运筹学基础-目标规划(1)19页PPT文档
合集下载
运 筹 学 课 件

12/3 4
z
1 2
x4
x5 42
x3
2 3
x4
1 3
x5
4
新典式
主元化 为1,主 元所在
x2
1 2
x4
6
列的其 余元素
x1
2 3
x4
1 3
x5
4
化为0
观察最后一个典式,所有检验数均为非负, 故其对应的基本可行解为最优解,即
X * 4,6,6,0,0T z* 42
去掉引入变量,得原问题的最优解为:
运筹学课件
目录
运筹学概论 第一章 线性规划基础 第二章 单纯形法 第三章 LP对偶理论 第四章 灵敏度分析 第五章 运输问题 第六章 整数规划 第七章 动态规划 第八章 网络分析
第二章 单纯形法
(SM-Simplex Method)
1947年,美国运筹学家Dantzig提出,原理是 代数迭代。
单纯形法中的单纯形的这个术语,与该方法毫 无关系,它源于求解方法的早期阶段所研究的一 个特殊问题,并延用下来。
CB B1b B1b
z
CB B1N CN X N X B B1NX N
CB B1b B1b
上述方程组的矩阵形式为
10
0 I
CB
B1N B1N
CN
z XB XN
CB B1b B1b
上式的系数增广阵称为对应于基B的单纯形表:
T(B)
CB B1b B1b
0 I
CB
B1N B1N
CN
形式的LP问题,必须解决三个问题: ⑴初始基本可行解的确定; ⑵解的最优性检验; ⑶基本可行解的转移规则。 这里先放一下⑴,研究⑵和⑶,为此,
管理运筹学 第6章 目标规划

目标规划问题及模型
∵正负偏差不可能同时出现,故总有:
x1-x2+d--d+ =0
若希望甲的产量不低于乙的产量,即不希望d->0,用目标约束可
表为:
min{d }
x1
x2
d
d
0
若希望甲的产量低于乙的产量,即不希望d+>0,用目标约束可
表为:
min{d }
x1
x2
d
d
0
若希望甲的产量恰好等于乙的产量,即不希望d+>0,也不希望
2x1 2x2 12
s.t
4
x1 x1
2x2
8 16
4x2 12
x1 , x2 0
其最优解为x1=4,x2=2,z*=14元
目标规划问题及模型
但企业的经营目标不仅仅是利润,而且要考虑多个方面,如: (1) 力求使利润指标不低于12元; (2) 考虑到市场需求,甲、乙两种产品的生产量需保持1:1的比
标决策的需要而由线性规划逐步发展起来的一个分支。 由于现代化企业内专业分工越来越细,组织机构日益复
杂,为了统一协调企业各部门围绕一个整体的目标工作,产 生了目标管理这种先进的管理技术。目标规划是实行目标管 理的有效工具,它根据企业制定的经营目标以及这些目标的 轻重缓急次序,考虑现有资源情况,分析如何达到规定目标 或从总体上离规定目标的差距为最小。
min Z = f( d ++ d - )
(2) 要求不超过目标值,但允许达不到目标值,即只有使 正偏差量要尽可能地小(实现最少或为零)
min Z = f( d +)
目标规划问题及模型
例1. 某企业计划生产甲,乙两种产品,这些产品分别要在 A,B,C,D四种不同设备上加工。按工艺文件规定,如表所示。
《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
运筹学基础及应用(全套课件296P) ppt课件

我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论
运筹学OperationalResearchppt课件

XB = ( x1 , x2 , … , xm )T,其余的变量称为非基变量, 记为 XN = ( xm+1 , xm+2 , … , xm+n ) T , 故有 X = XB + XN
– 最多有 Cmmn 个基
21
关于标准型解的若干基本概念:
• 可行解与非可行解 – 满足约束条件和非负条件的解 X 称为可行解,满足 约束条件但不满足非负条件的解 X 称为非可行解
3
1
1
1
6.5
4
1
0
3
7.4
5
0
3
0
6.3
6
0
2
2
7.2
余料
0.1 0.3 0.9 0 1.1 0.2
若目标函数为使购裁买剪的后 钢零筋料最少,则有
min f (x) x01.1x1x2 0.x33x2x40.9x35 0xx6 4 1.1x5 0.2x6
2x11 x22 x33 x44 100
x3 =10 x2 =10 x2 =8 x2 =7
x4 =8 x4 =-2 x3 =2 x3 =3
x5 =7
x5 =-3 x5 =-1 x4 =1
O 基础可行解 F 基础解 E 基础解 A 基础可行解
f(x)=36
5 x1, x2 , x3, x4 , x5 0
4
最3 优解 :
x1
2
2,
x2
6,
m2 ax f ( x)K 361 .
同时不等号也要反向 • 第i 个约束为 型,在不等式左边增加一个非负的变量
xn+i ,称为松弛变量;同时令 cn+i = 0
• 第i 个约束为 型,在不等式左边减去一个非负的变量
– 最多有 Cmmn 个基
21
关于标准型解的若干基本概念:
• 可行解与非可行解 – 满足约束条件和非负条件的解 X 称为可行解,满足 约束条件但不满足非负条件的解 X 称为非可行解
3
1
1
1
6.5
4
1
0
3
7.4
5
0
3
0
6.3
6
0
2
2
7.2
余料
0.1 0.3 0.9 0 1.1 0.2
若目标函数为使购裁买剪的后 钢零筋料最少,则有
min f (x) x01.1x1x2 0.x33x2x40.9x35 0xx6 4 1.1x5 0.2x6
2x11 x22 x33 x44 100
x3 =10 x2 =10 x2 =8 x2 =7
x4 =8 x4 =-2 x3 =2 x3 =3
x5 =7
x5 =-3 x5 =-1 x4 =1
O 基础可行解 F 基础解 E 基础解 A 基础可行解
f(x)=36
5 x1, x2 , x3, x4 , x5 0
4
最3 优解 :
x1
2
2,
x2
6,
m2 ax f ( x)K 361 .
同时不等号也要反向 • 第i 个约束为 型,在不等式左边增加一个非负的变量
xn+i ,称为松弛变量;同时令 cn+i = 0
• 第i 个约束为 型,在不等式左边减去一个非负的变量
运筹学ppt课件

– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划
学
整数规划
规
动态规划
划
多目标规划
学
双层规划
最优计数问题
科
组 合
网络优化
内
优 排序问题 化 统筹图
容
对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划
学
整数规划
规
动态规划
划
多目标规划
学
双层规划
最优计数问题
科
组 合
网络优化
内
优 排序问题 化 统筹图
容
对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,
运筹学基础-目标规划

5.2 应用举例
[例1]某电子厂生产录音机和电视机两种产品,分别经由甲、乙两个车间生产。已知除外购件外,生产一台录音机需甲车间加工2h,乙车间装配1h;生产一台电视机需甲车间加工1h,乙车间装配3h;两种产品需检验、销售环节,每台录音机检验销售费用需50元,每台电视机检验销售费用需30元。又甲车间每月可用工时为120h,车间管理为80元/h,乙车间每月可用工时为150h,车间管理为20元/h。估计每台录音机利润100元,每台电视机利润75元,又估计下一年度内平均每月可销售录音机50台,电视机80台。 该厂的月度目标为
4、用EXCEL求解下列目标规划问题:
x =(10,20,10)
5、用EXCEL解以下目标规划模型
5、x1=12, x2=10, =14, Z=14p4
答案:
工序
型号
每周最大加工能力
A
B
Ⅰ(小时/台) Ⅱ(小时/台)
4 3
6 2
150 50
利润(元/台)
300
450
如果工厂经营目标的期望值和优先等级如下: p1: 每周总利润不得低于10000元; p2: 因合同要求,A型机每周至少生产10台,B型机每周至少生产15台; p3: 希望工序Ⅰ的每周生产时间正好为150小时,工序Ⅱ的生产时间最好用足,甚至可适当加班。 试建立这个问题的目标规划模型。
+ P3 ( 6d1- +5 d2- )
+ P4d6+
+ P6(6d4++5d5+)
(1)甲、乙两厂设备运转时间约束: 甲的总时间为8×12×25=2400(h),乙的总工作时间为16×7×25=2800(h),则:
2.5x1 +1.5x2 +d2- –d2+ = 2800
运筹学基础(1)

展
英国创刊 ☺ 1952年第一个运筹学学会在美国成立
☺ 1947年丹齐克在研究美国空军资源优化配置 时提出线性规划及其通用解法——单纯形法
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
② 50年代初期至50年代末期——成长 时期
产
生
商船护航的规模等等。
战后这些研究成果被应用到生
产、经济领域,其发展可以分
运
为三个阶段:
筹 学
的
① 1945至50年代初期—创建时期
☺ 1948年英国成立“运筹学俱乐部”在煤力、 电力等部门推广应用运筹学
产
☺ 相继一些大学开设运筹学课程
生
1948年美国麻省理工学院
和
1950年英国伯明翰大学
发
☺ 1950年第一本运筹学杂志《运筹学季刊》在
的 定 义
与 特 点
为“运作研究”。
美国运筹学会认为:运筹学所研 究的问题,通常是在要求有限资 源的条件下科学地决定如何最好 地设计和运营人机系统。
中国大百科全书释义:它用数学 方法研究经济、民政和国防等部 门在内外环境的约束条件下合理 分配人力、物力、财力等资源, 使实际系统有效运行的技术科学,
bi ,i 1,2m 为资源系数;
aij ,i 1,2m, j 1,2n 为技术系数,或约束
系数 ;
mn
运筹学基础
第四讲
主讲教师:郑黎黎
学时:48
线 性 数规 学划 模问 型题 及 其
线性规划的标准形式有四个特点 : 目标最大化、约束为等式、右端项 非负、决策变量均非负。 对于各种非标准形式的线性规划问 题,我们总可以通过以下变换,将 其转化为标准形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则该问题的数学模型表示为
maxZ= 2x1 +3x2 2x1+2x2 ≤12
x1 +2x2 ≤8
这是一个线性规划模型
4x1 ≤16
4x2 ≤12
x1 ≥0, x2 ≥0
但企业通常的经营目标会更实际、更多样!
企业的新目标:
力求使利润指标不低于12千元; 考虑到市场需求,Ⅰ,Ⅱ 两种产品的生产量需保持1:1的比例; C和D为贵重设备,严格禁止超时使用; 设备B必要时可以加班,但加班时间要控制,设备A既要求充 分利用,又尽可能不加班。 等等
4.线性规划的最优解可以说是绝对意义下的最优 为求得这个最优解,往往要花去大量的人力、物力和才力。而
在实际问题中,却并不一定需要去找这种最优解。目标规划所求的 满意解是指尽可能地达到或接近一个或几个已给定的指标值,这种 满意解更能够满足实际的需要。
目标规划更能够确切描述和解决经济管理中的许多实际问题。目前 目标规划的理论和方法已经在经济计划、生产管理、经营管理、市场分 析、财务管理等方面得到广泛的应用。
这些目标通过线性规划无法实现
【引例3】
某工厂在计划期内要生产甲、乙两种产品,现有的资源及两种产
品的技术消耗定额、单位利润如下表所示.试确定计划期内的生产计
划,使利润最大。
表4-1 产品的资源、技术消耗定额、单位利润表
甲(每件) 乙(每件)
现有资源
钢 材 (kg)
9.2
4
3600
木 材 (m3)
4
5
二、目标规划的基本概念
1.目标值和正、负偏差变量
目标规划通过引入目标值和正、负偏差变量,可将目标函数转化 为目标约束。
所谓目标值是预先给定的某个目标的一个期望值。实现值(或决 策值)是当决策变量x1、x2、…、xn选定以后目标函数的对应值。显 然,实现值和目标值之间会有一定的差异,这种差异称为偏差变量 (事先无法确定的未知量),用d+和d-表示。
实践中,人们转而采取“不求最好,但求满意”的策略, 在线性规划的基础上建立一种新的数学规划方法——目标规 划.
目标规划与线性规划相比,有以下优点:
1.线性规则只讨论一个线性目标函数在一组线性约束条件下的极值问题 实际问题中,往往要考虑多个目标的决策问题,这些目标可能
互相矛盾,也可能没有统一的度量单位,很难比较。目标规划就能 够兼顾地处理多种目标的关系,求得更切合实际的解。
2.线性规划是在满足所有约束条件的可行解中求得最优解。 而在实际问题中往往存在一些相互矛盾的约束条件,如何在这
些相互矛盾的约束条件下,找到一个满意解就是目标规划所要讨论 的问题。 3.线性规划问题中的约束条件是不分主次、同等对待的
线性规划问题是一律要满足的“硬约束”。而在实际问题中, 多个目标和多个约束条件不一定是同等重要的,而是有轻重缓急和 主次之分的,如何根据实际情况确定模型和求解,使其更合实际是 目标规划的任务。
d+——超出目标的差值,称正偏差变量; d-——未达到目标的差值,称负偏差变量; 当实际值超出目标值时,有d-=0, d+>0; 当实际值未达到目标值时,有d+=0, d->0 ; 当实际值同目标值恰好一致时, d+= d- = 0 。 因为在一次决策中,实现值不可能既超过目标值,同时又未达到目标 值,所以有 d+与d-两者中必有一个为零。故恒有d+× d- = 0
分析:这是一个含有两个目标的数学规划问题. 设x1、x2分别为采
购甲级、乙级原材料的数量(单位:kg), y1为花掉的资金, y2为
所购原料总量.则:
目标函数为: Min y1 2x1 x2
Maxy2 x1 x2
2 x1 x 2 200
约束条件为:
x1 x2
x2 50
100
注:此规划模型是一个多目标规划模型
x 1 , x 2 0
【引例2】
某企业生产Ⅰ、Ⅱ两种产品。这两种产品都要分别在A、B、C、D 四各不同设备上加工。生产每件产品Ⅰ需占用各设备为2、1、4、0小时, 生产每件产品Ⅱ 需占用各设备为2、2、0、4小时,各设备用于生产这 两种产品的能力分别为12、8、16、12小时,又知生产一件产品Ⅰ获得2 千元,生产一件产品Ⅱ 获得3千元,问如何安排生产,使总的利润最大。
2000
设备负荷(台小时)
3
10
3000
单位产品利润 (元)
70
120
同时厂领导为适应市场需求,尽可能扩大甲产品的生产,减少乙
产品的生产,同时考虑这些问题,就形成多目标规划问题.
分析:设x1、x2分别是计划期内甲、乙产品的产量.则该问题的
数学模型为
9 .2 x1 4 x2 3 6 0 0
mmaaxxyy12
§5.1 目标规划问题的提出与目标规划模型
一、问题的提出
【引例1】某生物药厂需在市场上采购某种原料,现市场上有甲、乙
两个等级,单价分别为2千元/kg和1千元/kg,要求采购的总费用不得 超过20万元,购得原料的总重量不少于100kg,而甲级原料又不得少 于50kg,问如何确定最好的采购方案(即用最少的钱、采购最多数量 的原料)。
70x1 x1
120x2
min y3 x2
s.t.
4 3
x1 x1
ቤተ መጻሕፍቲ ባይዱ
5 x2 10 x
2000 2 3000
x1 , x 2 0
分析:
对于这样的多目标问题,线性规划很难为其找到最优方 案.极有可能出现:
第一个方案使第一目标的结果优于第二方案,而对于第二 目标,第二方案优于第一方案.就是说很难找到一个方案使所 有目标同时达到最优,特别当约束条件中有矛盾方程时,线性 规划方法是无法解决的。
2.绝对约束与目标约束
绝对约束又称系统约束,是指必须严格满足的等式和不等 式约束,如线性规划问题的所有约束都是绝对约束,不满足这 些约束条件的解称为非可行解,所以它们是硬约束。
以例2为例,如设备C和D严格禁止超时,故有: 4x1 16
4x2 12 对那些不严格限定的约束,连同原线性规划建模时的目标 函数转化为的约束,均可通过目标约束来表达。 下面是如何形成目标约束
(1) 将目标函数转化为目标约束
在引入了目标值和正、负偏差变量后,可以将原目标函数加上 负偏差变量 ,减去正偏差变量 ,并令其等于目标值,这样形成一个 新的函数方程,把它作为一个新的约束条件,加入到原问题中去, 称这种新的约束条件为目标约束。