统计与概率复习题及答案(新)
概率与数理统计复习题及答案

★编号:重科院( )考字第( )号 第 1 页复习题一一、选择题1.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=( )。
A .1 B.12 C. -1 D. 322.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。
A .12 B. 23 C. 16 D. 133.设)(~),(~22221221n n χχχχ,2221,χχ独立,则~2221χχ+( )。
A .)(~22221n χχχ+ B. ~2221χχ+)1(2-n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212n n +χ4.若随机变量12Y X X =+,且12,X X 相互独立。
~(0,1)i X N (1,2i =),则( )。
A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N5.设)4,1(~N X ,则{0 1.6}P X <<=( )。
A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B =U 3.设()D X =5, ()D Y =8,,X Y 相互独立。
则()D X Y +=4.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.2P X >=三、计算题1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0()0,0x Be x f x x -⎧>=⎨≤⎩(1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。
2.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%,25%,这三个厂的次品率分别为0.02, 0.04,0.05。
高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。
高一数学复习专题练习5 概率与统计

高一数学复习专题练习专题5 概率与统计一、选择题1.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )A .40B .50C .120D .150【答案】 C【解析】 由于样本容量即样本的个数,故抽取的样本的个数为40×3=120. 2.从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是( ) A.3个都是篮球 B.至少有1个是排球 C.3个都是排球D.至少有1个是篮球【答案】 D【解析】 从6个篮球、2个排球中任选3个球,A ,B 是随机事件,C 是不可能事件,D 是必然事件,故选D.3.一个射手进行射击,记事件E 1:“脱靶”,E 2:“中靶”,E 3:“中靶环数大于4”,E 4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( ) A .1对 B .2对 C .3对D .4对【答案】 B【解析】 E 1与E 3,E 1与E 4均为互斥而不对立的事件.4.袋中装有白球和黑球各3个,从中任取2个,则至多有一个黑球的概率是( ) A.15 B.45 C.13 D.12【答案】 B【解析】 把白球编号为1,3,5,黑球编号为2,4,6.从中任取2个,基本事件为12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15个.其中至多一个黑球的事件有12个.由古典概型公式得P =1215=45.学-科网5.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成五组:第一组[50,60),第二组[60,70),第三组[70,80),第四组[80,90),第五组[90,100],其中第一、三、四、五小组的频率分别为0.30,0.15,0.10,0.05,而第二小组的频数是40,则参赛的人数以及成绩优秀的概率分别是( ) A.50,0.15 B.50,0.75 C.100,0.15D.100,0.75【答案】 C【解析】 由已知得第二小组的频率是1-0.30-0.15-0.10-0.05=0.40,频数为40,设共有参赛学生x 人,则x ×0.4=40,∴x =100. 成绩优秀的概率为0.15,故选C.6.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会地进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )A.12B.14C.316D.16【答案】 C7.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( ) A.65 B.65C. 2D.2 【答案】 D【解析】 ∵样本的平均数为1, 即15×(a +0+1+2+3)=1,∴a =-1. ∴样本方差s 2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.8.已知集合A ={-5,-3,-1,0,2,4},在平面直角坐标系中,点(x ,y )的坐标满足x ∈A ,y ∈A ,且x ≠y ,则点(x ,y )不在x 轴上的概率( ) A.13B.12C.56D.14【答案】 C【解析】 因为x ∈A ,y ∈A ,且x ≠y ,所以x 有6种可能,y 有5种可能,所以试验的所有结果有6×5=30(种),且每种结果的出现是等可能的.设事件A 为“点(x ,y )不在x 轴上”,那么y ≠0,有5种可能,x 有5种可能,事件A 包含基本事件个数为5×5=25种.因此所求事件的概率为P (A )=2530=56.9.为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是( )A.110B.715C.815D.1315【答案】 C【解析】 根据频率分布直方图,可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4.设生产产品件数在[10,15)内的2人分别是A ,B ,生产产品件数在[15,20)内的4人分别为C ,D ,E ,F ,则从生产低于20件产品的工人中随机地选取2位工人的结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.2位工人不在同一组的结果有(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),共8种.故选取的2位工人不在同一组的概率为815.二、填空题(本大题共4小题,每小题5分,共20分)10.某企业共有职工150人,其中高级职称15人,中级职称45人,低级职称90人,现采用分层抽样来抽取30人,则抽取的高级职称的人数为________.【答案】 3【解析】 由题意得抽样比为30150=15,所以抽取的高级职称的人数为15×15=3.11.一批产品共有100件,其中5件是次品,95件是合格品,从这批产品中任意抽5件,记A 为“恰有1件次品”,B 为“至少有2件次品”,C 为“至少有1件次品”,D 为“至多有1件次品”.现给出下列结论:①A +B =C ;②B +D 是必然事件;③A +C =B ;④A +D =C .其中正确的结论为________.(写出序号即可) 【答案】 ①②【解析】 由互斥、对立事件的概念得A +B =C ,故③错;A +D 表示“至多有1件次品”,所以④错. 12.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为________. 【答案】715三、解答题13.(12分)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品. (1)求恰好有一件次品的概率; (2)求都是正品的概率; (3)求抽到次品的概率.解 将6件产品编号,abcd (正品),ef (次品),从6件产品中选2件,其包含的基本事件为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种.(1)设恰好有一件次品为事件A ,事件A 包含的基本事件为ae ,af ,be ,bf ,ce ,cf ,de ,df ,共有8种, 则P (A )=815.(2)设都是正品为事件B ,事件B 包含的基本事件数为6,则P (B )=615=25.(3)设抽到次品为事件C ,事件C 与事件B 是对立事件,则P (C )=1-P (B )=1-25=35.14.已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率;解 a ,b 是一枚骰子掷两次所得到的点数,总的基本事件(a ,b )共有36个. 设事件A 表示“方程有两正根”,则∆≥0,a -2>0,16-b 2>0,即a -2 2+b 2≥16,a >2,-4<b <4,则事件A 包含的基本事件有(6,1),(6,2),(6,3),(5,3),共4个,故方程有两正根的概率为P (A )=436=19.15.(12分)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b . (1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a ,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.解 先后2次抛掷一枚骰子,将得到的点数分别记为a ,b 包含的基本事件:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个. (1)∵直线ax +by +5=0与圆x 2+y 2=1相切,∴5a 2+b2=1,整理得a 2+b 2=25. 由于a ,b ∈{1,2,3,4,5,6},∴满足条件的情况只有a =3,b =4或a =4,b =3两种情况. ∴直线ax +by +5=0与圆x 2+y 2=1相切的概率是236=118.(2)∵三角形的一条边长为5,三条线段围成等腰三角形,∴当a =1时,b =5,共1个基本事件; 当a =2时,b =5,共1个基本事件; 当a =3时,b =3,5,共2个基本事件; 当a =4时,b =4,5,共2个基本事件; 当a =5时,b =1,2,3,4,5,6,共6个基本事件; 当a =6时,b =5,6,共2个基本事件;∴满足条件的基本事件共有1+1+2+2+6+2=14(个). ∴三条线段能围成等腰三角形的概率为1436=718.学-科网16.(12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为五组,各组的人数如下:组别 A B C D E人数5010015015050(1)为了调查大众评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.组别 A B C D E人数5010015015050抽取人数 6(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.解 (1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:组别 A B C D E50[来人数50100150150源:Z*xx*]抽取人数3699 3(2)记从A组抽到的3个评委为a1,a2,a3,其中a1,a2支持1号歌手;从B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2,共4种,故所求概率P=418=29.。
初中数学专题复习统计与概率综合测试(含答案)

统计与概率综合测试(时间:100分钟 总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如图,是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在()区域的可能性最大 A .1 B .2 C .3 D .42.下列事件为确定事件的有( )①在一标准大气压下,20℃的纯水结冰;②平时的百分制测验,•小明的成绩为105分;③抛一枚硬币落地后正面朝上;④边长为a 、b 的长方形面积为ab . A .1个 B .2个 C .3个 D .4个3.关于全班50名同学的生日,下列说法正确的是( )A .一定有两名同学生日相同;B .每一个月都至少有四名同学过生日C .至少有四名同学的生日相同;D .每名同学的生日均不相同 4.华北某市近几年连年干旱,市政府采取各种措施扩大水源,措施之一是投资增建水厂,如图,是该市目前水资源结构扇形统计图,•请根据图中圆心角的大小计算黄河水在总供水中所占的百分比约为( )A .64%B .60%C .54%D .74%5.2000年某区有15 000名学生参加高考,为了考查他们的数学考试情况,评卷人抽取了800名学生的数学成绩进行统计,那么下列四个判断正确的是( )A .每名学生的数学成绩是个体;B .15 000名学生是总体;C .800名学生是总体的一个样本;D .上述调查是普查 6.下列说法不正确的是( )A .频数与总数的比值叫做频率;B .频率与频数成正比;C .在频数分布直方图中,小长方形的面积是该组的频率;D .用样本来估计总体时,样本越大对总体的估计就越精确。
7.如果一组数据x 1,x 2,x 3,x 4,x 5的平均数是x ,则另一组数据x 1,x 2+1,x 3+2,x 4+3,x 5+4的平均数为( ) A .x B .x +2 C .x +52D .x +1 8.一组数据9.9,10.3,10,10.1,9.7的方差为( ) A .0 B .0.04 C .0.2 D .0.4 9.甲、乙两名同学在几次测验中,平均分都是86分,甲的方差是0.61,•乙的方差是0.72,则可知( )A .甲的成绩好B .乙的成绩好;C .甲的成绩稳定D .乙的成绩稳定 10.当五个数从小到大排列后,其中位数是4,如果这组数据唯一的众数是6,那么这5个数可能的最大和是( )A .21B .22C .23D .24二、填空题(本大题共8小题,每小题3分,共24分) 11.在一副扑克牌中任取一张,则P (抽到梅花)=______.12.甲、乙、丙三种糖果售价分别为每千克6元、7元、8元,若将甲种8千克,•乙种10千克,丙种2千克混合在一起,则售价应定为________元.13.对某班60名同学的一次数学测验成绩进行统计,如果频率分布直方图80.5~90.5分这一组的频率是0.35,那么这个班的学生这次数学测验成绩在80.5~90.5•分之间的人数是_________.14.你想对一批炮弹的质量进行检查,应选用________方法来调查最合理.15.一个班25名男生中,身高1.79米的1人,4人身高1.75米,9人身高1.70米,8•人身高1.65米,2人身高1.60米,1人身高1.56米,则这个班男生身高的众数为______,中位数为________.16.在相同的条件下,对30辆同一型号的汽车进行耗油1升走的路程的试验,根据测得的数据画出频率分布直方图如图,则本次实验中,耗油1•升所行走的路程在13.05~13.35千米范围内的汽车共______辆.17.已知一组数据x 1,x 2,x 3,x 4,x 5的方差是1,那么另一组数据2x 1-1,2x 2-1,2x 3-1,2x 4-1,2x 5-1的方差为________. 18.•随机掷一枚均匀的骰子,•连续掷两次,•则两次骰子的总数和为6•的概率是________. 三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.你能从图中获取哪些信息?(1)小明家在哪方面的支出最多?占总支出的百分比是多少?(2)小明家在哪两个方面的支出相差不大,所占的百分比分别是多少?(3)若小明一家教育支出为2 800元,则生活费用是多少?20.设计一个均匀的正二十面体形状的骰子,将这个骰子掷出后,“5”朝上的概率为14,“3”朝上的概率是310,“1”朝上的概率为110,“2”朝上的概率是320,“4”朝上的可能性是320,“6”朝上的概率为120,问正二十面体形状的骰子上的数的分布情况.21(1)如果根据平分分来排名,则哪个班得分高一些?(2)如果地面、门窗、桌椅按3:3:4的比例算分,则哪个班得分高一些?22.将分别标有数字1,2,3的3张卡片洗匀后,背面朝上放在桌面上.(1)随机抽一张,求P(奇数).(2)随机抽取一张作为十位上的数字(不放回),再抽一张作为个位上的数字能组成哪些两位数?恰好是32的概率是多少?23.某农民2003年收获了44袋大米,先随意称了5袋大米的质量,每袋大米的质量(单位:千克)如下:35,35,34,39,37.(1)根据样本平均数估计这年该农民粮食的总产量约是多少?(2)若该农民2002年粮食的总产量为1 100千克,•近几年来该农民的粮食产量的增长率大致相同,请你预测一下2004年该农民可以收多少粮食?24.为了解中学生的体能情况,某校抽取了50名中学生进行了一分钟跳绳测试,•将所得数据整理后画出部分频率分布直方图,如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0.28,根据已知条件填空或画图.(1)第四小组频数为_________,第五小组频率为__________.(2)在这次测验中,跳绳次数的中位数落在第______小组中.(3)补全频率分布直方图.25.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据初赛情况分别选出了10•名同学参加决赛,•这些选手的决赛成绩(••满分100分)(1(2)请你从以下两个不同的角度对三个年级的决赛成绩进行分析:①以平均数和众数相结合分析哪个年级成绩好些.②以平均数和中位数相合分析哪个年级成绩好些.③如果在每个年级参加决赛的选手中选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.答案:一、选择题1.A 2.C 3.C 4.A 5.A 6.C 7.B 8.B 9.C 10.A 二、填空题11.135412.6.7 13.21 14.抽样调查15.1.70米,1.70米 16.12 17.4 18.5 36三、解答题19.解:(1)小明家在生活方面支出最多,占总支出的百分比是35%.(2)小明家在教育与储蓄方面支出相差不大,所占的百分比分别为28%和30%.(3)280028%×35%=3 500(元).20.解:20×14=5,20×310=6,20×110=6,20×320=3,20×320=3,20×120=1,分布情况为:5个5个点,6个3点,2个1点,3个2点,3个4点,1个6点.21.解:(1)三个班的平均分一样,都为90分.(2)一班:95×0.3+90×0.3+85×0.4=89.5.二班:95×0.3+80×0.3+95×0.4=90.5.三班:90×0.3+90×0.3+90×0.4=90.二班得分高一些.22.解:(1)P(奇数)=23.(2)可以组成12,13,21,23,31,32,P(32)=16.23.解:(1)35353439375++++×44=1 584(千克).(2)1 584×158411001100-+1 584≈2 281(千克).24.解:(1)14,0.16 (2)三.(3)略.25.解:(1)平均数85.5,众数80,78,中位数86.(2)①初二年级;②初一年级;③初三年级实力更强一些,因为初三年级前三名选手的平均分高.。
六年级下册数学试题-《统计与概率》易错题专项复习(含解析)人教版

【专题复习】2019-2020学年人教新版小升初《统计与概率》易错题专项复习(提高版)【学生版】一.选择题(共12小题)1.小冬爸爸5月份的工资总收入约是8000元,按照如图进行支配,那么用于教育费用约是()A.4000元B.1200元C.2000元D.900元2.明天()下雨.A.一定B.可能C.不可能3.口袋里有1个红球、1个黄球、1个白球.从口袋里任意摸出1个球,摸到球的颜色一共有()种不同的可能.A.1种B.2种C.3种4.抛一枚硬币,朝上的可能性()A.正面大B.反面大C.正反两面差不多5.把3个白球和5个红球放在盒子里,任意摸出一个,()是蓝色的.A.可能B.一定C.不可能6.某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是()A.72°,36°B.100°,50°C.120°,60°D.80°,40°7.如图,甲摸到白球得1分,乙摸到黑球得1分,在()箱中摸最公平.A.B.C.D.8.从写有1~6的6张卡片中任抽一张,抽到是2的可能性是()A.B.C.D.9.刘翔在2016年巴西里约热卢奥运会上()能拿冠军.A.不可能B.可能C.一定10.太阳()是东升西落.A.一定B.不一定C.不会11.笑笑和淘气玩“剪刀、石头、布”游戏,下面说法中正确的是()A.笑笑一定胜B.淘气一定胜C.淘气可能胜12.明天()会下雨.A.可能B.一定C.不可能二.填空题(共9小题)13.用0,3,5,8可以组成个没有重复数字的两位数,其中最大的两位数是,最小的两位数是.14.箱子里放着3个苹果,5个橘子,2个桃子,7个梨,小明随便拿出一个水果,有种可能,拿到的可能性最小,要想让这种水果的可能性最大,至少还要加个.15.鱼不可能会在天上飞..16.有三把锁和三把钥匙,现在用三把钥匙去打开三把锁,最多要试次.17.在一块并排10垄的田地中,选择2垄种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄种植方法有种.18.有一楼梯共12级,如规定每次只能跨上一级或两级,要登上第12级,共有不同的走法.19.一桶水,需2人一起抬.3人把一桶水从离家600米远的地方抬回家,平均每人要抬米.20.用0、1、2、3四个数字,可以组成个不同的三位数.21.下面是数学学习小组6名同学的测验成绩:李刚95分,王聪92分,王冬88分,范华93分,张兰94分,周兵96分.(1)这六位同学的平均分数多少?(2)如果把他们的平均成绩记住0,那么这6名同学的成绩分别记作多少?三.判断题(共5小题)22.在制作扇形统计图时,总的数量越多,所画的圆就越大..(判断对错)23.冬天一定会下雪..(判断对错)24.小明所在班级同学的平均身高比小强所在班级的平均身高高些,所以小明比小强要高些..(判断对错)25.三(1)班同学的平均体重是35千克,三(1)班不可能有体重低于32千克的同学..(判断对错)26.在一次彩票有奖销售活动中,中奖的可能性是.李叔叔买了100张彩票,一定能有20张中奖.(判断对错)四.应用题(共5小题)27.下图是小华骑自行车到6千米远的森林公园去游玩的情况.(1)小华从出发到返回,一共经过了多长时间?(2)返回前,小华在路上用的时间比在公园里玩的时间多多少分钟?(3)返回时,小华骑自行车每分钟行走多少米?28.某次考试,的学生取得优秀成绩,这些学生的平均分比优秀的分数线高4分,而没达到优秀的学生的平均分比优秀的分数线低11分,所有学生的平均分是87分.那么,优秀的分数线是多少分?29.某电视节目评选优秀选手,专家组与观众代表的评分如下表.(1)专家组的平均分是多少?(2)观众代表的平均分是多少?(3)总平均分是多少?30.2017年某店“双十一”销售额比2016年“双十一”销售额增加了多少亿元?31.某小学参加兴趣小组情况如图:已知参加体育的有136人,参加“其它”兴趣小组的共有多少人?五.解答题(共15小题)32.工人叔叔要修一条长85米的公路,已经修了5天,还剩13.5米,平均每天修了多少米?33.昨天和今天共售出996张票,每天放映3场,平均每场售出多少张票?34.袋子里放了6个球:〇〇〇〇〇●任意摸一个再放回.小胖连续摸了5次,都是白球,他第六次摸到的球是黑球.(填“一定”、“不可能”或“可能”)35.小英4次语文测验的平均成绩是89分,第5次测验得了94分.问她5次测验的平均成绩是多少?36.有一种奖券的中奖率是1%,所以买100张奖券就一定能中奖..37.一个小组在一班工作时间内,前3小时每小时生产零件170个,后5小时每小时生产零件186个,平均每小时生产零件多少个?38.李大爷带900元买了22袋同一种化肥,还剩20元.平均每袋化肥多少元?39.按要求涂一涂.(1)图1摸出的一定是黑球;(2)图2摸出的不可能是黑球;(3)图3摸出黑球的可能性最大40.星期天,小华乘公交车从家到图书馆看书,后来打的回家,如图表示的是这段时间里小华离家距离的变化情况.请你仔细观察,回答问题.(1)小华在图书馆呆了分钟.(2)回来打的时平均速度是每小时千米.(3)乘公交车所用的时间比回来多用%.41.求下面图形的面积或体积.(1)求如图1中的阴影面积(单位:m)(2)求玩具陀螺的体积.(单位:cm)42.下面是5位同学的体重:小李38千克,小王42千克,小张36千克,小林43千克,小许41千克.先计算他们的平均体重,再用正数和负数来表示他们的体重与平均体重相差的部分.单位:千克43.刘小强4次数学测验的平均成绩是90分,第5次数学测验得95分,小强这5次测验的平均成绩是多少?44.聪聪家2015年11月支出情况统计如图.聪聪家2015年11月的总支出是3600元.请你回答问题:(1)这个月哪项支出最多?支出了多少元?(2)购买衣物的支出比文化教育支出少百分之几?少支出了多少元?45.实验小学去年四个季度用水情况统计如下表:这个小学去年平均每个月用水多少吨?46.如图是某班数学期末考试的统计图,可惜已经破损了.已知:这个班数学期末考试的及格率为95%.成绩优秀的人数占全班的35%.成绩“良好”的人数比“优秀”的人数多.请你算一算:(1)该班一共有人参加了这次考试;(2)其中成绩达到优秀的一共有人;(3)成绩良好的有人.【教师版】一.选择题(共12小题)1.小冬爸爸5月份的工资总收入约是8000元,按照如图进行支配,那么用于教育费用约是()A.4000元B.1200元C.2000元D.900元【解答】解:如图,教育可以用占15%8000×15%=1200(元).故选:B.2.明天()下雨.A.一定B.可能C.不可能【解答】解:因为明天下不下雨,属于可能性中的不确定事件,在一定条件下可能发生,也可能不发生的事件;故选:B.3.口袋里有1个红球、1个黄球、1个白球.从口袋里任意摸出1个球,摸到球的颜色一共有()种不同的可能.A.1种B.2种C.3种【解答】解:口袋里有1个红球、1个黄球、1个白球.从口袋里任意摸出1个球,摸到球的颜色一共有红、黄、白3种不同的可能.故选:C.4.抛一枚硬币,朝上的可能性()A.正面大B.反面大C.正反两面差不多【解答】解:1÷2=,正面朝上和反面朝上的可能性都是,即可能性相等;故选:C.5.把3个白球和5个红球放在盒子里,任意摸出一个,()是蓝色的.A.可能B.一定C.不可能【解答】解:把3个白球和5个红球放在盒子里,任意摸出一个,不可能是蓝色的;故选:C.6.某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是()A.72°,36°B.100°,50°C.120°,60°D.80°,40°【解答】解:(1)表示三好学生的圆心角:360°×(10÷50)=360°×20%=72°;(2)表示优秀学生干部人数的圆心角:360°×(5÷50)=360°×10%=36°;答:在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是72°和36°.故选:A.7.如图,甲摸到白球得1分,乙摸到黑球得1分,在()箱中摸最公平.A.B.C.D.【解答】解:从图中看出:B箱中黑球个数和白球个数相等,即可能性一样大;最公平;故选:B.8.从写有1~6的6张卡片中任抽一张,抽到是2的可能性是()A.B.C.D.【解答】解:抽到一张牌,即占;故选:D.9.刘翔在2016年巴西里约热卢奥运会上()能拿冠军.A.不可能B.可能C.一定【解答】解:刘翔在2016年伦敦奥运会上可能能拿冠军,属于可能性中的不确定事件,在一定条件下可能发生,也可能不发生的事件;故选:B.10.太阳()是东升西落.A.一定B.不一定C.不会【解答】解:由分析可知:太阳东升西落,是客观规律,属于确定事件中的必然事件;故选:A.11.笑笑和淘气玩“剪刀、石头、布”游戏,下面说法中正确的是()A.笑笑一定胜B.淘气一定胜C.淘气可能胜【解答】解:笑笑和淘气玩“剪刀、石头、布”的游戏是公平的,他们赢的可能性为:1÷3=;因此都有赢的机会,但不能确定,所以选项A、B错误,他们只有赢的可能性;故选:C.12.明天()会下雨.A.可能B.一定C.不可能【解答】解:明天可能会下雨,属于不确定事件中的可能事件;故选:A.二.填空题(共9小题)13.用0,3,5,8可以组成9 个没有重复数字的两位数,其中最大的两位数是85 ,最小的两位数是30 .【解答】解:0、3、5、8四个数字可以组成的两位数有:30,35,38;50,53,58;80,83,85,共有9个不同的两位数;其中最大的是85,最小的两位数是30,故答案为:9,85,3014.箱子里放着3个苹果,5个橘子,2个桃子,7个梨,小明随便拿出一个水果,有 4 种可能,拿到桃子的可能性最小,要想让这种水果的可能性最大,至少还要加 6 个.【解答】解:(1)因为箱子里放着3个苹果,5个橘子,2个桃子,7个梨,小明随便拿出一个水果可能摸到苹果,也可能摸到橘子,还可能摸到桃子或者是梨,因此有4种可能;(2)因为有3个苹果,5个橘子,2个桃子,7个梨,7>5>3>2,所以从箱子里任意摸出一个水果,摸到桃子的可能性最小;要想让这种水果的可能性最大,至少还要加7+1﹣2=6个,故答案为:4,桃子,6.15.鱼不可能会在天上飞.正确.【解答】解:由分析可知:鱼不可能会在天上飞,属于确定事件中的不可能事件;故答案为:正确.16.有三把锁和三把钥匙,现在用三把钥匙去打开三把锁,最多要试 6 次.【解答】解:3+2+1=6(次).答:最多要试6次.故答案为:6.17.在一块并排10垄的田地中,选择2垄种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄种植方法有12 种.【解答】解:(3+2+1)×2=6×2=12(种);答:则不同的选垄种植方法有12种.故答案为:12.18.有一楼梯共12级,如规定每次只能跨上一级或两级,要登上第12级,共有233 不同的走法.【解答】解:1级:1种;2级:2种;(走1级或走2级)3级:3种;(全走1级,走1+2或2+1)4级:5种;(全走1级,2+1+1,1+2+1,1+1+2,2+2)5级:8种;(全走1级,2+1+1+1,1+2+1+1,1+1+2+1,1+1+1+2,2+2+1,2+1+2,1+2+2)…【兔子数列】1、2、3、5、8、13、21、34、55、89、144、233.答:共有233种不同的走法.19.一桶水,需2人一起抬.3人把一桶水从离家600米远的地方抬回家,平均每人要抬400 米.【解答】解:600×2÷3=1200÷3=400(米)答:平均每人要抬400米.故答案为:400.20.用0、1、2、3四个数字,可以组成18 个不同的三位数.【解答】解:组成的三位数有:120、102、210、201、310、130、301、103、230、203、320、302、123、132、213、231、321、312;一共有18个.故答案为:18.21.下面是数学学习小组6名同学的测验成绩:李刚95分,王聪92分,王冬88分,范华93分,张兰94分,周兵96分.(1)这六位同学的平均分数多少?(2)如果把他们的平均成绩记住0,那么这6名同学的成绩分别记作多少?【解答】解:(1)六位同学的平均数为:(95+92+88+93+94+96)÷6=558÷6=93(分).答:这六位同学的平均分数93分.(2)若平均成绩记作0,则李刚的分数为:95﹣93=2(分),王聪的分数为:92﹣93=﹣1(分),王冬的分数为:88﹣93=﹣5(分),范华的分数为:93﹣93=0(分),张兰的分数为:94﹣93=1(分),周兵的分数为:96﹣93=3(分).答:李刚的分数为2分,王聪的分数为﹣1分,王冬的分数为﹣5分,范华的分数为0分,张兰的分数为1分,周兵的分数为3分.三.判断题(共5小题)22.在制作扇形统计图时,总的数量越多,所画的圆就越大.×.(判断对错)【解答】解:根据扇形统计图的特点可知:在制作扇形统计图时,总的数量不论多少,都用所画的圆表示单位“1”,所以原题说法错误;故答案为:×.23.冬天一定会下雪.错误.(判断对错)【解答】解:冬天一定会下雪,说法错误;故答案为:错误.24.小明所在班级同学的平均身高比小强所在班级的平均身高高些,所以小明比小强要高些.错误.(判断对错)【解答】解:因为平均数反映的是一组数据的特征,不是其中每一个数据的特征,平均数反映的是一组数据的特征,不是其中每一个数据的特征.所以小明所在班级同学的平均身高比小强所在班级的平均身高高些,并不是说小明比小强要高些,所以判断错误.故答案为:错误.25.三(1)班同学的平均体重是35千克,三(1)班不可能有体重低于32千克的同学.错误.(判断对错)【解答】解:因为,我们班同学的平均体重是35千克,并不是每个同学的体重都是35千克,有的同学的体重比35千克高的多,也有的同学的体重比35千克低的多,也可能有低于32千克的同学;所以,三(1)班同学的平均体重是35千克,三(1)班不可能有体重低于32千克的同学说法错误的;故答案为:错误.26.在一次彩票有奖销售活动中,中奖的可能性是.李叔叔买了100张彩票,一定能有20张中奖×.(判断对错)【解答】解:100×=20(张),可能有20张中奖;说一定中奖是错误的;故答案为:×.四.应用题(共5小题)27.下图是小华骑自行车到6千米远的森林公园去游玩的情况.(1)小华从出发到返回,一共经过了多长时间?(2)返回前,小华在路上用的时间比在公园里玩的时间多多少分钟?(3)返回时,小华骑自行车每分钟行走多少米?【解答】解:(1)3=3=(小时)答:一共经过了2小时.(2)1﹣=1﹣=(小时)答:返回前,小华在路上用的时间比在公园里玩的时间多20分钟.(3)小时=小时=40分钟,6千米=6000米6000÷40=150(米)答:返回时,小华骑自行车每分钟行走150米.28.某次考试,的学生取得优秀成绩,这些学生的平均分比优秀的分数线高4分,而没达到优秀的学生的平均分比优秀的分数线低11分,所有学生的平均分是87分.那么,优秀的分数线是多少分?【解答】解:等号两边除以x得y=87+5y=92答:优秀的分数线是92分.29.某电视节目评选优秀选手,专家组与观众代表的评分如下表.(1)专家组的平均分是多少?(2)观众代表的平均分是多少?(3)总平均分是多少?【解答】解:(1)(8+8.5+8+9.5+10+9+8.5+8.5)÷8 =70÷8=8.75(分)答:这8个专家打的平均分是8.75分.(2)(8.5+8.5+9.5+8.5+8.5+9.5+9.5+9.5)÷8=72÷8=9(分)答:这8个观众代表打的平均分是9分.(3)(8.75+9)÷2=17.75÷2=8.875(分)答:总平均分是8.875分.30.2017年某店“双十一”销售额比2016年“双十一”销售额增加了多少亿元?【解答】解:350×=220(亿元)答:2017年某店“双十一”销售额比2016年“双十一”销售额增加了220亿元.31.某小学参加兴趣小组情况如图:已知参加体育的有136人,参加“其它”兴趣小组的共有多少人?【解答】解:136÷34%=400(人)400×(1﹣34%﹣18%﹣26%)=400×22%=88(人)答:参加“其它”兴趣小组的共有88人.五.解答题(共15小题)32.工人叔叔要修一条长85米的公路,已经修了5天,还剩13.5米,平均每天修了多少米?【解答】解:(85﹣13.5)÷5=71.5÷5=14.3(米).答:平均每天修了14.3米.33.昨天和今天共售出996张票,每天放映3场,平均每场售出多少张票?【解答】解:996÷2÷3,=996÷6,=166(张),答:平均每场售出166张票.34.袋子里放了6个球:〇〇〇〇〇●任意摸一个再放回.小胖连续摸了5次,都是白球,他第六次摸到的球可能是黑球.(填“一定”、“不可能”或“可能”)【解答】解:因为袋子里放了6个球,有黑球,也有白球,小胖第六次摸到的球可能黑球,属于不确定事件中的可能性事件;故答案为:可能.35.小英4次语文测验的平均成绩是89分,第5次测验得了94分.问她5次测验的平均成绩是多少?【解答】解:解法一:(89×4+94)÷5=90(分);解法二:89+(94﹣89)÷5,=89+5÷5,=90(分);答:5次测验的平均成绩是90分.36.有一种奖券的中奖率是1%,所以买100张奖券就一定能中奖.×.【解答】解:一种有奖征卷的中奖率是1%,买100张这样的奖券,有可能中奖一次,但属于不确定事件中的可能性事件;所以本题中说买100张,一定会中奖,说法错误.故答案为:×.37.一个小组在一班工作时间内,前3小时每小时生产零件170个,后5小时每小时生产零件186个,平均每小时生产零件多少个?【解答】解:(170×3+186×5)÷(3+5),=(510+930)÷8,=1440÷8,=180(个);答:平均每小时生产零件180个.38.李大爷带900元买了22袋同一种化肥,还剩20元.平均每袋化肥多少元?【解答】解:(900﹣20)÷22=880÷22=40(元)答:平均每袋化肥40元.39.按要求涂一涂.(1)图1摸出的一定是黑球;(2)图2摸出的不可能是黑球;(3)图3摸出黑球的可能性最大【解答】解:40.星期天,小华乘公交车从家到图书馆看书,后来打的回家,如图表示的是这段时间里小华离家距离的变化情况.请你仔细观察,回答问题.(1)小华在图书馆呆了70 分钟.(2)回来打的时平均速度是每小时12 千米.(3)乘公交车所用的时间比回来多用50 %.【解答】解:(1)小华在图书馆呆了:100﹣30=70(分钟);(2)返回时用的时间:120﹣100=20(分钟)=(小时),返回时的车速:4÷=12(千米);(3)(30﹣20)÷20=10÷20=50%答:乘公交车所用的时间比回来多用50%.故答案为:70,12,50.41.求下面图形的面积或体积.(1)求如图1中的阴影面积(单位:m)(2)求玩具陀螺的体积.(单位:cm)【解答】解:(1)6×(6÷2)﹣3.14×(6÷2)2÷2 =18﹣14.13=3.87(m2)答:阴影面积是3.87m2.(2)3.14×(3÷2)2×4+3.14×(3÷2)2×3×=3.14×1.52×4+3.14×1.52×(3×)=3.14×2.25×4+3.14×2.25×1=7.056×4+7.056=7.056×5=35.325(cm3)答:玩具陀螺的体积是35.325cm3.42.下面是5位同学的体重:小李38千克,小王42千克,小张36千克,小林43千克,小许41千克.先计算他们的平均体重,再用正数和负数来表示他们的体重与平均体重相差的部分.单位:千克【解答】解:(1)(38+42+36+43+41)÷5=200÷5=40(千克)答:他们的平均体重是340千克.(2)将平均体重记为0千克,超过记为正数,不足记为负数,这六个人的体重可以记作:38﹣40=﹣242﹣40=+236﹣40=﹣443﹣40=+341﹣40=+143.刘小强4次数学测验的平均成绩是90分,第5次数学测验得95分,小强这5次测验的平均成绩是多少?【解答】解:(90×4+95)÷5=455÷5=91(分)答:小强这5次测验的平均成绩是91分.44.聪聪家2015年11月支出情况统计如图.聪聪家2015年11月的总支出是3600元.请你回答问题:(1)这个月哪项支出最多?支出了多少元?(2)购买衣物的支出比文化教育支出少百分之几?少支出了多少元?【解答】解:(1)3600×35%=1260(元)答:这个月伙食支出最多,支出了1260元(2)(25%﹣20%)÷25%=0.05÷0.25=0.2=20%答:购买衣物的支出比文化教育支出少20%.3600×25%=3600×0.25=900(元)3600×20%=3600×0.2=720(元)900﹣720=180(元)答:少支出了180元.45.实验小学去年四个季度用水情况统计如下表:这个小学去年平均每个月用水多少吨?【解答】解:(167+215+362+156)÷12=900÷12=75(吨);答:这个小学去年平均每个月用水75吨.46.如图是某班数学期末考试的统计图,可惜已经破损了.已知:这个班数学期末考试的及格率为95%.成绩优秀的人数占全班的35%.成绩“良好”的人数比“优秀”的人数多.请你算一算:(1)该班一共有40 人参加了这次考试;(2)其中成绩达到优秀的一共有14 人;(3)成绩良好的有18 人.【解答】解:(1)2÷(1﹣95%)=2÷0.05=40(人);答:该班一共有40人参加了这次考试.(2)40×35%=14(人);答:其中成绩达到优秀的一共有14人.(3)14×(1+)=14×=18(人);答:成绩良好的有18人;故答案为:40,14,18.。
概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。
本文将提供一套概率统计的试题及答案,以供学习和复习之用。
一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。
答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。
答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。
答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。
答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。
答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。
《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
概率论与数理统计试题库及答案(考试必做)

概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。
则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝贝欢欢.统计与概率一、选择题(将唯一正确的答案填在题后括号内):1.设有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,从中任取1个乒乓球,抽到非一等品的概率是( ) A .B .C .D .2.某厂家准备投资一批资金生产10万双成人皮鞋,现对顾客所需鞋的大小号码抽样调查如下:100名顾客中有15人穿36码,20人穿37码,25人穿38码,20人穿39码,…,如果你是厂商你准备在这10万双鞋中生产39码的鞋约( )双 A .2万B .2.5万C .1.5万D .5万3•③甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数(跳绳次数≥150次为优秀).其中正确的是( ) A .①B .②C .③D .②③4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( ) A .0B .411C .412D .16.数学老师为了估计全班每位同学数学成绩的稳定性,要求每位同学对自己最近4次的数学测试成绩进行统计分析,那么小明需要求出自己这4次成绩的( ) A.平均数B.众数C.频率D.方差7.沃尔玛商场为了了解本商场的服务质量,随机调查了 本商场的100名顾客,调查的结果如图所示,根据图 中给出的信息,这100名顾客中对该商场的服务质量 表示不满意的有A .6人B .11人C .39人D .44人8.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是 ( )A BCD 。
9.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方 差为1.21,乙的成绩的方差为3.98,由此可知A 甲比乙的成绩稳定B 乙比甲的成绩稳定C 甲、乙两人的成绩一样稳定D 无法确定谁的成绩更稳定 10.有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%,他们的理解正确的是 A.巴西国家队一定夺冠 B.巴西国家队一定不会夺冠 C.巴西国家队夺冠的可能性比较大D.巴西国家队夺冠的可能性比较小11.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A .B .C .D .12.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样), 那么这粒豆子停在黑色方格中的概率是( ).A .B .C .D .二、填空题13.在全年级的375名学生中,有两名学生生日相同的概率是_________.14.从甲、乙两班抽取人数相等的学生参加了同一次数学竞赛,其竞赛成绩的平均分、方差分别为:甲=乙=80,s 甲2=240;s 乙2=180,则成绩较稳定的是________.15.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人.16.用5分评价学生的作业(没有人得0分),然后在班上抽查16名学生的作业质量来估计全班的作业质量,从中抽查的数据中已知其众数是4分,那么得4分的至少有_______人.17.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查结果如下(单位:年): 甲:3,4,6,8,8,8,10,5 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12三个厂家在广告中都标明产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、•众数、中位数哪一种集中趋势的特征数,•甲:•______.•乙:_______.丙:________.18.要把北京奥运的5个吉祥物“福娃”放在展桌上,有2个位置如右图已定,其他3个“福娃”在各种不同位置放置的情况下,“迎迎”和“贝贝”的位置不相邻这一事件发生的概率为__________.42512515455110331219161312191613121x x A44% B 39%C 11%D A :很满B :满意C :说不清D :不满第7题图 (第12题)19.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是.20.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到上面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.三、解答题21.在一个不透明的口袋中装有红球2个、黑球2个,它们只有颜色不同,若从口袋中一次摸出两个球,求摸到两个都是红球的概率.(要求画出树状图)22.水稻种植是梅州的传统农业.为了比较甲、乙两种水稻的长势,农技人员从两块试验田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势.23.“五·一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图,根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?24.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占,知识面占,普通话占计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:项目选手形象知识面普通话李文70 80 88孔明80 75(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩应超过多少分?25. 如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.第25题图10%40%50%xx19题图5101520黄瓜根数/株株数A B C图地点车票(张)504030201020题图26.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至31日,评委会把同学们上交作品的件数按5天一组分组统计,绘制成频率分布直方图,如图所示,已知从左至右各长方形高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题: (1)本次活动共有多少作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件 作品获奖,问这两组哪组获奖率较高?统计与概率(8)参考答案一、1.C 2.A 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.C 11.A 12.C二、13.1 14.乙 15.5 16.4 17.众数 平均数 中位数18. 3119.小张 20.60 13三、21.画出树状图(略)摸到两个都是红球的概率P = 22.植株编号 1 2 3 4 5 甲种苗高 7 5 4 5 8 乙种苗高6456 5∵5.8x 甲=, 5.2x 乙=,∴ 甲种水稻比乙种水稻长得更高一些. ∵2 2.16s 甲=,20.56s 乙=,∴ 乙种水稻比甲种水稻长得更整齐一些.23.解:(1)30;20. (2) (3)可能出现的所有结果列表(略)画树状图(略)共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3),∴小张获得车票的概率为83166=;则小李获得车票的概率为 . ∴这个规则对小张、小李双方不公平. 24.(1)83 (2)9025. 25.(1)50(人) (2)108° (3)7600元26.解:(1)第三小组频率为=0.2,参加评比的作品的数量为=60件.4234641+++++120.221126=1263168P ==35188-=(2)第四小组参加的数量最多为=18件.(3)第六小组参加的数量为×60=3件.因<.故第六组获奖率高62060 120101823。