=3a3B.2a3·(−a2)=2a5C.4a6÷2a2=2a3D.(−3a)2−a2=8a23.计算(−2a3b)2−3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b24.已知x a⋅x−3=x2,则a的值为()A.−2B.2 C.5 D.–55.一个长方体的长、宽、高分别是3x-4,2x和x,则它的体积是()A.3x3-4x2B.22x2-24x C.6x2-8x D.6x3-8x26.如果(2a m b m+n)3=8a9b15成立,则m,n的值为( )A.m=3,n=2 B.m=3,n=9 C.m=6,n=2 D.m=2,n=57.设有边长分别为a和b(a>b)的A类和B类正方形纸片、长为a宽为b的C类矩形纸片若干张.如图所示要拼一个边长为a+b的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为3a+b、宽为2a+2b的矩形,则需要C类纸片的张数为( )A.6 B.7 C.8 D.98.有若干个形状大小完全相同的小长方形,现将其中3个如图1摆放,构造一个正方形;其中5个如图2摆放,构造一个新的长方形(各小长方形之间不重叠且不留空隙).若图1和图2中阴影部分的面积分别为39和106,则每个小长方形的面积为( )A.12B.14C.16D.18二、填空题9.若a m=9,a n=3则a m−2n=.10.计算:6x2y3÷(−2x2y)=11.关于x的多项式(mx+4)(2−3x)展开后不含x的一次项,则m=.12.已知a、b、m均为整数,若x2+mx−17=(x+a)(x+b),则整数m的值有.13.一罐涂料能刷完一块长为a,宽为3的长方形墙面,如果这罐涂料刷另一块长方形墙面也刚好用完,且该长方形墙面长为a+2,则宽为(用字母a表示).三、解答题14.已知代数式(x2+px+8)(x2−3x+q)的乘积中不含三次项和二次项,求(p−q)(p2+pq+q2)的值.15.计算:(1)﹣x2•x3+4x3•(﹣x)2﹣2x•x4(2)﹣2m2•m3﹣(﹣3m)3•(﹣2m)2﹣m•(﹣3m)416.已知:5a=4,5b=6,5c=9(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.17.某天数学课上,小明学习了整式的除法运算,放学后,小明回到家拿出课堂笔记,认真地复习课上学习的内容.他突然发现一道三项式除法运算题:(21x4y3-+7x2y2)÷(-7x2y)=+5xy-y,被除式的第二项被墨水弄污了,商的第一项也被墨水弄污了,你能算出两处被污染的内容是什么吗?18.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1)的面积关系来说明.(1)根据图(2)写出一个等式.(2)已知等式(2x+m)(2x+n)=4x2+2(m+n)x+mn.请你画出一个相应的几何图形加以说明.19.阅读下列材料:若a3=2,b5=3,则a,b的大小关系是a b(填“<”或“>”).解:因为a15=(a3)5=25=32,b15=(b5)3=33=27,32>27,所以a15>b15所以a>b.解答下列问题:①上述求解过程中,逆用了哪一条幂的运算性质A.同底数幂的乘法 B.同底数幂的除法 C.幂的乘方 D.积的乘方②已知x7=2,y9=3,试比较x与y的大小.参考答案1.B2.D3.C4.C5.D6.A7.C8.B9.110.−3y211.612.±1613.3aa+214.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(-3+p)x3+(q-3p+8)x2+(pq-24)x+8q∵(x2+px+8)(x2-3x+q)的乘积中不含x2与x3的项∴-3+p=0,q-3p+8=0解得:p=3,q=1.(p−q)(p2+pq+q2)=(3-1)(9+3+1)=2615.(1)解:原式=﹣x5+4x5﹣2x5=x5(2)解:原式=﹣2m5+27m3•4m2﹣81m5=(﹣2+108﹣81)m5=25m5 16.解:(1)5 2a+b=52a×5b=(5a)2×5b=42×6=96(2)5b﹣2c=5b÷(5c)2=6÷92=6÷81=2/27(3)5a+c=5a×5c=4×9=3652b=62=36因此5a+c=52b所以a+c=2b.17.解:商的第一项=21x4y3÷(-7x2y)=-3x2y2;被除式的第二项=-(-7x2y)×5xy=35x3y218.解:(1)根据题意得:(a+2b)(2a+b)=2a2+5ab+2b2;(2)如图所示故答案为:(1)(a+2b)(2a+b)=2a2+5ab+2b219.>;C;解:∵x63=(x7)9=29=512,y63=(y9)7=37=2187,2187>512,∴x63<y63,∴x<y。

人教版数学八年级上册:14.1.4 整式的乘法 同步练习(附答案)

人教版数学八年级上册:14.1.4 整式的乘法  同步练习(附答案)

14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 .5.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.9.先化简,再求值:2x 2y·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.10.已知(-2ax b y 2c )(3x b -1y)=12x 11y 7,求a +b +c 的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( ) A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A.3xy B.-3xy C.-1 D.18.一个拦水坝的横断面是梯形,其上底是3a2-2b,下底是3a+4b,高为2a2b,要建造长为3ab的水坝需要多少土方?9.计算:2xy2(x2-2y2+1)=.10.计算:-2x(3x2y-2xy)=.中档题11.要使(x2+ax+5)(-6x3)的展开式中不含x4项,则a应等于( )A .1B .-1C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x -5y)(3x -y)=2x·3x +2x· +(-5y)·3x +(-5y)· = . 3.计算:(1)(2a +b)(a -b)= ;(2)(x -2y)(x 2+2xy +4y 2)= . 4.计算:(1)(3m -2)(2m -1); (2)(3a +2b)(2a -b);(3)(2x -3y)(4x 2+6xy +9y 2); (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.6.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为34a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 平方厘米.8.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 9.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-3 16.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A ,B ,C 三类卡片若干张,拼出了一个长为2a +b 、宽为a +b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A ,B ,C 三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A .-4x 2B .-4x 4C .-4x 6D .4x 610.(黔南中考)下列运算正确的是(D)A .a 3·a =a 3B .(-2a 2)3=-6a 5C .a 3+a 5=a 10D .8a 5b 2÷2a 3b =4a 2b11.计算:(1)2x 2y 3÷(-3xy); (2)10x 2y 3÷2x 2y ; (3)3x 4y 5÷(-23xy 2).12.计算(6x 3y -3xy 2)÷3xy 的结果是( )A .6x 2-yB .2x 2-yC .2x 2+yD .2x 2-xy13.计算:(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.14.计算:310÷34÷34= . 中档题15.下列说法正确的是( )A .(π-3.14)0没有意义B .任何数的0次幂都等于1C .(8×106)÷(2×109)=4×103D .若(x +4)0=1,则x ≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = . 18.已知(x -5)x =1,则整数x 的值可能为 . 19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h,一架喷气式飞机的速度为1.8×106 m/h,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法 第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4.2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z. (2)5a 2·(3a 3)2. 解:原式=5a 2·9a 6 =45a 8. 4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3. 6.3x 5y 4z . 7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2;解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3.(2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4.9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7 =-8x 5y 7.当x =4,y =14时,原式=-12.10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7. ∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C 2.D 3.C 4.计算:(1)(2xy 2-3xy)·2xy ; 解:原式=2xy 2·2xy -3xy·2xy =4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a)=a 3b 3+43a 3b 2.(3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1) =-2a 2b 2+6a 2b 3+2ab. (4)(34a n +1-b2)·ab. 解:原式=34a n +1·ab -b 2·ab=34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14. 6.C 7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3.答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方. 9.2x 3y 2-4xy 4+2xy 2. 10.-6x 3y +4x 2y .12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b) =(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x 2-8x +15;(2)x 2-2x -24.12.-5.13.(1)(x +1)(x +4);解:原式=x 2+5x +4.(2)(m +2)(m -3);解:原式=m 2-m -6.(3)(y -4)(y -5);解:原式=y 2-9y +20.(4)(t -3)(t +4).解:原式=t 2+t -12.14.x 2-9xy +8y 2.15.B16.20x 2.17.2.18.(1)(a +3)(a -2)-a(a -1);解:原式=a 2-2a +3a -6-a 2+a=2a -6.(2)(-7x 2-8y 2)·(-x 2+3y 2);解:原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x-2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4. (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa 2 =12h +2H. 答:需要(12h +2H)个这样的杯子.。

八年级数学上册《第十四章 整式的乘法》同步练习题及答案(人教版)

八年级数学上册《第十四章 整式的乘法》同步练习题及答案(人教版)

八年级数学上册《第十四章整式的乘法》同步练习题及答案(人教版)班级姓名学号一、单选题1.下列运算正确的是()A.a+2a=3a2B.a2⋅a3=a5C.(ab)3=ab3D.(−a3)2=−a62.若(x2−x+m)(x−8)中不含x的一次项,则m的值为()A.8 B.−8C.0 D.8或−83.若a x=3,a y=2则a x+y的值为()A.6 B.5 C.1 D.1.54.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4 B.﹣2 C.0 D.45.光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,地球与太阳的距离约是( )米.A.15×1010B.1.5×1011C.15×1016D.1.5×10176.若(x−5)(x+m)=x2−2x+n,则m,n的值分别为()A.3,-15 B.3,15 C.-2,18 D.-2,-187.当m是正整数时,下列等式成立的有( )(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(−a m)2;(4)a2m=(−a2)m.A.4个B.3个C.2个D.1个8.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.-C.×D.÷二、填空题9.a m=2,a4m= .10.若单项式 5x3y2与一个多项式的积为 20x5y2-15x3y4+70(x2y3)2,则这个多项式为.11.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是.12.一个矩形的面积为a2+2a,若一边长为a,则另一边长为.13.三角形的一边长为(2a−4b),这边上的高是(3a+2b),则这个三角形的面积是.三、解答题14.(1)计算:−32÷94−(−5)×85+2;(2)化简:2a2b−12(12ab2−6a2b)+3(ab2−2a2b).15.在计算(x+a)(x+b)时,甲把b错看成了6,得到结果是:x2+8x+12;乙错把a看成了−a 得到结果:x2+x−6.(1) 求出a,b的值;(2) 在(1)的条件下,计算(x+a)(x+b)的结果.16.在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:a+b,abc等都是对称式.(1) 在下列式子中,属于对称式的序号是.①a2+b2;②a−b;③1a +1b;④a2+bc.(2) 若(x+a)(x+b)=x2+mx+n,用a,b表示m,n并判断m,n表达式是否为对称式:当m=−4,n=3时,求对称式ba +ab的值.17.计算如图阴影部分面积:(1)用含有a,b的代数式表示阴影面积;(2)当a=1,b=2时,其阴影面积为多少?18.先阅读下列材料,然后解后面的问题.材料:一个三位自然数 abc̅̅̅̅̅ (百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F ( abc̅̅̅̅̅ )=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12.(1)对于“欢喜数 abc ̅̅̅̅̅ ”,若满足b 能被9整除,求证:“欢喜数 abc̅̅̅̅̅ ”能被99整除; (2)已知有两个十位数字相同的“欢喜数”m ,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.19.一些代数恒等式可以用平面几何图形的面积来表示,例如:(2a +b)(a +b)=2a2+3ab +b2就可以用图1或图2等图形的面积来表示.(1)请写出下图所表示的代数恒等式: ;(2)试画出一个几何图形,使它的面积能表示为:(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a 、b 的代数恒等式,并画出与之对应的几何图形.参考答案1.B2.B3.A4.D5.B6.A7.A8.D9.1610.4x2-3y2+14xy4 11.a+b=c12.a+213.3a2−4ab−4b214.(1)解:−32÷94−(−5)×85+2=−9×49+5×85+2=−4+8+2=6;(2)解:2a2b−12(12ab2−6a2b)+3(ab2−2a2b)=2a2b−6ab2+3a2b+3ab2−6a2b=−a2b−3ab2.15.(1) 根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+8x+12 (x−a)(x+b)=x2+(−a+b)−ab=x2+x−6∴6+a=8,−a+b=1解得:a=2,b=3.(2) 当a=2,b=3时(x+a)(x+b)=(x+2)(x+3)=x2+5x+6.16.(1) ①③(2) (x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n∴m =a +b ,n =ab ,故 m ,n 都是对称式;当 {m =a +b =−4,n =ab =3时 b a+a b =b 2+a 2ab =(a+b )2−2ab ab =(−4)2−2×33=103.17.解:(1)根据题意得:4a 2+2ab+3b 2;(2)当a=1,b=2时,原式=4+4+12=20.18.(1)证明:∵abc ̅̅̅̅̅ 为欢喜数, ∴a+c=b . ∵abc̅̅̅̅̅ =100a+10b+c=99a+10b+a+c=99a+11b ,b 能被9整除, ∴11b 能被99整除,99a 能被99整除, ∴“欢喜数 abc̅̅̅̅̅ ”能被99整除 (2)解:设m= a 1bc 1̅̅̅̅̅̅̅ ,n= a 2bc2̅̅̅̅̅̅̅̅ (且a 1>a 2), ∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数, ∴a 1﹣a 2=1或a 1﹣a 2=3. ∵m ﹣n=100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2), ∴m ﹣n=99或m ﹣n=297. ∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或29719.(1)(2a +b)(a +2b)=2a 2+5ab +2b 2(2)解:如图所示:(3)解:如a(a +2b)=a 2+2ab ,与之对应的几何图形如图.。

人教初二数学上学期整式的乘法与因式分解同步练习(带答案)

人教初二数学上学期整式的乘法与因式分解同步练习(带答案)

人教初二数学上学期整式的乘法与因式分解同步练习(带答案)人教初二数学上学期整式的乘法与因式分解同步练习〔带答案〕〔本检测题总分:100分时间:90分钟〕一、选择题〔每题3分,共30分〕1.以下式子中成立的是〔〕A.B.C.D.2.以下分解因式正确的选项是〔〕A.B.C.D.3.以下计算正确的选项是〔〕A. B. C. D.4.以下各式中,与相等的是〔〕A. B. C. D.5. 以下各式中,不能用平方差公式计算的是〔〕A. B.C. D .6. 若,则||的值为〔〕A.18 B.24 C.39 D.457. 设,则=〔〕A.30 B.15 C.60 D.128. 多项式①;②;③ ;④分解因式后,结果中含有相同因式的是〔〕A.①和② B.③和④ C.①和④ D.②和③9.以下因式分解中,正确的选项是〔〕A. B.C . D.10.在边长为的正方形中挖去一个边长为的小正方形〔如图①〕,把余下的部分拼成一个矩形〔如图②〕,依据两个图形中阴影部分的面积相等,可以验证〔〕A. B.C. D.二、填空题〔每题3分,共24分〕11. 若互为相反数,则__________.12. 若,则.13. 将分解因式的结果为 .14.假如多项式能因式分解为,则的值是 .15.因式分解: -120= .16. 阅读以下文字与例题将一个多项式分组后,可提取公因式或运用公式连续分解的方法是分组分解法.例如:〔1〕==.〔2〕==.试用上述方法分解因式= .17.若对于一切实数,等式均成立,则的值是 .18.在一个边长为12.75 cm的正方形内挖去一个边长为7.25 cm的正方形,则剩下部分的面积为 cm2.三、解答题〔共46分〕19.〔6分〕计算:〔1〕;〔2〕;〔3〕;.20.〔6分〕将以下各式分解因式:〔1〕;〔2〕〔3〕.21.〔6分〕利用因式分解计算:22. 〔6分〕已知=3, = -12,求以下各式的值.(1) ; (2).23. 〔6分〕两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2,另一位同学因看错了常数项而分解成2,请将原多项式分解因式.24. 〔8分〕阅读以下因式分解的过程,再回答所提出的问题:= = 〔1〕上述分解因式的方法是,共应用了次.〔2〕请用上述方法分解++…+.25.〔8分〕通过学习,同学们已经体会到敏捷运用乘法公式给整式的乘法运算带来的便利、快捷.信任通过下面材料的学习、探究,会使你大开眼界,并获得胜利的喜悦.例:用简便方法计算:.解:①②.〔1〕例题求解过程中,第②步变形是利用_____________〔填乘法公式的名称〕.〔2〕用简便方法计算:.第十四章整式的乘法与因式分解检测题参考答案1.D 解析:,应选项A不成立;应选项B不成立;,应选项C不成立;应选项D 成立.2.C 解析:,故A不正确;,故B不正确;故C正确;D项不是因式分解,应选C.3.D 解析:A. ,故本选项错误;B.,故本选项错误;C.,故本选项错误;D. ,故本选项正确.4.B 解析:所以B项与相等.5.A 解析:A.含的项符号都相反,不能用平方差公式计算;B.含的项符号相同,含的项符号相反,能用平方差公式计算;C.含的项符号相同,含的项符号相反,能用平方差公式计算;D.含的项符号相同,含的项符号相反,能用平方差公式计算.应选A.6. D 解析:∵ ,∴ ,∴解得或当时,||=|3+42|=45;当时, ||=|-3-42|= 45.应选D.7. C 解析:,.应选C.8. D 解析:①;②;③;④.所以分解因式后,结果中含有相同因式的是②和③.应选D.9. C 解析:A.用平方差公式,应为,故本选项错误;B.用提公因式法,应为,符号不对,故本选项错误;C. 用平方差公式,,正确;D.用完全平方公式,不用提取负号,应为9,故本选项错误.应选C.10.C 解析:图①中阴影部分的面积为图②中阴影部分的面积为,所以应选C.11. 解析:由于互为相反数,所以所以12. 解析:∵,∴,,∴ .13. 〔-1〕2 解析:=〔〕=〔-1〕2.14. -7 解析:∵ 多项式能因式分解为,∴ ,∴ ,∴ =3-10=-7.15. 解析:-120=-120=-120=+24-120=-96==.16. 解析:原式===.17. 9 解析:由题意得:∴ =-1,=-2,∴ =1,=-2,∴ 2-4=1- 4×〔 -2〕=1+8=9.18.110 解析:19.解:(1)〔2〕.〔3〕.(4).20.解:〔1〕〔2〕〔3〕.21.解:22. 解: (1)==把=3, = -12代入得: =9+24=33.(2)===.把=3, = -12代入得: =9+36=45.23.分析:由于含字母的二次三项式的一般形式为〔其中均为常数,且≠0〕,所以可设原多项式为.看错了一次项系数即值看错而与的值正确,依据因式分解与整式的乘法互为逆运算,可将2运用多项式的乘法法则绽开求出与的值;同样,看错了常数项即值看错而与的值正确,可将2运用多项式的乘法法则绽开求出的值,进而得出答案.解:设原多项式为〔其中均为常数,且≠0〕.∵ ,∴ .又∵ ,∴ .∴ 原多项式为,将它分解因式,得.24 .分析:〔1〕首先提取公因式〔〕,再次将[]提取公因式〔〕,进而得出答案;〔2〕参照〔1〕的规律即可得出解题方法,求出即可.解:〔1〕上述分解因式的方法是提公因式法,共应用了2次.故答案为:提取公因式法,2.〔2〕原式======.25.解:〔1〕平方差公式;〔2〕。

人教八年级数学上册第14章《整式的乘法》同步练习及(含答案)4

人教八年级数学上册第14章《整式的乘法》同步练习及(含答案)4

第14章人教八年级数学上册第14章《整式的乘法》同步练习及(含答案)4 14.1.4 单项式乘单项式一、选择题1.计算2322)(xy y x -⋅的结果是( )A. 105y xB. 84y xC. 85y x -D.126y x2.计算)()41()21(22232y x y x y x -⋅+-的结果为( ) A. 36163y x - B. 0 C. 36y x - D. 36125y x - 3.计算2233)108.0()105.2(⨯-⨯⨯ 的结果是( )A. 13106⨯B. 13106⨯-C. 13102⨯D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( ) A. z y x 663 B. z y x 663- C. z y x 553 D. z y x 553-5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a6.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定7.计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( ) A. mn m y x 43 B. m m y x 22311+- C. n m m y x ++-232 D. n m y x ++-5)(311 8.下列计算错误的是( )A.122332)()(a a a =-⋅B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=---二、填空题1..___________))((22=x a ax2.3522)_)((_________y x y x -=3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a5.._____________)(4)3(523232=-⋅-b a b a6..______________21511=⋅⋅--n n n y x y x7.._____________)21()2(23=-⋅-⋅mn mn m 8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯9.若单项式423a b x y --与33a b x y +是同类项,则它们的积为 .10.若1221253()()m n n m a b a b a b ++-=,则m+n 的值为 .三、解答题1.计算)53(32)21(322yz y x xyz -⋅⋅-2.计算23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅3.已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.4.已知:693273=⋅m m ,求m .5.若32=a ,52=b ,302=c ,试用a .b 表示出c .14.1.4 单项式乘单项式一、选择题:BADA CCCB二、填空题:1﹨33a x ;2﹨-xy ;3﹨743x y ;4﹨43232a b c -;5﹨191636a b -; 6﹨2130n n x y -;7﹨5412m n ;8﹨241.210⨯;9﹨649x y -; 10﹨2.三、解答题:1、解:原式223123[()()]235xyz x y yz =-⨯⨯- 34415x y z = 2、解:原式333333453616a b a b a b =-- 337a b =-3、解:原式222511(14)()74xy x y x =⨯⨯ 8412x y = 当81,4-==y x 时, 原式84114()28=⨯⨯- 1612112()228=⨯⨯=4、解:963273m m =9361263333312612m m m m m ∴=∴=∴=∴=5、解:12303522222c a b a b ++==⨯⨯=⨯⨯= 1c a b ∴=++。

八年级数学上册《第十四章 整式的乘法》同步练习附含答案-人教版

八年级数学上册《第十四章 整式的乘法》同步练习附含答案-人教版

八年级数学上册《第十四章整式的乘法》同步练习附含答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.计算(23)2020×(32)2021的结果是()A.23B.−23C.32D.−322.若a m=128,a n=8则a m−n值是()A.120 B.-120 C.16 D.1163.已知3x=4,3y=6,3z=12,则x、y、z三者之间关系正确的是()A.xy=2z B.x+y=2z C.x+2y=2z D.x+2y=z4.若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1 B.2 C.3 D.﹣35.下列各题中计算错误的是()A.[(-m3)2(-n2)3]3= -m18n18B.(-m3n)2(-mn2)3= -m9n8C.[(-m)2(-n2)3]3= - m6n6D.(-m2n)3(-mn2)3= m9n96.若整式A与单项式﹣a2b的乘积为a(ab3﹣a3b),则整式A为()A.a2﹣b2B.b2﹣a2C.a2+b2D.﹣a2﹣b27.若计算(x+2m)(2x−3)−5x所得的结果中不含x的一次项,则常数m的值为()A.-2 B.-1 C.0 D.28.为了提高广大市民的禁毒意识和防毒拒毒能力,某县准备修建一个禁毒文化广场,如图是该文化广场设计图纸的一部分,其面积表示错误的是()A.(x+p)(x+q)B.x2+(p+q)x+pq C.x2+px+qx+pq D.x2+px+q2二、填空题:(本题共5小题,每小题3分,共15分.)9.计算3a2b3⋅(−2ab)2=.10.如果a+3b−2=0,那么3a×27b的值为.11.对任意整数n,按照下面的运算程序计算,输出的结果为.12.已知(x2+px+8)(x2−3x+q)展开后不含x2与x3的项,则q p =. 13.已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了B÷A;结果得x2+x,则B+A=.三、解答题:(本题共5题,共45分)14.计算:(2a−1)(a+2)−6a3b÷3ab.15.计算:(1)3x(1﹣x)+2x(x+3)+5(x﹣2);(2)5a﹣3(a﹣2)﹣2[a﹣3(3﹣2a)+6].q)的积中不含x的一次项与x的二次项.16.若(x+3p)(x2−x+13(1)求p、q的值;(2)求式子p2020q2021的值.17.Peter从批发市场以每个m元的价格购进100个手机充电宝,然后每个加价n元后出售. (1)求售出100个手机充电宝的总售价为多少元?(2)若他售出60个充电宝后,将剩余充电宝按售价8折出售,相比不采取降价销售,他将比实际销售多盈利多少元?18.一个长方形的长为2x cm,宽比长少4cm,若将长方形的长和宽都扩大3cm.(1)求面积增大了多少?(2)若x=2cm,则增大的面积为多少?参考答案:1.C 2.C 3.C 4.B 5.C 6.A 7.D 8.D9.12a 4b 510.911.112.113.2x 3+2x 2+2x14.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:原式=3x ﹣3x 2+2x 2+6x+5x ﹣10=﹣x 2+14x ﹣10(2)解:原式=5a ﹣3a+6﹣2a+18﹣12a ﹣12=﹣12a+1216.(1)解:(x +3p)(x 2−x +13q)=x 3−x 2+13qx +3px 2−3px +pq =x 3+(3p −1)x 2+(13q −3p)x +pq ∵不含x 的一次项与x 的二次项∴3p −1=0∴p =13 q =3.(2)解:当p =13,q =3时原式=(13)2020×32021=(13)2020×32020×3 =(13×3)2020×3 =12020×3=3.17.(1)解:∵每个充电宝的售价为:m +n 元∴售出100个手机充电宝的总售价为:100(m +n )元(2)解:实际总销售额为:60(m +n )+40×0.8(m +n )=92(m +n )元 实际盈利为92(m +n )−100m =92n −8m 元∵100n −(92n −8m )=8(m +n )∴相比不采取降价销售,她将比实际销售多盈利8(m +n )元18.(1)解:(2x+3)(2x ﹣4+3)﹣2x (2x ﹣4)=(2x+3)(2x ﹣1)﹣4x 2+8x=4x 2﹣2x+6x ﹣3﹣4x 2+8x=12x ﹣3答:面积增大了(12x ﹣3)cm 2;(2)解:当x=2时12x ﹣3=12×2﹣3=21;则增大的面积为21cm 2。

人教版 八年级数学上册 14.1--14.3分节练习(含答案)

人教版 八年级数学上册 14.1--14.3分节练习(含答案)

人教版 八年级数学上册 14.1--14.3分节练习(含答案) 14.1 整式的乘法一、选择题(本大题共10道小题) 1. 下列计算正确的是( )A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=2. 单项式乘多项式运算法则的依据是()A .乘法交换律B .加法结合律C .分配律D .加法交换律3. 若a 3=b ,b 4=m ,则m 为() A .a 7B .a 12C .a 81D .a 644. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( ) A .b 2+2ab B .4b 2+4ab C .3b 2+4abD .a 2+2ab5. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .166. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .177. 下列计算错误的是()A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=8. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=9. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是()A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题)11.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是________.12. 填空:()()()324a a a -⋅-⋅-= ;13. 填空:()()3223x x x --⋅=14. 计算:a 3·(a 3)2=________.15. 一个长方体的长、宽、高分别是3x -4,2x ,x ,它的体积等于________.16. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共3道小题)17. 已知x满足22x+2-4x=48,求x的值.18. 阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴2100<375.请根据上述解答过程解决下列问题:比较255,344,433的大小.19. 小明在做多项式乘法的时候发现,两个多项式相乘在合并同类项后的结果存在缺项的可能.比如x+2和x-2相乘的结果为x2-4,x的一次项没有了.(1)请计算x2+2x+3与x-2相乘后的结果,并观察x的几次项没有了;(2)请想一下,x2+2x+3与x+a相乘后的结果有没有可能让一次项消失?如果可能,那么a的值应该是多少?人教版八年级数学上册14.1 整式的乘法同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】根据同底数幂相乘除的法则,应选D2. 【答案】C3. 【答案】B [解析] 因为a3=b,b4=m,所以m=(a3)4=a12.4. 【答案】A[解析] 因为一个长方形的周长为4a +4b ,若它的一边长为b ,则另一边长=2a +2b -b =2a +b , 故面积=(2a +b)b =b 2+2ab.5. 【答案】D[解析] 由于a m =4,因此a 2m =(a m )2=42=16.6. 【答案】C[解析] 因为x a =2,x b =3,所以x 3a +2b =(x a )3·(x b )2=23×32=72.7. 【答案】C【解析】根据积的乘方运算法则,应选C8. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C9. 【答案】B[解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab -ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.10. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共6道小题)11. 【答案】100 【解析】根据公式可得109÷107=102=100.12. 【答案】9a -【解析】原式()99a a =-=-13. 【答案】65x x - 【解析】原式65x x =-14. 【答案】a 9[解析] a 3·(a 3)2=a 3·a 6=a 9.15. 【答案】6x 3-8x 216. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题(本大题共3道小题)17. 【答案】解:因为22x+2-4x=48,所以(22)x+1-4x=48.所以4x+1-4x=48.所以4x(4-1)=48.所以4x=16.所以4x=42.所以x=2.18. 【答案】解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,且32<64<81,所以255<433<344.19. 【答案】解:(1)(x2+2x+3)(x-2)=x3-2x2+2x2-4x+3x-6=x3-x-6,x的二次项没有了.(2)(x2+2x+3)(x+a)=x3+ax2+2x2+2ax+3x+3a=x3+(a+2)x2+(2a+3)x+3a.当2a+3=0,即a=-1.5时,x的一次项消失了.故x2+2x+3与x+a相乘后的结果有可能让一次项消失,此时a=-1.5.14.2乘法公式一.选择题1.如果x2+6xy+m是一个完全平方式,则m的值为()A.9y2B.3y2C.y2D.6y2 2.若M(5x﹣y2)=y4﹣25x2,那么代数式M应为()A.﹣5x﹣y2B.﹣y2+5x C.5x+y2D.5x2﹣y2 3.下列运算正确的是()A.a2+2a=3a3B.A.x3x2=x6B.x(x﹣3)=x2﹣3xC.=x2+y2D.﹣2x3y2÷xy2=2x47.下列各式中,不能用平方差公式计算的是()A.B.C.D.8.已知4﹣8x+mx2是关于x的完全平方式,则m的值为()A.2 B.±2 C.4 D.±49.如果x2﹣6x+N是一个完全平方式,那么N是()A.11 B.9 C.﹣11 D.﹣910.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.B.C.D.二.填空题11.已知a+b=2,ab=1,则a2+b2=.12.已知:a+b=6,ab=﹣10,则a2+b2=.13.若x2﹣10x+m2是一个完全平方式,那么m的值为.14.若(x+y)2=11,(x﹣y)2=1,则x2﹣xy+y2的值为.15.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长为20,宽为10的长方形,如图2,则图2中(1)部分的面积是.三.解答题16.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.17.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.18.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.19.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a 的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.参考答案与试题解析一.选择题1.【解答】解:∵x2+6xy+m是一个完全平方式,∴m==9y2.故选:A.2.【解答】解:∵M(5x﹣y2)=y4﹣25x2=(y2+5x)(y2﹣5x)=(5x﹣y2)(﹣5x﹣y2),∴M=﹣5x﹣y2.故选:A.3.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.4.【解答】解:A、原式=2m2,不符合题意;B、原式=m2+4m+4,不符合题意;C、原式=8m3n6,不符合题意;D、原式=m8,符合题意.故选:D.5.【解答】解:A.结果是a5,故本选项不符合题意;B.结果是﹣8a9,故本选项不符合题意;C.结果是a2,故本选项符合题意;D.结果是a2+2ab+b2,故本选项不符合题意;故选:C.6.【解答】解:A、x3x2=x5,原计算错误,故此选项不符合题意;B、x(x﹣3)=x2﹣3x,原计算正确,故此选项符合题意;C、=x2﹣y2,原计算错误,故此选项不符合题意;D、﹣2x3y2与xy2不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.7.【解答】解:A、=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.8.【解答】解:∵4﹣8x+mx2是关于x的完全平方式,∴﹣8=﹣2×2,解得:m=4,故选:C.9.【解答】解:∵x2﹣6x+N=x2﹣2x3+N是一个完全平方式,∴N=32=9.故选:B.10.【解答】解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为,故选:A.二.填空题11.【解答】解:∵a+b=2,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=4+2=6,故答案为:6.12.【解答】解:∵a+b=6,ab=﹣10,∴a2+b2=(a+b)2﹣2ab=62﹣2×(﹣10)=56,故答案为:56.13.【解答】解:∵x2﹣10x+m2是一个完全平方式,∴m=±5,故答案为:±5.14.【解答】解:∵(x+y)2=x2+y2+2xy=11①,(x﹣y)2=x2+y2﹣2xy=1②,∴①+②得:2(x2+y2)=12,即x2+y2=6,①﹣②得:4xy=10,即xy=2.5,则原式=6﹣2.5=3.5.故答案为:3.5.15.【解答】解:根据题意得,a+b=20,a﹣b=10,解得,a=15,b=5,图2中(1)的面积为a(a﹣b)=15×10=150,故答案为:150.三.解答题16.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.17.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=333.18.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.19.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块C型卡片的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2)14.3因式分解一.选择题(共10小题)1.下列从左到右的变形是因式分解的是()A.ma+mb﹣c=m(a+b)﹣cB.﹣a2+3ab﹣a=﹣a(a+3b﹣1)C.(a﹣b)(a2+ab+b2)=a3﹣b3D.4x2﹣25y2=(2x+5y)(2x﹣5y)2.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1983.关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是()A.﹣6B.±6C.12D.±124.把多项式﹣2x3+12x2﹣18x分解因式,结果正确的是()A.﹣2x(x2+6x﹣9)B.﹣2x(x﹣3)2C.﹣2x(x+3)(x﹣3)D.﹣2x(x+3)25.下列分解因式正确的是()A.a2﹣9=(a﹣3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2﹣2a+1=a(a﹣2)+16.分解因式:4﹣12(a﹣b)+9(a﹣b)2=()A.(2+3a﹣3b)2B.(2﹣3a﹣3b)2C.(2+3a+3b)2D.(2﹣3a+3b)2 7.下列因式分解中:①x3+2xy+x=x(x+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(y﹣x);④x3﹣9x=x(x﹣3)2,正确的个数为()A.1个B.2个C.3个D.4个8.已知a,b,c为△ABC三边,且满足ab+bc=b2+ac,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定9.已知多项式6x3+13x2+9x+2可以写成两个因式的积,又已知其中一个因式为3x2+5x+2,那么另一个因式为()A.2x﹣1B.2x+1C.﹣2x﹣1D.﹣2x+110.已知x﹣5是多项式2x2+8x+a的一个因式,则a可为()A.65B.﹣65C.90D.﹣90二.填空题(共5小题)11.因式分解:(1)m2﹣4=.(2)2x2﹣4x+2=.12.因式分解:4a2﹣9a4=.13.如果x2+Ax+B因式分解的结果为(x﹣3)(x+5),则A+B=.14.分解因式:=.15.多项式4x3y2﹣2x2y+8x2y3的公因式是.三.解答题(共3小题)16.分解因式:(1)3x2﹣6x+3;(2)2ax2﹣8a.17.因式分解:(1)2ax2﹣8a;(2)a3﹣6a2b+9ab2;(3)(a﹣b)2+4ab.18.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.参考答案1.解:A、没将一个多项式化成几个整式的乘积的形式,不是因式分解,故本选项不符合题意;B、提公因式变号错误,不是正确的因式分解,故本选项不符合题意;C、不是因式分解,是整式的乘法,故本选项不符合题意;D、符合因式分解定义,是因式分解,故本选项符合题意;故选:D.2.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.3.解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴a=±12.故选:D.4.解:﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.故选:B.5.解:A、原式=(a+3)(a﹣3),不符合题意;B、原式=3a(2a+1),不符合题意;C、原式=(a+3)2,符合题意;D、原式=(a﹣1)2,不符合题意.故选:C.6.解:原式=[2﹣3(a﹣b)]2=(2﹣3a﹣3b)2.故选:D.7.解:①x3+2xy+x=x(x2+2y+1),故原题分解错误;②x2+4x+4=(x+2)2,故原题分解正确;③﹣x2+y2=y2﹣x2=(x+y)(y﹣x),故原题分解正确;④x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3),故原题分解错误;正确的个数为2个,故选:B.8.解:∵ab+bc=b2+ac,∴ab﹣ac=b2﹣bc,即a(b﹣c)=b(b﹣c),∴(a﹣b)(b﹣c)=0,∴a=b或b=c,∴△ABC是等腰三角形,故选:C.9.解:设另一个因式为(mx+n),根据题意得:6x3+13x2+9x+2=(3x2+5x+2)(mx+n)=3mx3+(5m+3n)x2+(2m+5n)x+2n,∴2n=2,2m+5n=9,解得:m=2,n=1,所以另一个因式为2x+1,故选:B.10.解:设多项式的另一个因式为2x+b.则(x﹣5)(2x+b)=2x2+(b﹣10)x﹣5b=2x2+8x+a.所以b﹣10=8,解得b=18.所以a=﹣5b=﹣5×18=﹣90.故选:D.11.解:(1)原式=(m+2)(m﹣2);(2)原式=2(x2﹣2x+1)=2(x﹣1)2.故答案为:(1)(m+2)(m﹣2);(2)2(x﹣1)2.12.解:原式=a2(4﹣9a2)=a2(2+3a)(2﹣3a).故答案为:a2(2+3a)(2﹣3a).13.解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15,∴A+B=2﹣15=﹣13.故答案为:﹣13.14.解:原式=(x2﹣x+)=(x﹣)2.故答案为:(x﹣)2.15.解:多项式4x3y2﹣2x2y+8x2y3的公因式是2x2y,故答案为:2x2y.16.解:(1)原式=3(x2﹣2x+1)=3(x﹣1)2;(2)原式=2a(x2﹣4)=2a(x+2)(x﹣2).17.解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=a(a2﹣6ab+9b2)=a(a﹣3b)2;(3)原式=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.18.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。

)(1691919132919132262626274626274-=÷-÷=÷-=b a b a b a b a b a b a b a b a 12.解:(a -b )3÷(b -a )2+(-a -b )5÷(a+b )4, =(a -b )3÷(a -b )2-(a+b )5÷(a+b )4, =(a -b )-(a+b ), = a -b -a -b , =-2b .13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.参考答案:1.①②③ 解析:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB .∵BF 是∠ABC 的平分线,CF 是∠ACB 的平分线,∴∠FBC=∠DBF ,∠FCE=∠FCB .∴∠DBF=∠DFB ,∠EFC=∠ECF ,∴△DFB ,△FEC 都是等腰三角形.∴DF=DB ,FE=EC ,即有DE=DF+FE=DB+EC .∴△ADE 的周长=AD+AE+DE=AD+AE+DB+EC=AB+AC .综上所述,命题①②③正确.2.解:(1)证明:∵AD+EC=AB ,∴BD=CE . ∵AB=AC ,∴∠B=∠C . ∵BE=CF ,∴△BDE ≌△CEF .∴DE=EF ,即△DEF 是等腰三角形. (2)∵∠A=40°,∴∠B=∠C=12(180°-∠A)=12(180°-40°)=70°. ∵△BDE ≌△CEF ,∴∠BDE=∠CEF .∴∠DEF=180°-∠BED -∠CEF=180°-∠BED -∠BDE=∠B=70°. (3)不能.∵∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形.(4)60°.理由:当∠A=60°时,∠B=∠C=60°,由(2)可得∠DEF=60°. ∴∠EDF+∠EFD=120°.3.解:(1)△ABC ,△ABD ,△ADE ,△EDC . (2)AD 与BE 垂直.证明:∵BE 为∠ABC 的平分线,∴∠ABE=∠DBE. 又∵∠BAE=∠BDE=90°,BE=BE , ∴△ABE 沿BE 折叠,一定与△DBE 重合. ∴A 、D 是对称点. ∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB , ∴AE=DE .在Rt △ABE 和Rt △DBE 中, AE =DE BE =BE ⎧⎨⎩,,∴Rt △ABE ≌Rt △DBE (HL ). ∴AB=BD .又△ABC 是等腰直角三角形,∠BAC=90°, ∴∠C=45°. 又∵ED ⊥BC ,∴△DCE 为等腰直角三角形. ∴DE=DC .即AB+AE=BD+DC=BC=10.4.6 解析:连接OD ,∵PO=PD ,∴OP=DP=OD .∴∠DPO=60°.∵△ABC 是等边三角形,∴∠A=∠B=60°,AC=AB=9.∵∠OPA=∠PDB=∠DPA -60°.∴△OPA ≌△PDB .∵AO=3, ∴AO=PB=3,∴AP=6.5.解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴△ODE是等边三角形.(2)BD=DE=EC.其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°.∵OD∥AB,∴∠BOD=∠ABO=30°.∴∠DBO=∠DOB.∴DB=DO.同理,EC=EO.∵DE=OD=OE,∴BD=DE=EC.6.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12.(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t.解得t=4.∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM.∴∠AMN=∠ANM.∴∠AMC=∠ANB.∵AB=BC=AC,∴△ACB是等边三角形.∴∠C=∠B .在△ACM 和△ABN 中,AC AB C B AMC ANB =⎧⎪=⎨⎪=⎩,∠∠,∠∠, ∴△ACM ≌△ABN .∴CM=BN .设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,△AMN 是等腰三角形, ∴CM=y -12,NB=36-2y ,CM=NB .y -12=36-2y ,解得:y=16.故假设成立.∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M 、N 运动的时间为16秒.7.A 解析:由轴对称--最短路线的要求可知:输水分管道的连接点是点B 关于a 的对称点B′与A 的连线的交点F ,煤气分管道的连接点是点A 关于b 的对称点A′与B 的连线的交点C .故选A .8.解:如图,作点B 关于公路的对称点B′,连接AB′,交公路于点C ,则这个基地建在C 处,才能使它到这两个超市的距离之和最小.。

相关文档
最新文档