波尔振动实验数据

合集下载

2.7波尔振动(一)实验报告

2.7波尔振动(一)实验报告

实验2.7 波尔振动实验(一)实验人姓名:合作人:学院:物理工程与科学技术学院专业:光信息科学与技术年级:级学号:日期:年月日室温:℃相对湿度: %【实验目的】1.观察和研究自由振动、阻尼振动、受迫振动的特性2.观察和研究振动过程的拍频、相图、机械能转换和守恒现象【仪器用具】仪器名称数量型号技术指标扭摆(波尔摆) 1 ZKY-BG 固有振动频率约0.5Hz秒表 1 DM3-008 石英秒表,精度0.01s三路直流稳压稳流电源1 IT6322 三路隔离,0-30V/1mV,0.3A/1mA台式数字万用表 1 DM3051 5-3/4位,1μV-1000V,10nA-10A,准确度为读数的0.025%数据采集器及转动传感器1 SW850及CI6531 最高采样率1000Hz,分辨率0.25°,准确度±0.009°实验测控用计算机 1 IdeaCenterB320i 一体台式计算机【原理概述】1.扭摆的阻尼振动和自由振动在有有阻尼的情况下,将扭摆在某一摆角位置释放,使其开始摆动。

此时扭摆受到两个力矩的作用:一是扭摆的弹性恢复力矩M E(M E=-cθ c为扭转恢复力系数);二是阻力矩M R(M R=-r(dθ/dt)r为阻力矩系数)。

若扭摆转动惯量为I,可列出扭摆的运动学方程:(1)令r/I=2β,c/I=ω02 (ω0为固有圆频率),则式(1)化为(2)其解为(3)其中A0为扭摆的初始振幅,T为扭摆做阻尼振动的周期,且。

由式(3)可知,扭摆振幅随时间按指数规律衰减。

若测得初始振幅A0、第n个周期时的振幅A n,及摆动n个周期所用时间t=nT,则有(4)故有(5)若扭摆在摆动在摆动过程中M R=0,则β=0。

由式(5)知,不论摆动多少次,振幅均不变,扭摆处于自由振动状态。

2.扭摆的受迫振动当扭摆在有阻尼的情况下还受到简谐外力的作用,就会作受迫振动。

设外加简谐力矩的频率是ω,外力矩角幅度为θ0,M0=cθ0为外力矩幅度,因此外力矩可表示为。

基于转动传感器的波尔振动综合实验

基于转动传感器的波尔振动综合实验

B4基于转动传感器的波尔振动实验完整报告学院:理工院专业班级:14级微电子实验人:武煜14343050 组别: D 实验日间:2015.10.13 房间号:406 桌号:A10 合作人:石磊实验内容:2.观测波尔振动的频谱(1)7V阻尼,无驱动力状态下的波尔振动由图可知,波尔振动仪的固有振动频率约为0.571Hz(2)三种状态下的频谱①自由振动的频谱φ=50°②5V阻尼振动的频谱φ=50°③受迫振动的频谱φ=50°分析:从上述三个图可知,自由振动、阻尼振动、受迫振动三种振动状态均周期状起伏,摆动角度在某一频率下摆轮达到最大值。

自由振动和受迫振动均在固有频率附近摆轮摆动角度达到最大,且自由振动和受迫振动固有频率几乎相同,但是在固有频率附近自由振动的摆动最大角度远小于受迫振动的摆动最大角度。

而阻尼振动摆轮摆动达到最大角度时的频率略小于自由振动和受迫振动的固有频率。

(3)不同驱动力频率的受迫振动(7V驱动力3V阻尼)0r2r4r 6r8r10r讨论:在受迫振动中,扭摆的周期是与驱动力的周期一致,与自由振动的周期无关,因为在实验过程中为了增大扭摆的振幅而对驱动力的频率做了调整,受迫振动的周期相应起了变化。

当驱动力的频率小于扭摆的固有频率时,振幅先迅速由零增大到某个值,之后又逐渐减小至一个稳定值,这一点与振动的能量变化相符,能量是先增大后趋于稳定,达到共振。

这一点与振动的能量变化相符。

3.定量测量磁阻尼现象(1)阻尼系数随初始角度变化的关系曲线(2)阻尼系数随阻尼电压变化的关系曲线4.观测波尔振动的相图(1)观察相图并讨论其物理意义讨论:从阻尼振动地相图中看出,相点往坐标中心螺旋式的趋近。

螺旋纹向内衰减,即振动的能量随时间增加而不断减小。

能量不断消耗,振幅不断减小直至停止。

相图的物理意义:反映了扭摆的动能与势能的周期性变化。

(2)三种振动状态下的相图①自由振动由图可见,所谓的“自由振动”并不是理想的自由振动,其振幅缓慢减少,相轨迹的圆不断缩小。

0212波尔振动的物理研究实验报告

0212波尔振动的物理研究实验报告

3. 观察共振现象,测量不同阻尼电压下的受迫振动的幅频特性和相频特性。
步骤:①在实验 2 的基础上,分别接入 6V 和 8V 电压到阻尼线圈; ②从 15V 到 6V 变化,将电压接入受迫振动电机; ③测量不同电压下,振动 10 个周期后所用时间 10T 及波尔摆的末振幅格数, 将其记录表 3; ④根据表格数据,计算各振动角频率ω。
13
0.5/4.5
2
13.69 4.589617 1.454251 -163.30572
12
-1/5.5
3.25
15.32 4.101296 1.299523 -156.54946
11
-3.5/8
5.5
17.41 3.608952 1.143521 -139.48289
10
-6/11
8.5
19.53 3.217197 1.019391 -99.48507
减小;当 很大时,振幅趋于零。
由式(8)可见,当
0
0
时,有
0
2
,即受迫振动的位相落后于外加简谐
力矩的位相;在共振情况下,位相落后接近于
2
,而在
0
时(有阻尼时不是共振状态),
位相才正好落后 2
;当
0 时,有 tg
0
,此时
2
,即位相落后得更多;当
0
时, 趋近 ,即接近于反位相。在已知0 及 的情况下,则可由式(8)计算出各 值
10T/s
19.84 19.84 20.12 19.81 19.81 20.06 19.88 19.91
0 /rad·s-1 3.167 3.167 3.123 3.172 3.172 3.132 3.161 3.156

波尔振动的物理研究

波尔振动的物理研究

波尔振动的物理研究实验者:杨亿斌(06325107) 合作者:王旭升(06325094)(中山大学物理系,光信息科学与技术06级3班)2008年4月10日[数据记录及分析]一计算机测控实验内容1.扭摆自由振动状态实验测得固有周期T = 1.90 s则固有频率023.31/rad s Tπω==在Origin的工作界面下,画出的ϕω关系曲线图,见图2。

相图中每一周圈代表一个振动周期T。

由图可见,该振动并不是理想的自由振动。

理论上,自由振动的相频特性曲线应该是一个圆。

但实际的相频特性曲线呈涡旋状,且曲率半径逐渐减小,这是由于扭摆在自由振动时摩擦及空气阻力作用.其中一个奇点是由于外界的干扰而引起的图2 自由状态下ϕω相图2. 阻尼振动状态(1) 外加6V阻尼的振动状态当外加8V阻尼,而驱动电压为零时, 在Origin的工作界面下,画出的ϕω关系曲线图,见图3。

在6V阻尼的作用下, 相图中一周为一个振动周期,曲线呈涡旋状,且曲率半径明显地减小,相邻圆圈的距离比自由振动时的间隔大,也即曲率半径较快衰减,这是由于扭摆克服6V阻尼做功,一部分能量转换为热能.可见扭摆在阻尼电压的作用下,振幅较快衰减,很快就趋于静止(对应相图的原点).图3. 6V阻尼振动ϕω相图(2) 外加8V阻尼的振动状态当外加8V阻尼,而驱动电压为零时, 在Origin的工作界面下,画出的ϕω关系曲线图,见图4。

在8V阻尼的作用下, 相图中每一周为一个振动周期,曲线呈涡旋状,且曲率半径衰减得很厉害,圆圈数比外加6V阻尼时的振动稀疏,也即曲率半径迅速趋于零,比外加8V阻尼时衰减得更快.可见扭摆在比较大得阻尼电压的作用下,衰减的速度也很快, 迅速趋于静止(对应相图的原点);随着阻尼的增大,扭摆的衰减过程也更快.图4 8V阻尼振动ϕω相图3. 受迫振动状态(1) 外加6V阻尼的受迫振动状态当外加6V阻尼,在某个驱动电压的作用下,调节驱动电压,直到振动刚好达到共振状态, 此时振动频率等于固有振动频率,振幅最大.在Origin的工作界面下,画出的ϕω关系曲线图,见图5。

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮在受迫振动时的振幅频率特性和相位频率特性。

2、研究不同阻尼力矩对受迫振动的影响,测定阻尼系数。

3、学习用频闪法测定动态物理量——相位差。

二、实验仪器波尔共振仪由振动仪与电器控制箱两部分组成。

振动仪部分由摆轮、摆盘、弹性钢丝、光电门、阻尼线圈等组成。

电器控制箱部分有电源开关、电机转速调节旋钮、闪光灯开关、振幅调节旋钮等。

三、实验原理1、受迫振动物体在周期性外力的持续作用下进行的振动称为受迫振动。

当外力的频率与物体的固有频率接近时,振幅会显著增大,这种现象称为共振。

2、运动方程设摆轮转动惯量为 J,扭转弹性系数为 k,阻尼系数为 b,强迫力矩为 M = M₀cosωt,则摆轮的运动方程为:Jd²θ/dt² +bdθ/dt +kθ = M₀cosωt其中,θ 为角位移,ω 为强迫力矩的角频率。

3、幅频特性和相频特性在小阻尼情况下,受迫振动的振幅和相位差与强迫力矩的频率之间存在特定的关系。

振幅 A 与强迫力矩频率ω 的关系为:A = M₀/√((k Jω²)² +(bω)²)相位差φ 与强迫力矩频率ω 的关系为:φ =arctan(bω/(k Jω²))四、实验内容及步骤1、调整仪器将波尔共振仪调整至水平状态,打开电源,调节电机转速,使摆轮做自由摆动,观察其振幅和周期是否稳定。

2、测量固有频率在阻尼较小的情况下,让摆轮自由摆动,测量其振幅逐渐衰减到初始振幅的一半所经历的时间 t,根据公式计算固有频率ω₀=2π/t。

3、测量幅频特性选择不同的阻尼档位,逐渐改变电机转速,即改变强迫力矩的频率ω,测量相应的振幅 A,绘制幅频特性曲线。

4、测量相频特性在测量幅频特性的同时,使用频闪法测量相位差φ,绘制相频特性曲线。

5、数据分析根据实验数据,分析阻尼系数对幅频特性和相频特性的影响,验证理论公式。

五、实验数据及处理以下是一组实验数据示例(实际数据应根据实验情况记录):|强迫力矩频率ω(Hz)|振幅 A(mm)|相位差φ(°)|阻尼档位||||||| 05 | 50 | 100 |小阻尼|| 06 | 65 | 150 |小阻尼|| 07 | 80 | 200 |小阻尼||||||根据实验数据,以强迫力矩频率ω 为横坐标,振幅 A 和相位差φ 分别为纵坐标,绘制幅频特性曲线和相频特性曲线。

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮的自由振动、阻尼振动和受迫振动现象。

2、研究不同阻尼力矩对受迫振动的影响,并测定阻尼系数。

3、研究受迫振动的幅频特性和相频特性,观察共振现象,测定受迫振动的共振频率和共振振幅。

二、实验仪器波尔共振仪,包括振动系统、电磁阻尼系统、电机驱动系统、光电计数系统和智能控制仪等部分。

三、实验原理1、自由振动无阻尼的自由振动方程为:$m\frac{d^2\theta}{dt^2}=k\theta$,其中$m$为摆轮的转动惯量,$k$为扭转弹性系数,$\theta$为角位移。

其解为:$\theta = A\cos(\omega_0 t +\varphi)$,其中$\omega_0 =\sqrt{\frac{k}{m}}$为固有角频率,$A$和$\varphi$为初始条件决定的常数。

2、阻尼振动考虑阻尼时,振动方程为:$m\frac{d^2\theta}{dt^2} +b\frac{d\theta}{dt} + k\theta = 0$,其中$b$为阻尼系数。

根据阻尼的大小,可分为三种情况:小阻尼:$\omega =\sqrt{\omega_0^2 \frac{b^2}{4m^2}}$,振动逐渐衰减。

临界阻尼:振动较快地回到平衡位置。

大阻尼:不产生振动。

3、受迫振动在周期性外力矩$M = M_0\cos\omega t$作用下,振动方程为:$m\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + k\theta =M_0\cos\omega t$。

稳定时,振动的角位移为:$\theta = A\cos(\omega t +\varphi)$,其中振幅$A =\frac{M_0}{\sqrt{(k m\omega^2)^2 +(b\omega)^2}}$,相位差$\varphi =\arctan\frac{b\omega}{k m\omega^2}$。

基础物理实验B4 波尔振动综合实验

基础物理实验B4 波尔振动综合实验

观察波尔振动的频谱1、7V阻尼,无动力振动频谱确定固有频率。

0Hz处为初始位移导致的分量,略去,因此取峰值频率0.619Hz。

2、对比自由振动,受迫振动,阻尼振动的频谱并分析异同。

自由振动频谱阻尼振动频谱受迫振动频谱自由振动和阻尼振动频谱的峰值(除直流分量外)都出现在固有频率0.619Hz处。

受迫振动的峰值出现在0.531Hz处,直到固有频率0.619Hz处都有较大的振幅(靠近固有频率一侧下降趋势较慢),猜测实际上为固有频率和驱动力频率双峰叠加后的效果。

从频谱的动态变化来看,主峰附近的频率振幅随时间减小(图中未显示出),这是因为受迫振动的阻尼分量随时间衰减的原因。

若达到频谱稳定状态,双峰现象将会消失。

3、测量不同驱动力矩频率下受迫振动的频谱,讨论其异同(记录时间均在53s左右)。

频率设置:0圈(峰值0.656Hz~0.669Hz)频率设置:0.5圈(峰值0.656Hz)频率设置:1圈(峰值0.644~0.656Hz)频率设置:1.5圈(峰值0.631~0.644Hz)频率设置:2圈(峰值0.631~0.644Hz)频率设置:2.5圈(峰值0.631Hz)频率设置:3圈(峰值0.619~0.631Hz)频率设置:3.5圈(峰值0.619~0.631Hz)频率设置:4圈(峰值0.619Hz)频率设置:4.5圈(峰值0.606~0.619Hz)频率设置:5圈(峰值0.606Hz)频率设置:5.5圈(峰值0.594~0.606Hz)频率设置:6圈(峰值0.594~0.606Hz)频率设置:6.5圈(峰值0.594Hz)频率设置:7圈(峰值0.581~0.594Hz)频率设置:7.5圈(峰值0.581Hz)频率设置:8圈(峰值0.581Hz)频率设置:8.5圈(峰值0.569~0.581Hz)频率设置:9圈(峰值0.569Hz)频率设置:9.5圈(峰值0.556Hz)频率设置:10圈(峰值0.544~0.556Hz)可以发现,频谱的最高峰随着频率设置圈数的增加而左移(频率降低),而且与各圈数对应的驱动力频率相吻合,符合受迫振动的频率由驱动力频率决定的定律。

利用波尔共振仪研究受迫振动实验报告

利用波尔共振仪研究受迫振动实验报告

(2)
1
当 m cos t 0 时,式(2)即为阻尼振动方程。 当 m cos t 0 且 0 ,则式(2)脱化为简谐运动方程,
d 2 2 0 0 2 dt
(3)
0 为系统的固有频率。
式(2)通解为
1e t cos( f t ) 2 cos(t )
4
4.观测过阻尼,欠阻尼,临界阻尼时振幅变化: 打开电机开关,固定电机频率,测量不同阻尼档下的振幅随时间变化规律。
五、 实验数据记录及处理 1、在空气阻尼下测量摆轮摆幅与周期关系 序号n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 振幅 / 147 145 143 142 140 138 136 134 133 131 129 127 125 123 122 120 119 117 114 111 110 108 107 105 104 102 101 99 98 96 95 94 93 91 周期T/s 1.602 1.601 1.601 1.600 1.599 1.599 1.598 1.597 1.597 1.596 1.595 1.595 1.594 1.594 1.593 1.592 1.592 1.591 1.591 1.589 1.589 1.588 1.587 1.587 1.586 1.586 1.585 1.584 1.583 1.584 1.583 1.583 1.582 1.581 序号n 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 振幅 / 73 72 71 70 69 68 68 67 66 65 64 63 62 61 60 60 59 58 58 57 56 56 55 54 54 53 53 52 51 50 50 49 48 48 周期T/s 1.574 1.574 1.574 1.573 1.574 1.572 1.572 1.572 1.572 1.571 1.571 1.571 1.571 1.571 1.570 1.570 1.570 1.570 1.569 1.569 1.569 1.569 1.568 1.568 1.568 1.568 1.568 1.568 1.567 1.567 1.568 1.566 1.566 1.567
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档