主流量化交易策略
金字塔量化交易模型及策略

金字塔量化交易模型及策略
金字塔量化交易模型及策略主要包括正金字塔买入和倒金字塔卖出两种方式。
正金字塔买入策略是在股价上升途中,先期买进的资金较大,后期买进的资金逐渐减少,从而降低投资风险。
这种策略的优点在于,低价时买的多,高价时买的少,虽然不如一次性全仓获利得多,但能减少因股价下跌带来的风险。
适合在牛市或处于上升通道的股票中使用,但不适合在牛市末期使用。
倒金字塔卖出策略则与正金字塔买入策略相反,是在股价下跌过程中,不断用更大比例的资金追加买入,直至在低点建仓完毕。
这种策略的优点在于,高价时买的少,低价时买的多,分批建仓降低成本,不会因为股票出现买点而为没有资金烦恼。
金字塔决策交易系统(下称金字塔)则是一个采用VB脚本语言开发策略模型的量化交易平台。
它提供了国内股票和期货的历史行情数据和TICK数据,以及各种行情数据函数、账户和交易函数、统计函数用于策略开发。
同时,它也支持外接统计数据库和专业的统计分析软件Lib库做扩展。
在量化交易方面,除了支持图表驱动的程序化交易外,还可以进行篮子交易、算法交易和较复杂的对冲交易的实现。
对于正金字塔买入策略,可以采用定盈计划来实现。
定盈计划主要有五个参数,包括首次买入金额、盈利达到多少卖出、买入跌幅间隔、买入时屡次增加资金以及控制中途不卖出。
在实际操作中,可以根据市场情况和个人资金量进行调整。
需要注意的是,虽然金字塔量化交易模型及策略可以降低投资风险,但并不能保证一定能够盈利。
投资者在使用这些策略时,应该结合自己的实际情况和市场情况,进行充分的研究和分析,谨慎决策。
期货市场的量化交易策略

期货市场的量化交易策略期货市场是金融市场中的一种重要交易场所,参与者可以通过期货合约进行交易和投资。
为了增加交易的效率和准确性,许多交易者开始采用量化交易策略。
本文将探讨期货市场的量化交易策略,并介绍其中一些常见的策略。
一、量化交易简介量化交易是一种利用数学、统计学和计算机技术进行交易决策的方法。
与传统的基于人工决策的交易相比,量化交易更加追求科学、系统化和自动化。
它通过建立数学模型和算法来分析市场数据,寻找交易机会,并执行交易指令。
二、市场数据获取与整理量化交易依赖于市场数据的准确和及时获取。
交易者可以通过开放式API或专业数据提供商获取市场数据,如价格、成交量、交易时间等。
获取的数据需要经过整理和清洗,使其适合用于后续的分析和建模。
三、策略开发与回测策略开发是量化交易的核心环节。
交易者需要基于市场数据和相关指标设计交易策略。
常见的策略包括趋势跟踪、套利交易和统计套利等。
开发策略后,交易者需要进行回测,即利用历史市场数据模拟策略的表现,评估其风险和收益特征。
四、交易信号生成与执行在策略开发和回测完成后,交易者需要将策略转化为实际的交易决策。
交易信号的生成是指根据策略的触发条件,确定买入或卖出的时机。
常见的交易信号生成方法包括移动平均线交叉、波动率突破等。
交易执行则是指具体执行交易指令,并进行风险控制和资金管理。
五、风险管理与监控量化交易中的风险管理和监控至关重要。
交易者需要设定合理的止损和止盈点位,以控制风险和保护资金。
同时,交易者还需定期监控策略的表现,及时调整和优化策略参数,以适应市场的变化。
六、常见量化交易策略1. 趋势跟踪策略:该策略利用市场的趋势特征进行交易决策。
当市场处于上涨趋势时,买入;当市场处于下跌趋势时,卖出。
2. 统计套利策略:该策略利用统计学原理,寻找不同市场之间的价格差异并进行套利交易。
例如,同时在国内和国际期货市场上买入低价合约并卖出高价合约,从中获利。
3. 均值回复策略:该策略认为价格会围绕其均值波动。
期货市场中的量化交易策略

期货市场中的量化交易策略随着科技的不断发展和金融市场的日益复杂,传统的人工交易方式逐渐被机器交易所取代。
量化交易作为一种利用大数据和强大计算能力的交易方法,已经成为金融市场中的主流趋势。
本文将介绍期货市场中的量化交易策略,包括常见的策略类型、策略的优势和风险管理等方面。
一、量化交易策略类型在期货市场中,量化交易策略可以大致分为趋势跟踪、套利和统计套利三类。
1. 趋势跟踪策略趋势跟踪策略是量化交易中最常见和基础的策略之一。
该策略利用市场价格的趋势性特征,通过分析历史数据和技术指标来预测未来走势。
当价格出现明显的上升或下降趋势时,策略会进行对应的买入或卖出操作。
趋势跟踪策略适用于市场趋势明显的期货品种,如商品期货和股指期货。
2. 套利策略套利策略是基于市场存在的价格差异来进行交易的策略。
通过同时买入低价合约和卖出高价合约,从中获取差价收益。
套利策略通常需要高度的执行效率和实时性,以迅速抓住价格差异的机会。
经典的套利策略包括跨市场套利、时间套利和跨品种套利等。
3. 统计套利策略统计套利策略主要是通过建立统计模型,基于历史数据对市场走势的概率进行分析,从而进行交易的策略。
常见的统计套利策略包括均值回归、波动率交易和配对交易等。
例如,均值回归策略认为价格的偏离程度越大,复归到均值的可能性就越大,利用这一特性进行交易。
二、量化交易策略优势量化交易策略相比传统的人工交易具有以下几个明显的优势:1. 快速决策量化交易策略利用计算机程序进行决策,能够在眨眼间根据市场情况做出交易决策,并自动执行交易指令。
相比之下,人工交易需要投资者进行决策并手动下单,耗费时间和精力。
2. 严谨的风险控制量化交易策略通过设置合理的止损和止盈机制,能够在交易过程中实现严格的风险控制。
策略执行过程中会根据市场实时情况进行动态调整,以防止亏损过大或收益未实现。
3. 利用大数据和技术优势量化交易策略能够利用历史数据和技术指标进行系统化分析,发现市场隐藏的规律和机会。
股票量化交易的7个策略

股票量化交易的7个策略
鉴于股票量化交易高度复杂,主要包括以下7种策略:
1、价格动量策略:价格动量策略是基于股票价格上涨或下跌的动量,根据价格和成交量发现超额收益。
2、反转策略:反转策略判断价格是支撑或阻力位,假定价格在这一点转向,以获得一定收益。
3、趋势跟踪策略:趋势跟踪策略是基于股票价格的变化发现趋势,并以追踪或延续这一趋势从而获得收益。
4、基准策略:基准策略建立一个投资基准,将股票的收益水平与投资基准作对比,以获得超额收益。
5、对冲策略:对冲策略以投资者的资产作为基准,根据价格波动构建投资组合,以抵消价格波动的影响,最终实现超额收益。
6、套利策略:套利策略是基于投资者利用价格差的差异实现的收益,可以作为有效的风险控制工具,减少投资风险。
7、做多做空策略:做多做空策略是投资者利用价格变化实现利润的方法,可以基于不同的价格水平做多或做空股票,以获得利润。
- 1 -。
量化交易(一文了解量化交易策略)

量化交易策略可以根据交易产品和盈利模式进行分类
按照交易产品分类:量化投资策略主要包括股票策略、CTA策略、期权策略、FOF策略等。
按照盈利模式分类:量化投资策略可以分为单边多空策略、套利策略、对冲策略等。
NO.1 交易产品分类
股票策略:可以进一步细分为Alpha策略和Beta策略。
Beta策略致力于获得绝对收益。
它又可以细分为主观策略和量化策略,包括基于财务和行业研究的主观投资和使用技术指标选股的量化策略。
另一方面,Alpha策略旨在获取超额收益,即跑赢指数,通常采用多因子策略,数据一般来源于基本面数据(如财务)和量价数据。
CTA策略:是交易股指期货、国债期货、大宗商品期货的量化策略,也是当前应用最广泛的策略之一。
FOF策略:则是将资金分散投资于不同的基金,在基金分散投资的基础上进一步分散风险的策略。
NO.2 盈利模式分类
单边多空策略:是指投资者在结合经济周期、宏观趋势、政治事件以及历史数据的基础上,对单个金融工具进行单边买入或单边卖出实现盈利的策略。
套利策略:是基于不同市场之间的价格差异,通过同时在两个或多个市场进行买卖操作以获得利润;而统计套利策略则是基于股票价格的历史波动情况和统计学原理,通过计算股票价格与其历史波动范围之间的差异来判断股票价格是否处于低估或高估状态,从而进行买卖操作。
对冲策略:是一种投资策略,旨在通过同时在股指期货市场和股票市场上进行数量相当、方向相反的交易,以实现盈亏相抵,从而降低甚至消除商业风险的影响。
这种策略可以帮助投资者锁定既得利润或成本,规避股票市场的系统性风险。
股票量化交易的7个策略

股票量化交易的7个策略1、趋势跟踪策略趋势跟踪策略是股票量化交易最常用的策略之一,也是最经典的投资策略之一。
这种策略旨在从中期以上的趋势中获取利润,而不是去捕捉短期的价格波动。
趋势跟踪策略是一种很好的长期投资策略,可以在股票价格上升期间不断获取利润,但是也应该注意市场的波动,避免价格低迷时的损失。
2、均值回归策略均值回归策略是投资者经常使用的股票量化交易策略,它基于投资者认为股价会重新回到长期有效的价格区间,允许他们在股价超出其历史平均价格上下限时买卖股票,以实现获利。
与趋势跟踪策略相比,均值回归策略的绝对收益较低,但其在股市波动较大时可以获得较好的收益。
3、技术指标策略技术指标策略是投资者根据股票价格的特定指标,如均线、布林带或移动平均线,来决定买卖时机的股票量化投资策略。
技术指标策略通常有助于投资者在股市的起伏中获取利润,但投资者也应该注意技术指标的变化可能会影响他们的投资结果。
4、极短期策略极短期策略是衡量股票供需变化和波动可能性的高频交易策略,投资者可以通过使用极短期策略来捕捉股市中的短期价格波动,而不考虑其长期表现。
极短期策略要求投资者对市场情况进行高度专业的分析,需要投资者对股票价格波动有深刻的了解。
5、行为量化策略行为量化策略是根据投资者在投资决策中存在的不同行为偏差而设计的股票量化交易策略。
行为量化策略可以帮助投资者更加理性地做出投资决策,从而避免情绪化的投资行为,提高投资效率和投资回报。
6、标的物选择策略标的物选择策略是投资者根据股市的波动性和投资者的风险敏感度等因素,选择适合的股票作为投资标的物的股票量化交易策略。
该策略旨在全面考虑市场波动因素,同时考虑风险和收益之间的平衡,以实现投资者的投资目标。
7、套利策略套利策略是一种投资者通过利用价差,在极短的时间里获得利润的策略。
套利策略是一种较为复杂的量化交易策略,要求投资者具备较强的投资分析能力,能够精准捕捉价差的变动并及时作出投资决定。
十大量化交易策略

十大量化交易策略
1、均值回归:以某一周期的收盘价均值作为参考,当股价跌破均值
时卖出,当股价突破均值时买入,以获得收益。
2、网格交易:将价格空间划分成若干网格,按照一定的规则及网格
的距离实施买卖。
3、反趋势交易:趋势发生变动时买卖,在趋势反转前买入,在趋势
反转后卖出,以获取趋势变动时的收益。
4、套利交易:以不同市场之间价差为利润,利用特定策略锁定价差,实施买卖。
5、波动率交易:通过观察股票收益空间的价格波动,以小幅价格波
动为收益基础,实施买卖。
6、技术分析:通过解析和研究历史数据,找到股价趋势及技术面支
撑点的突破,实施买卖。
7、择时交易:通过分析市场流通状况及趋势,把握低买高卖的机会,实施买卖。
8、跨市场套利:通过分析各市场之间关系,以价格差额为利润实施
买卖。
9、趋势交易:跟随股票当前趋势,在上涨趋势时买入,在下跌趋势
时卖出,以获取趋势的收益。
10、主动交易:根据基本面及市场活动的变化,迅速响应市场变化,
把握买卖机会,实施买卖。
量化交易策略类型

量化交易策略类型量化交易是指通过数学模型和统计分析方法来制定投资策略,并利用计算机程序进行交易的一种投资方式。
量化交易策略类型多种多样,每种策略都有其特点和适用场景。
本文将介绍几种常见的量化交易策略类型,包括趋势跟踪策略、均值回归策略、套利策略和统计套利策略。
一、趋势跟踪策略趋势跟踪策略是一种基于市场价格趋势的交易策略。
该策略认为市场存在明显的趋势,并通过追踪和分析价格走势来判断市场的方向。
趋势跟踪策略的核心思想是“趋势是你的朋友”,即在市场上寻找处于上升或下降趋势中的标的物,然后买入或卖出以跟随趋势。
二、均值回归策略均值回归策略是一种基于统计学原理的交易策略。
该策略认为在市场价格波动中,价格会围绕其均值上下波动,当价格偏离均值过大时,就存在回归的可能性。
基于这个观点,均值回归策略通过买入价格偏低的标的物,并卖出价格偏高的标的物,以期望价格回归到均值附近。
三、套利策略套利策略是一种通过利用市场价格差异来获取利润的交易策略。
套利策略认为市场上会出现价格不合理的情况,即同一标的物在不同市场或不同时间点的价格存在差异。
基于这个观点,套利策略通过买入价格较低的标的物,并卖出价格较高的标的物,以获得价格差异带来的利润。
四、统计套利策略统计套利策略是一种基于统计学原理和历史数据的交易策略。
该策略认为市场存在一些统计规律,通过分析历史数据和建立数学模型,可以找到这些规律,并利用这些规律进行交易。
统计套利策略通常包括配对交易、协整关系交易和期权交易等多种具体的策略。
以上介绍了几种常见的量化交易策略类型,每种策略都有其独特的特点和适用场景。
在实际应用中,投资者可以根据自身的投资目标和风险承受能力选择适合自己的策略。
同时,量化交易策略的成功与否还取决于策略的设计和实施,需要投资者具备一定的数学和编程能力,并进行严格的风险控制和策略优化。
量化交易策略类型多种多样,包括趋势跟踪策略、均值回归策略、套利策略和统计套利策略等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主流量化交易策略专访北京泰铼投资管理有限公司合伙人兼总经理王文伟。
主持人:贵公司的情况介绍?投研团队有多少人?团队的特色和优势在哪里? 王文伟:本公司是由四位投资经理组成为创始团队组建的有限责任公司,创始团队持股比例占公司总股本的94%。
创始团队是公司的核心投研力量,公司另有两名资深的量化交易员和系统工程师,负责交易和系统的搭建维护。
公司的创始团队成员具有专业的投资背景,兼具海外对冲基金和国内市场的长期投资管理经验。
在成立泰铼投资之前,团队所管理的资金超过30亿元。
团队成熟、稳定,成员包括投资经理、量化交易员、系统工程师,成员之间彼此共事多年,配合默契。
团队分工明确,在量化投资、高频交易、衍生品、股票多空等诸多领域,均具备丰富的经验。
团队成员包含多个投资经理,均有经实盘检验的良好业绩。
团队采用自主开发的算法交易系统,经过国内外市场多年的实盘运作和改进,兼具稳定性和高效性,能有效的降低交易对市场的冲击,提高量化交易模型的运行效率和稳定性,增强收益。
通过频繁细小的价差收益累积获取长期稳定回报主持人:贵公司的投资理念和投资策略是怎么样的? 王文伟:公司采用量化投资,旨在市场的波动中获取不依赖于市况的稳定的超额回报(alpha收益)。
资本资产定价模型将投资组合的期望收益由两部分组成:alpha收益为投资组合超越市场基准的收益,beta收益为投资组合承担市场系统风险而获得的收益。
通过对冲交易剥离或降低投资组合的系统风险(beta收益),获取纯粹的alpha收益,可以使得投资组合无论在市场上涨或下跌时均能获取稳定的绝对收益。
在股票市场的波动中,alpha收益源于资产的相对定价偏差:通过寻找市场中相对定价发生偏差的资产,并识别偏差的程度,在偏差足够大的时候进行交易,可以获取资产相对定价回归的alpha收益。
因此,投资组合通过频繁的、细小的价差收益的累积,获取长期稳定的回报。
候选模型的设想和构思、有效性检验和综合模型的建立主持人:具体的投研流程是怎么样的? 王文伟:①研究流程——量化模型的建立量化模型的建立是量化投资的核心,模型的有效程度直接决定量化投资的业绩表现。
模型的建立主要分为候选模型的设想和构思、有效性检验和综合模型的建立三个步骤。
候选模型的设想和构思依赖两方面的能力,一方面对大数据的处理分析能力,通过对历史数据的学习,依靠计算机和统计知识寻找有效策略;另一方面依赖于对经济逻辑的理解和市场经验。
两方面能力的结合产生更多、更有效的策略是增强模型有效性和提高收益率的关键。
候选模型的有效性检验基于历史数据回溯检验,考察策略的收益率、波动率、夏普比、收益回撤比,与市场或其他策略的相关性等,当策略的各类指标满足要求(策略的收益稳定、风险小)时,该策略通过了有效性检验,否则策略的有效程度不高,需要做进一步的修改。
在构建好有效策略的基础上,还需要结合生产环境中实际情况(交易限制、成本限制、风控约束等),利用金融工程手段对策略进行调整和优化,使策略更好的实现预期收益。
②投资流程科学的投资流程是实现量化模型收益的基础,投资流程包括根据量化模型生成目标组合,将组合通过算法交易系统向柜台发送订单,交易的风控系统对交易和当前组合的风险进行监控。
公司采用自主开发的算法交易系统和风控系统,交易系统经过国内外市场多年的实盘运作和改进,兼具稳定性和高效性,能有效的降低交易对市场的冲击,提高量化模型的运行效率,增强收益。
风控系统实时读取持仓信息,有效的监控交易的执行情况,并对组合的期现风险敞口进行实时风控。
股票甄选:统计套利模型和多因子模型主持人:选股的标准是什么(如果是量化,请说明量化的指标是什么)?会不会有行业或者板块的偏好? 王文伟:公司采用自出开发的统计套利模型和多因子模型进行股票的甄选,采用的指标包括技术面指标(成交量、价格、涨跌幅等),基本面财务指标(估值、成长性、盈利能力等)和分析师预期数据。
公司采用的模型为市场中性,对行业和板块没有偏好。
统计套利、无风险套利和多因子模型主持人:你们所有的策略主要包括哪些策略? 王文伟:公司采用的主要投资策略包括:统计套利、无风险套利和多因子模型。
统计套利交易:在对历史数据进行统计分析的基础之上,估计市场上各个资产相互之间在收益率、价格、成交量等数据的统计关系,并结合其他基本面数据分析进行的套利交易。
相比于无风险套利,统计套利少量增加了一些风险,但是由此获得更多的套利机会,和更高的超额收益。
无风险套利交易:利用市场的无效性,当市场上某一投资组合定价出现偏差(该偏差大于此次套利交易的成本),并且该偏差在未来一段的时间内会确定消失,交易该组合并在其价值回归时平仓,即可在不承担市场风险的前提下获取确定的回报。
当前,A股市场的无风险套利机会主要包括股指期货的期现套利、跨期套利、ETF 套利、封闭式基金套利、可转债套利等。
多因子模型:量化选股中最常见的一类模型,其基本思想就是找到某些和收益率最相关的指标。
并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或者跑输市场。
如果跑赢,则可以做多该组合,如果是跑输,则可以做空该组合,做空不能实现的部分以做空股指期货来替代,这样构造的一个市场中性的投资组合来获得绝对收益。
主持人:你们现在是完全程序化交易还是手动交易? 王文伟:公司采用自主开发的算法交易系统,为完全程序化交易。
优秀策略和模型需捕捉市场有序波动的本质原因主持人:你怎么看策略不断优化、新陈代谢的过程? 王文伟:优秀的策略和模型需要捕捉市场有序波动的本质原因,量化模型通过量化的手段去实现这一过程。
虽然市场波动的表象日新月异,但引发市场有序波动的本质原因经常是持久的,有规律的:一些本质原因源于人性引发的投资者交易行为,是难以改变的;一些原因虽然在变化,但变化相对缓慢,循序渐进。
因此,只有当这些本质原因确实发生了具有统计意义的变化时,策略才需要做相应的优化和改进,策略的优化改进是一个有规律的、持续的、相对缓慢的过程,而不是跟随市场杂乱的波动表象,随意修改的无序过程。
缺少有效风险管理的量化策略难以实现预期收益主持人:在交易中,您如何选品种?您一般同时操作多少个品种?偏好哪些品种? 王文伟:公司采用纯量化投资,交易品种的选择由量化模型决定。
不同的模型、不同的产品规模同时操作的品种数量不同,公司的模型同时操作的品种一般介于100到600只之间。
量化投资的优势之一是覆盖品种广,因此公司模型覆盖品种范围很广,公司采用的均为市场中性策略,对交易品种没有特殊偏好。
主持人:您的交易体系在单个品种和整个账户的仓位调节、资金管理上是如何设置和执行的? 王文伟:量化模型内嵌风险模型,该模型对单个品种权重由严格的控制,不同的模型对单品种权重的限制不同,单品种的最大敞口不超过1%-5%。
公司采用市场中性策略,策略不依赖于市况,不需要择时,因此除基差大幅贴水等特殊情况外,策略均为满仓运作。
主持人:贵公司如何做风险控制? 王文伟:风险管理是量化投资中关键的一环,缺少有效风险管理的量化策略是难以实现预期收益的。
因此,量化投资的从模型的构建到交易的实现,都极为重视组合和交易的风险管理,只有把风险控制在合理的范围内,量化策略的收益才有保障。
公司的量化模型均内嵌风险模型,风险模型对主要的市场风险(金额、行业、规模、价值、成长)都要求保持中性或基本中性,以对冲的方式消除了大部分的市场风险。
风险模型完全以全量化、模型化的方式对组合进行控制,对组合每个类风险的敞口进行计算,一旦敞口超出模型要求,即对组合做相应的调整。
主持人持续盈利的核心原因是什么? 王文伟:公司产品持续盈利的核心原因是量化模型有效性。
模型把握了部分市场有序波动的本质原因,能够在不承担其他风险的情况下,稳定的获得超额回报。
主持人:您追求每年百分之多少的业绩回报?为此您愿意承担多大的资金回撤? 王文伟:公司追求年化15% - 25%的业绩回报,最大回撤1% - 3%。
市场中性策略百花齐放、风险和收益特点大相径庭主持人:不少市场中性策略基金去年收益颇高,近几个月都有持续性的回撤,与整体市场的结构性行情以及策略的非完全中性(例如行业非中性等)可能都有关系,这是否也是泰铼过往业绩比较突出的一个原因? 王文伟:公司采用严格的市场中性策略,对主要的市场风险(金额、行业、规模、价值、成长)都保持中性或基本中性,因此泰铼在近几个月并未发生持续回撤,实盘业绩在6月和7月都已创新高。
主持人:较高的收益与今年的回撤,表现出与海外股票市场中性策略基金不相符的风险收益特征,所以今年以来,很多客户对于国内的市场中性的基金质疑声音也比较多,泰铼怎么看这个事情? 王文伟:股票市场中性策略是一个统称,不同团队的策略各不相同,百花齐放,风险和收益特点也大相径庭。
在海外市场经历了时间的大浪淘沙,不乏业绩优秀、稳定的翘楚,也产生了一些业绩表现不尽如人意的遗憾,相信国内市场也没有例外,时间的检验是一个必经的过程。
主持人:市场中性基金的运作过程较为复杂,基金经理必须构建严谨的风险对冲模型进行估算以保证能达到贝塔的完全对冲,否则仍会留下系统性风险,泰铼这边如何确保这方面的风险? 王文伟:量化模型内涵的风险模型,模型将市场各类风险因子量化,通过金融工程的方法,调整股票多头组合,使各类风险尽可能保持中性。
主持人:市场中性基金已经规避掉了市场的系统性风险,对于非系统性风险,例如股票阿尔法收益的风险,如何做控制?是否有团队在做这方面的研究? 王文伟:市场中性策略的收益来源于alpha,alpha是经过统计和历史回溯检验,证明其是超额收益来源而非风险因子,也就是说,alpha本身已经剔除了如行业、估值、成长、规模等市场风险。
有效的alpha 作为收益来源,而不是风险,通常是不需要进行控制的。
alpha的主要风险是失效风险,因为alpha来源于市场波动的本质原因,其效果改变的过程是漫长和有规律的,投研团队对模型的alpha进行密切的跟踪,在确认alpha发生变化时,会通过模型的改进和调整来适应新的情况。
公司的模型采用的alpha足够多,其相关性低,alpha因子失效的情况少,并且多个alpha因子同时失效的可能性几乎不存在,这也是公司产品业绩稳定持续的基础。
相对价值策略国内最大瓶颈是做空工具少、做空成本高主持人:虽然相对价值策略在过去一两年得到高速的发展,但目前也面临着蛮多的问题,您对相对价值策略的现状有着怎样的判断?未来会存在哪些机遇和困境? 王文伟:相对价值策略是海外对冲基金的主要策略之一,采用该类交易策略的股票基金在海外市场贡献了约一半的交易量,因此,国内的相对价值策略才处于起步阶段,未来的发展空间广阔。
目前相对价值策略在国内的最大瓶颈是做空工具少,做空成本高,绝大多数策略采用沪深300作为做空标的,这导致国内市场的相对价值策略相似性高,alpha发挥的空间小,优劣策略的差异性小。