高等数学试卷2及答案
2011级高数II期中考试试卷及答案

B.
∫ dy ∫
1
2
4
y
y2
f ( x, y )dx
C.∫1 dy ∫y f ( x, y)dx
y2
D. ∫1
dy ∫ 2 f ( x, y )dx
y
y
2 2 5.设L为 x=y2从y = -1到y = 1的一段弧,则 ∫L y dx − x dy =
(
A
)
2 − A. 5
1 B.− 5
1 C. 5
∫∫ xydσ = ∫ dy∫ 2 xydx
D −1 y
2
y+ 2
x2 = ∫ y dy −1 2 y2
2
Y+2
y=x-2
=
∫ [y( y + 2)
2 −1
2
− y 5 dy
]
=
45 8
2 2 4. 计算三重积分 ∫∫∫zdxdydz ,其中 Ω 是由曲面 z = x + y 与平面
∂u y = ∂y ( x + y) 2
∂ 2 u a ( x + y) 2 − 2( x + ay)x + y) ( = ∂x∂y ( x + y) 4
∂ 2 u − 2 y( x + y) = ∂y∂x ( x + y) 4
∂2u ∂2u = ∂x∂y ∂y∂x
a ( x + y) 2 − 2( x + ay)x + y) −2 y( x + y) ( =
4.若L是椭圆
x = a cos θ ,取逆时针方向,则 y = b sin θ
∫
L
y d x − x d y = − 2πab
(2)高等数学B2试卷参考答案

华南农业大学期末考试试卷(A 卷)2009学年第2学期 考试科目: 高等数学B Ⅱ 考试类型:(闭卷)考试 考试时间:120分钟学号 姓名 年级专业一、 填空题(本大题共5小题,每小题3分,共15分)1. 试定义函数在点的值的 ,使得函数在该点连续。
2.函数在点处可微分的必要条件是函数在该点处连续或可偏导;充分条件是函数的偏导数在该点处连续。
3.设函数在闭区域上连续,且,则。
4. 判断敛散性:已知且,则是收敛的。
5. 已知某二阶常系数非齐次线性微分方程的通解为,则该微分方程为。
二、选择题(本大题共5小题,每小题3分,共15分) 1. 直线与平面的交点是(B )。
(A )(9,2,-3)。
(B )(2,9,11)。
(C )(2,11,13)。
(D )(11,9,2)。
2. 若级数在处收敛,则此级数在处(A )。
(A )绝对收敛。
(B )条件收敛。
(C )发散。
(D )收敛性不能确定。
3.二元函数 在点处 (C )(A )连续,偏导数存在。
(B )连续,偏导数不存在。
(C )不连续,偏导数存在。
(D )不连续,偏导数不存在。
4. 设是连续的奇函数,是连续的偶函数, ,则以下结论正确的是( A )。
(A ) 。
(B ) 。
(C ) 。
(A ) 。
5. 微分方程的一个特解应具有形式(A,B,C 是待定常数)( B )。
(A )。
(B )。
(C )。
(D )。
三、计算题(本大题共5小题,每小题6分,共30分) (1)设,其中和具有连续导数,求。
【解】(2)求由方程所确定的函数的全微分。
【解】方程两边求微分得 整理得(3)交换积分次序。
【解】(4)求差分方程在给定初始条件下的特解。
【解】特征方程为,所以对应的齐次方程的通解为。
又不是特征根,故可令特解为,代入原方程,得比较系数可得,,故非齐次方程的一个特解为,于是非齐次方程的通解为,由所给初始条件,可得,所以方程满足给定初始条件下的特解为。
大学高等数学高数期中考试试卷与答案 (2)

安徽大学2008--209高等数学A(二)试卷一、填空题(2×5=10分)1. 过点(1,2,3) 且与直线11233-==-z y x2. 设11),(-+=xy xy y x f ,则=→),(lim )0,0(),(y x f y x 2.3. 累次积分⎰⎰x xdy y x f dx 222),(4. 已知曲线222:a y x L =+(常数0>a ), 则⎰L5. 已知)(x f 是周期为π2的周期函数, 在],(ππ-上)(x f 的解析式为πππ≤<≤<-⎩⎨⎧-=x x x x f 00,,)(,则)(x f 的傅立叶级数在0=x 二、选择题(2×5=10分)6. 设)(1x y 、)(2x y 、)(3x y 是非齐次线性方程)(x f qy y p y =+'+''的三个线性无关的解,21,C C 是任意常数, 则该非齐次线性方程的通解可表示为( D ).A. 32211C y C y C ++B. 3212211)(y C C y C y C +-+C. 3212211)1(y C C y C y C ---+D. 3212211)1(y C C y C y C --++7. 已知二元函数00,1,),(22≠=⎩⎨⎧+=xy xy y x y x f , 则),(y x f 在(0,0)处 ( C ).A. 连续, 一阶偏导数不存在B. 不连续, 一阶偏导数不存在C. 不连续, 一阶偏导数存在D. 连续, 一阶偏导数存在8. 曲线t z t y t x L 4,8,:2===在点 (16,4,8) 处的法平面方程是( B ) .A. 10828=--z y xB. 268216=+-z y xC. 14028=--z y xD. 244216=+-z y x 9. 常数0>a , 则第一型曲面积分⎰⎰=++22222a z y x dS x的值为 ( A ).A.434a π B. 234a π C. 44a π D. 24a π 10. 下列级数中, 绝对收敛的是 ( D ).A.∑∞=-1)1(n nn B. ∑∞=-1)1(n nn C.∑∞=++-11)1(n nn n D. ∑∞=-12)1(n nn 三、计算题(8×8=64分) 11. 已知直线41033:1--==-z y x L , 平面522:=++∑z y x , 求直线1L 与平面∑的夹角. 解:设直线1L 的方向向量为l :则(30-4l =,,)平面∑的法向量 (122n =,,)1cos(,)3l nl n l n⋅==-⋅ 故直线arccos πθ=-或arcsin 3θ=) 12.设y x z arctan= , 求.,,yzx z dz ∂∂∂∂13. 求微分方程xe y y y 223-=+'-''的通解.解:齐次方程320y y y '''-+=对应的特征方程为:2320λλ-+=则 1,21,2λ=. 因此齐次方程对应的通解为:21212(),,x x y x C e C e C C =+其中为任意常数.14.计算二重积分中⎰⎰-Dy dxdy e22, 其中D 是由直线x=0、y=1及y=x 所围成的区域.15. 计算三重积分⎰⎰⎰≤++++2222)(22R z y x dxdydz xz y x , 其中常数R>0.解:⎰⎰⎰≤++++2222)(22R z y x dxdydz xz y x=2222222222()x y z R x y z R x y dxdydz xzdxdydz ++≤++≤++⎰⎰⎰⎰⎰⎰(对称性)提示:本题可以化为:2222222222()x y z R x y z R x y dxdydz xzdxdydz ++≤++≤++⎰⎰⎰⎰⎰⎰(对称性)16. 计算第二型曲线积分⎰-+-=Cx x dy y edx y y e I )2cos ()2sin (, 其中C 为上半圆周ax y x =+22, 方向为从A(a,0) 到O(0,0), 常数a>0.17.设抛物面)0(1:22≥--=∑z y x z 方向取其上侧,计算⎰⎰∑++dxdy dzdx y dydz x 22233 . 解:补充平面220:0(1)z x y ∑=+≤取下侧,则0∑与∑围成空间区域Ω,于是18. 将x f 1)(=展开为(x+2) 的幂级数, 并求该幂级数的收敛域.四、应用题(8分)19. 在椭圆4422=+y x 上求一点, 使该点到直线2x+3y-12=0的距离最短.解:设(,)x y 为椭圆2244x y +=上任一点,则该点到直线23120x y +-=的距离为:五、证明题(8分)20. 设数列{}n a 单调减小, 且),2,1(0⋅⋅⋅=≥n a n , 又级数∑∞=-1)1(n n na 发散.证明: 级数nn na ∑∞=⎪⎪⎭⎫⎝⎛+011收敛. 证明:因为{}n a 单调减小,且0n a ≥,即单调减小有下界,故{}n a 收敛。
2022年河南省专升本高数模拟卷2及答案

2022年河南省专升本模拟试卷(二)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。
2.所有答案必须按照答题号在答题卡上对应的答题卡区域内作答,超出各题答题区域的答案无效。
在草稿纸、试题上作答无效。
考试结束后,将试题和答题卡一并交回。
3.本试卷分为第I 卷和第II 卷,共10页,满分为150分,考试时间为120分钟。
第I 卷一、选择题(本大题共25小题,每小题2分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设()f x 是定义在(,)-∞+∞内的函数,且()f x C ≠,则下列必是奇函数的()A .3()f xB .[]3()f x C .()()f x f x ⋅-D .()()f x f x --2.已知当0→x 时,4cos 2x x 与1-a ax 是等价无穷小,则=a ()A .1B .2C .3D .43.=+--→)2()1()1(sin lim21x x x x ()A .31-B .32C .0D .314.0x =是函数21()x e f x x-=的()A .可去间断点B .振荡间断点C .无穷间断点D .跳跃间断点5.设1(2)f '=,则0(22)(2)lim ln(1)h f h f h →+-=+()A .12-B .1-C .12D .16.函数312)(+=x x f 在21-=x 处()A .极限不存在B .间断C .连续但不可导D .连续且可导7.设()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x =()A .1B .2e C .2eD .2e 8.曲线⎩⎨⎧==ty tx 3sin cos 2在6π=t 对应点处的法线方程为()A .3=x B .33-=x y C .1y x =+D .1y =9.若函数()f x 在[],a b 上连续,在(,)a b 内可导,则()A .存在(0,1)θ∈,使得()()()()()f b f a f b a b a θ'-=--B .存在(0,1)θ∈,使得()()()()()f b f a f a b a b a θ'-=+--C .存在(0,1)θ∈,使得()()()()f b f a f b a θ'-=-D .存在(0,1)θ∈,使得()()()()f b f a f b a θ'-=-10.函数201)(1)y t t dt =-+⎰有()A .一个极值点B .二个极值点C .三个极值点D .零个极值点11.曲线32312y x x =-+的凹区间()A .)0,(-∞B .)1,(-∞C .⎪⎭⎫ ⎝⎛+∞,21D .),1(+∞12.曲线1|1|y x =-()A .只有水平渐近线B .既有水平渐近线,又有垂直渐近线C .只有垂直渐近线D .既无水平渐近线,又无垂直渐近线13.已知的一个原函数是,则等于()A .B .2222ln(1)1x x C x ++++C .2222ln(1)1x x x +++D .221(1)ln(1)2x x C+++14.若,则()A .Cx +31B .Cx +331C .D .15.下列各式正确的是()A .B .C .arcsin arcsin bad xdx x dx =⎰D .111dx x-=⎰16.设,则()A .B .4C .2D .017.设为上的连续函数,则与211f dx x ⎛⎫⎪⎝⎭⎰的值相等的定积分为()A .221()f x dx x ⎰B .122()f x dxx⎰C .1122()f x dx x ⎰D .1221()f x dx x ⎰18.平面1234x y z++=与平面的位置关系是()A .平行但不重合B .重合C .相交但不垂直D .垂直19.向量与轴、轴、轴正向夹角分别为4π,3π,3π,且模为2,则()A.}B .{}1,2,1C .{}2,1,1D .⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧21,21,2220.函数222222,0(,)0,0xy x y x y z f x y x y ⎧+≠⎪+==⎨⎪+=⎩,在点处()A .连续但不存在偏导数B .存在偏导数但不连续C .既不存在偏导数又不连续D .既存在偏导数又连续21.设,则在处()A .有极值B .无极值C .连续D .不能确定22.是顶点分别为,,,的四边形区域的正向边界,则曲线积分=-++-+=⎰dy x y dx y x I L)76(cos )3(sin ()A .0B .10C .5D .1623.微分方程的通解是()A .B .C .D .24.二阶常系数非齐次线性微分方程的特解的正确形式为()A .B .C .D .25.下列级数条件收敛的是()A .n n n21)1(1∑∞=-B .n n nn 31)1(1⋅-∑∞=C .∑∞=+-++1422532n n n n n D .nn n1)1(1∑∞=-第II 卷二、填空题(本大题共15小题,每小题2分,共30分)26.函数()ln(1)f x x =+-的连续区间是.27.极限0cos limsin x x x xx x→-=-.28.设函数⎪⎩⎪⎨⎧=≠--+=2,2,222)(x a x x x x f 在处连续,则.29.已知极限存在且,则.30.设ln(y x =+,则.31.若21()2xf x dx x C =+⎰,则⎰=dx x f )(1.32.=+⎰-dx x x dxd 51)cos (sin .33.设为由方程所确定的函数,则00x y z y==∂=∂.34.曲面在点处的切平面方程为.35.函数在区间上满足拉格朗日中值定理的.36.设22,xy z f x y e ⎛⎫=+ ⎪ ⎪⎝⎭可微,则=∂∂y z .37.设向量,,向量a +b 与a -b 的夹角为.38.交换积分次序,.39.微分方程21(1)yy x x x '+=+的通解为.40.若幂函数21(0)n n n a x a n∞=>∑的收敛半径为12,则常数.三、计算题(本大题共10小题,每小题5分,共50分)41.已知302sin sin2lim lim cos xx x x c x x x c x x →∞→+-⎛⎫= ⎪-⎝⎭,求常数c 的值.42.求函数的单调区间和极值.43.求不定积分.44.计算36sin cos dxx xππ⎰.45.已知向量{}1,0,2=a ,{}2,1,1-=b ,{}1,2,1-=c ,计算c a b a ⨯-⨯23.46.设函数,求22xz ∂∂,y x z ∂∂∂2.47.求二元函数的极值及极值点.48.设函数的一个原函数为,求微分方程的通解.49.求二重积分22Dxydxdy x y+⎰⎰,其中积分区域{}22(,),14z x y y x x y =≥≤+≤.50.求级数13(2)(1)n nn n x n ∞=+--∑的收敛半径与收敛域.四、应用题(本大题共2小题,每小题7分,共14分)51.求曲线,102x y π+--=以及轴所围成的平面图形的面积.52.某汽车运输公司在长期运营中发现每辆汽车的维修成本对汽车大修时间间隔的变化率等于2281y tt -,并且当大修时间间隔(年)时,维修成本(百元),求每辆汽车的最佳大修间隔时间.五、证明题(本大题共1小题,每小题6分,共6分)53.设函数在上可导,且,证明:在内至少存在一点,使.2022年河南省专升本模拟试卷(二)高等数学注意事项:1.考生领到试题后,须按规定在试题上填写姓名、准考证号和座位号,并在答题卡上填涂对应的试卷类型信息点。
全国自考公共课高等数学(工本)模拟试卷2(题后含答案及解析)

全国自考公共课高等数学(工本)模拟试卷2(题后含答案及解析) 题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系下,方程2x2+3y2=6表示的图形为( )A.椭圆B.柱面C.旋转抛物面D.球面正确答案:B解析:由题知2x2+3y2=6可化为了,因为柱面公式=1 故方程表示图形为柱面.答案为B.2.设fx(x0,y0)-0,fy(x0,y0)=0,则在点(x0,y0)处函数f(x,y) ( ) A.连续B.一定取得极值C.可能取得极值D.的全微分为零正确答案:C解析:A是错误的.因多元函数在某一点可导,不能保证函数在该点连续.B 也是错误的.由题目的条件只能断定点(x0,y0)是驻点,而驻点是可疑的极值点,它不一定是极值点.C是正确的.因为驻点是可疑的极值点.D是错误的.一般会认为df=f(x0,y0)dx+fy(x0,y0)dy=0。
是正确的,却忘记了这个等式成立的前提是f(x,y)在点(x0,y)处可微.而在多元函数中可导不一定可微.答案为C.3.设积分区域Ω:x2+y2≤R2,0≤z≤1,则三重积分(x2+y2)dxdydz=( )A.B.C.D.正确答案:B解析:用圆柱面坐标0<θ<2π,0<r<R 0<z<1答案为B.4.下列方程中为一阶线性非齐次方程的是( )A.y’=2yB.(y’)2+2xy=exC.2xy’+x2y=-1D.y’=sin正确答案:C解析:本题考查一阶线性非齐次方程的定义.由一阶线性微分方程的定义知,(y’)2+2xy=ex不是一阶线性微分方程;由一阶线性(非)齐次微分方程的定义知y’=2y是齐次微分方程;只有选项C,2xy+x2y=-1是一阶线性非齐次方程.答案为C.5.设正项级数收敛,则下列无穷级数中一定发散的是( )A.B.C.D.正确答案:D解析:由无穷级数的一般项un不是n→∞时的无穷小量,则级数发散来判断,选项D一定发散.答案为D.填空题请在每小题的空格中填上正确答案。
2016年专升本(高等数学二)真题试卷(题后含答案及解析)

2016年专升本(高等数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.= ( )A.0B.1C.2D.3正确答案:C2.设函数f(x)=在x=0处连续,则a= ( ) A.一1B.0C.1D.2正确答案:C3.设函数y=2+sinx,则y’= ( )A.cosxB.-cosxC.2+cosxD.2-cosx正确答案:A4.设函数y=ex-1+1,则dy= ( )A.exdxB.ex-1dxC.(ex+1)dxD.(ex-1+1)dx正确答案:B5.∫01(5x4+2)dx= ( )A.1B.3C.5D.7正确答案:B6.∫0(1+cosx)dx ( )A.+1B.C.一1D.1正确答案:A7.设函数y=x4+2x2+3,则= ( ) A.4x3+4xB.4x3+4C.12x2+4xD.12x2+4正确答案:D8.∫1+∞dx= ( )A.一1B.0C.1D.2正确答案:C9.设函数z=x2+y,则dz= ( )A.2xdx+dyB.x2dx+dyC.x2dx+ydyD.2xdx+ydy正确答案:A10.若=2,则a= ( )A.B.1C.D.2正确答案:D填空题11.=______.正确答案:12.设函数y=x2一ex,则y’=_______.正确答案:2x-ex13.设事件A发生的概率为0.7,则A的对立事件发生的概率为______.正确答案:0.314.曲线y=Inx在点(1,0)处的切线方程为______.正确答案:y=x-115.∫()dx=_______.正确答案:ln|x|+arctanx+C16.∫-11(sinx+x)dx=_______·正确答案:017.设函数F(x)=∫0xcostdt,则F’(x)=_______.正确答案:cosx18.设函数z=sin(x+2y),则=________.正确答案:cos(x+2y)19.已知点(1,1)是曲线y=x2+alnx的拐点,则a=______.正确答案:220.设y=y(x)是由方程y=x一ey所确定的隐函数,则=______.正确答案:解答题21.计算.正确答案:解:=3.22.设函数y=xe2x,求y’.正确答案:y’=x’e2x+x(e2x)’=(1+2x)e2x.23.设函数z=x3y+xy3,求.正确答案:解:=3x2y+y3,=6xy,=3x2+3y2.24.计算∫xcosx2dx.正确答案:解:∫xcosx2dx=∫cosx2dx2=sinx2+C.25.计算∫12xlnxdx.正确答案:解:26.求曲线y=,直线x=1和x轴所围成的有界平面图形的面积S,及该平面图形绕z轴旋转一周所得旋转体的体积V.正确答案:解:面积S=∫01dx=.旋转体的体积V=∫01π()2dx=∫01πxdx=x2|01=.27.设函数f(x,y)=x2+y2+xy+3,求f(x,y)的极值点与极值.正确答案:由已知,=2x+y,=2y+x,故=2.因为A >0且AC—B2>0,所以(0,0)为f(x,y)的极小值点,极小值为f(0,0)=3.已知离散型随机变量X的概率分布为28.求常数a;正确答案:解因为0.2+a+0.2+0.3=1,所以a=0.3.29.求X的数学期望EX及方差DX.正确答案:EX=0×0.2+10×0.3+20×0.2+30×0.3=16,DX=(0一16)2×0.2+(10一16)2×0.3+(20一16)2×0.2+(30一16)2×0.3=124.。
高等数学II试卷及答案

06/07试卷(B )(本试卷共4页)1、函数⎪⎩⎪⎨⎧=≠+=0001sin 1sin ),(xy xy x y y x y x f ,则极限),(lim 00y x f y x →→=。
(A)不存在(B)等于1(C)等于零 (D)等于2 2、设函数221y x z +-=,则点(,)00是函数z 的(A )极大值点但非最大值点(B )极大值点且是最大值点(C )极小值点但非最小值点(D )极小值点且是最小值点3、设f (x ,y )为连续函数,则积分可交换积分次序为4、 级数()∑∞=⎪⎭⎫ ⎝⎛--1cos 11n n n α(常数0>α)(A )发散;(B )条件收敛;(C )绝对收敛;(D )敛散性与α有关。
5、幂级数n n n x n 2131-∞=∑⎪⎭⎫ ⎝⎛+的收敛半径是 (A)1;(B)3e ;(C)3-e ;(D)1-.6、微分方程x x y y 2cos =+''的一个特解应具有形式(A )x D Cx x B Ax 2sin )(2cos )(+++(B )x Bx Ax 2cos )(2+(C )x B x A 2sin 2cos +(D )x B Ax 2cos )(+一. 1、设函数xy y x y x y x f =+=),(,),(22ϕ,则[]),(),,(y x y x f f ϕ=??????。
2、曲线3231,2,t z t y t x ===在点)31,2,1(处的切线方程是。
3、曲线上任一点),(y x 处的切线斜率为该点横坐标的平方,则此曲线的方程是。
4、如果幂级数()∑∞=-01n n n x a 在1-=x 处收敛,在3=x 处发散,则它的收敛域是. 二. 解答下列各题(本大题共2小题,总计12分) 1、(5分)设)tan ln(x y z =,求y x z z ,。
2、(7分)求函数xy z e u z +-=在点(2,1,0)处沿曲面3=+-xy z e z 法线方向四、解答下列各题(本大题共2小题,总计14分) 1、(7分)计算二重积分224+-⎰⎰D xy dxdy 其中D :x2+y 2≤9.f (x ,y )为连续函数,写出积分在极坐标系中先积r 后积θ的二次积分。
高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高等数学(A2)试卷(二)
答案及评分标准
一、选择题(本大题共8小题,每题4分,共32分)
1. B,
2. D,
3. B,
4. C,
5. D,
6. B,
7. D,
8. B.
二、计算题(本大题共4小题,没题7分,共28分)
1. 设),(y x z z =是由方程333a xyz z =-确定的隐函数, 求dz . 解: 方程两边对x 求导,得
03332='--'x x z xy yz z z (1分)
解得 xy
z yz
z x -=
'2
(3分) 方程两边对x 求导,得 xy
z xz
z y -=
'2
(5分) 所以, )(2
xdy ydx xy
z z
dz +-= (7分) 2. 求⎰⎰
-=
D
dxdy y x I 22, D 由1,==x x y 及x 轴围成.
解: x y x D ≤≤≤≤0,10:, 故有 ⎰
⎰
-=
10
22x dy y x dx I (2分)
令t x y cos =, 则有
⎰
⎰=10
20
22
sin π
tdt dx x I (6分)
12
π
=
(7分) 3. 求函数)1ln()(432x x x x x f ++++=的麦克劳林展开式及收敛区间.
解: x
x x f --=11ln )(5 (2分)
由∑
∞=-≤<--=
+11
)11()
1()1ln(i n
n t n
t t , 可得 (4分) ∑∞
=<≤--=-155
)11()1ln(i n
x n x x (5分) ∑∞
=<≤--=-1)11()1ln(i n
x n
x x (6分) 所以, ∑∑∞=∞
=<≤--=151)11()(i n
i n x n x n x x f (7分) 4. 求微分方程1
cos 1222-=-+'x x
y x x y 满足1)0(=y 的特解. 解: 方程两边同乘1)(2122-=⎰=--
x e x dx
x x
μ得 (2分)
x y x dx
d
cos ])1[(2=-, c x y x +=-sin )1(2 (4分) 通解为, 1
sin 2
-+=x c
x y (5分) 由1)0(=y 得1-=c , 所求特解为1
1
sin 2
--=x x y (7分) 三、计算题(本题8分)
用高斯公式计算⎰⎰
∑
++=
dxdy z dzdx y dydz x I 222, 其中∑为立体
c z b y a x ≤≤≤≤≤≤Ω0,0,0:的表面外侧.
解: 由高斯公式可得
2
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
Ω
Ω
Ω
++=++=zdxdydz
ydxdydz xdxdydz dxdydz
z y x I 222)222( (2分)
又因,
⎰⎰⎰⎰⎰⎰Ω
==b
c
a
bc a xdx dz dy xdxdydz 0
2
22 (4分) 同理有, ⎰⎰⎰Ω
=c ab ydxdydz 2
2,
⎰⎰⎰Ω
=2
2abc ydxdydz (6分) 所以, )(c b a abc I ++= (7分)
四、计算题(本题8分)
确定b 并求出曲线3
2
12
1,,:t z t y t x =
-==Γ的切线, 使之与平面4:=++∏z by x 垂直.
解: 设Γ上点)121,,(302
000t t t M -处的切线与平面∏垂直 Γ在0M 处的切向量为, )4
1,2,1(2
00t t -=τ (2分)
与平面∏的法向量, )1,,1(b n =
平行, 即
1
412112
0t
b t =
-=, 解之得 (4分) )1,4,1(),3
2,4,2(,4,200
=±-±=±=τM b t (6分)
得切线方程, )4(1
32
44
12-=-
=-+=-b z y x
)4(1
324412=+
=+=+b z y x (8分)
五、证明题(本题8分)
证明曲线积分⎰+-=C
dy x dx x xy I 22cos )sin 2(在xoy 面上与路径无关,
并计算积分值, 其中C 为椭圆122
22=+b
y a x 的右半平面)0(≥x 部分, 从
),0(b A -到),0(b B .
证明: 因为22sin 2)sin 2(x x x xy y
y P -=-∂∂
=∂∂
22sin 2)(cos x x x x
x Q -=∂∂
=∂∂ 所以曲线积分I 在xoy 面上与路径无关 (4分)
又因)cos (cos sin 2222x y d dy x dx x xy =+- (6分)
所以b x y x y d I b b C
2|cos )cos ()
,0(),0(22===-⎰
(8分)
六、计算题(本题8分)
若)(2
2
y x f z +=满足方程02222=∂∂+∂∂y
z
x z , 求z , 其中)(r f 有连续
的二阶导数.
解: 记22y x r +=
, 则有
3
2
22222)()(,)(r x r r f r x r f x z r x r f x z -'+''=∂∂'=∂∂ 3
2
22222)()(,)(r
y r r f r y r f x z r y r f y z -'+''=∂∂'=∂∂ 代入方程得 0)(1
)(='+''r f r
r f (4分) 解之得 r
c
r f =
')( (6分) 0ln )(c r c r f z +== (8分)
3
七、应用题(本题8分)
要建造一个上部为半球型下部为圆柱型的不锈钢储水罐, 要求容积为A , 问球体和圆柱半径r 与圆柱高h 为何时, 可以使用料最省?
解: 当所求储水罐的表面积最小时, 可以使用料最省, 用),(h r S 表示储水罐
的表面积, 则有
)0,0(23),(2>>+=h r rh r h r S ππ (2分) 由要求容积为A , 得h r ,的约束关系
A h r r =+2
3
3
2
ππ, 解之得)32(13
2
r A r h ππ-=
(4分)
代入),(h r S 得 r
A
r r h r S r 238))(,()(2+==πϕ
令 02316)(2=-='r A r r πϕ, 解得驻点31
0)83(π
A
r = (6分) 又因0)(0>''r ϕ, 故)(r ϕ在0r 处取得极小值. 由于只有唯一极小值点,
所以即为所求最小值点, 此时有
002r h = (8分) 故r ,h 分别取00,h r 时, 可以使用料最省.。