设置stm32系统各部分时钟
stm32 timer 用法

stm32 timer 用法摘要:1.引言2.STM32定时器简介3.STM32定时器工作原理4.STM32定时器配置与使用5.STM32定时器应用实例6.总结正文:1.引言STM32是一款广泛应用于嵌入式系统的微控制器,拥有丰富的外设资源。
其中,定时器(Timer)是STM32外设中非常关键的部分,它在系统时钟、输入捕捉、输出比较、PWM等功能中起着举足轻重的作用。
本文将详细介绍STM32定时器的用法。
2.STM32定时器简介STM32定时器主要包括基本定时器(Basic Timer)、高级定时器(Advanced Timer)和看门狗定时器(Watchdog Timer)。
其中,基本定时器主要用于系统时钟的生成和控制;高级定时器具有更多的功能,如输入捕捉、输出比较、PWM等;看门狗定时器用于检测系统的运行状态,防止系统崩溃。
3.STM32定时器工作原理STM32定时器的工作原理主要基于计数器、预分频器和比较器。
计数器用于记录定时器滴答(Tick)的数量;预分频器用于控制定时器滴答频率;比较器用于产生定时器溢出信号。
当定时器溢出时,定时器硬件会自动产生中断,通过编程可以设置相应的中断处理程序,实现特定功能。
4.STM32定时器配置与使用配置STM32定时器主要包括以下步骤:(1)使能定时器:通过设置相应寄存器位,使能定时器;(2)配置定时器工作模式:根据需求选择定时器工作模式,如计数模式、PWM模式等;(3)配置定时器时钟源:选择定时器时钟源,如内部时钟、外部时钟等;(4)配置定时器预分频器:设置定时器预分频器值,以满足定时器滴答频率要求;(5)配置比较器:设置比较器值,以产生定时器溢出信号;(6)配置中断:根据需求配置定时器中断,如使能中断、设置优先级等。
5.STM32定时器应用实例以下是一个简单的STM32定时器应用实例:使用STM32F103C8T6微控制器实现一个LED闪烁的程序。
(1)配置定时器:使能定时器TIM2,设置工作模式为计数模式,时钟源为内部时钟,预分频器值为72000,比较器值为65536。
STM32F427xx系列芯片系统时钟讲解

STM32F427xx系列芯片系统时钟讲解——写代码的Tobem 为了进行通用定时器的设置,有必要先了解STM32F427xx系列芯片的时钟系统。
为了实现低功耗(对于每个时钟源来说,在未使用时都可单独打开或者关闭,以降低功耗),STM32F427xx设计了功能完善但却有点复杂的时钟系统,见下图:图2 STM32F427xx系统时钟树从图中可以看出,STM32F427xx具有4个时钟源,分别为2个内部时钟源和2个外部时钟源,也可以分为2个高速时钟源和2个低速时钟源,具体为:1、HSE(高速外部时钟):以外部晶振作时钟源,晶振频率可取范围为4~26MHz,实际电路图中我们采用12MHz的晶振。
2、HSI(高速内部时钟):由内部RC振荡器产生,频率为16MHz。
其特点是起振快,在芯片刚上电的时候,就是使用高速内部时钟,但其精度不高,因此,上电之后我们再通过软件配置(SystemInit()函数),转而采用高速外部时钟信号。
3、LSE(低速外部时钟):以外部晶振作时钟源,主要提供给实时时钟模块(RTC),一般采用32.768KHz。
4、LSI(低速内部时钟):由内部RC振荡器产生,频率为32KHz,主要用于驱动独立看门狗,也可选择提供给RTC 用于停机/待机模式下的自动唤醒。
程序在执行主函数main()之前,要先进行堆栈指针SP、程序计数器PC的初始化、设置异常中断向量地址等工作,最后才进入到主函数main()中去执行,这其中包括系统时钟的配置(在startup_stm32f4xx.s启动文件中)。
系统时钟的配置由system_stm32f4xx.c文件中的SystemInit()函数完成,配置结果如下:图3 系统时钟配置情况从时钟树中可以看到,系统时钟SYSCLK是大部分器件的时钟来源,因此SYSCLK的配置就显得十分重要。
SYSCLK可以从三个时钟源中进行选择,分别为HSI、HSE和PLLCLK。
HSI 不稳定,而HSE速率太低(4~26MHz),为了使系统获得较快的运行速率和稳定性,我们选择PLLCLK来作为SYSCLK(见备注1),而PLLCLK又可以选择HSI或者HSE作为时钟源,我们选择HSE作为时钟源(见备注2)根据时钟树的走向,SYSCLK(即PLLCLK)计算过程为:PLL_VCO = (HSE_VALUE / PLL_M) * PLL_NSYSCLK = PLL_VCO / PLL_P而宏定义有#if !defined (HSE_VALUE)#define HSE_VALUE ((uint32_t)12000000) /*!< Value of the External oscillator in Hz */#endif /* HSE_VALUE */#define PLL_M 12#define PLL_Q 7#if defined (STM32F427_437xx) || defined (STM32F429_439xx)#define PLL_N 360#define PLL_P 2故SYSCLK最终为180MHz。
stm32的时钟配置(非常详细)

stm32的时钟配置(⾮常详细)⼤家都知道在使⽤单⽚机时,时钟速度决定于外部晶振或内部RC振荡电路的频率,是不可以改变的。
⽽ARM的出现打破了这⼀传统的法则,可以通过软件随意改变时钟速度。
这⼀出现让我们的设计更加灵活,但是也给我们的设计增加了复杂性。
为了让⽤户能够更简单的使⽤这⼀功能,STM32的库函数已经为我们设计的更加简单⽅便。
在⽐较靠前的版本中,我们需要向下⾯那样设置时钟:ErrorStatus HSEStartUpStatus;void RCC_Configuration(void){RCC_DeInit(); // RCC system reset(for debug purpose)RCC_HSEConfig(RCC_HSE_ON); // Enable HSEHSEStartUpStatus = RCC_WaitForHSEStartUp(); // Wait till HSE is readyif (HSEStartUpStatus == SUCCESS) // 当HSE准备完毕切振荡稳定后{RCC_HCLKConfig(RCC_SYSCLK_Div1); // HCLK = SYSCLKRCC_PCLK2Config(RCC_HCLK_Div1); // PCLK2 = HCLKRCC_PCLK1Config(RCC_HCLK_Div2); // PCLK1 = HCLK/2FLASH_SetLatency(FLASH_Latency_2); // Flash 2 wait stateFLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // Enable Prefetch BufferRCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); // PLLCLK = 8MHz * 9 = 72 MHzRCC_PLLCmd(ENABLE); // Enable PLLwhile(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){; // Wait till PLL is ready}RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // Select PLL as system clock sourcewhile (RCC_GetSYSCLKSource() != 0x08) // Wait till PLL is used as system clock source {;}}}随之函数库的不断升级,到3.0以上时,我们就不⽤再这样编写时钟设置了,我们只要做如下两部即可:第⼀个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000第⼆个:调⽤SystemInit()说明:在stm32固件库3.0中对时钟频率的选择进⾏了⼤⼤的简化,原先的⼀⼤堆操作都在后台进⾏。
基于STM32的电子时钟设计

第39卷第11期2020年11月绵阳师范学院学报Journal of Mianyang Teachers'CollegeVol.39No.11Nov.2020D01:10.16276/51-1670/g.2020.11.005基于STM32的电子时钟设计郭辛(绵阳师范学院机电工程学院,四川绵阳621000)摘要:随着嵌入式技术的应用与推广.ARM32位处理器已逐步占据电子消费品和工业测控制造领域主导地位.本文以Cortex-M系列产品的典型代表STM32F103RC为平台,采用固件库技术思想为导向,按照CMSIS标准构建工程,将定时器、LCD驱动以及中断系统等各功能模块进行整合,设计一款电子时钟.通过综合设计的应用开发,摸索和总结出一套针对STM32的学习和设计方法,为高端处理器的应用开发提供新思路.关键词:STM32;嵌入式系统;固件库;定时器;LCD显示中图分类号:TN91文献标志码:A文章编号:1672-612X(2020)11-0028-040引言单片机自诞生之日起已走过近半个世纪的历程.随着电子技术和计算机技术的飞速发展,进入21世纪以来以嵌入式系统为代表的新兴技术正在逐渐占据工业控制领域主导地位,并逐步取代以8位处理器为核心的传统测控系统⑴.近年来由于数字信息技术和网络技术的广泛应用,单片机作为主流核心处理器的地位逐步下降,现代电子技术的发展正朝着智能化、网络化和低功耗的方向迈进•新技术的不断更新,需要新的设计思想的注入才能满足技术发展需求•那么,如何将新兴技术融合到传统知识架构体系,将基础理论与工程应用实际相结合,就成为设计人员急需破解的难题•ARM作为一种32位的高性能、低成本的嵌入式RISC微处理器,得到了广泛的应用,STM32系列是意法半导体(STMicroelectronics)集团专为要求高性能、低成本和低功耗的嵌入式应用设计的ARM Cortex-M系列产品的代表作•基于STM32的嵌入式技术已经渗透在工业控制系统、数据采集系统、智能化仪器仪表和办公自动化等诸多领域的应用,甚至在很大程度上正在改变我们现有的商业模式和工作生活方式,如智能手机、导航系统、无人机和平板电脑等,并呈现出明显的系统化、人工智能化和物联网的趋势.目前,Cortex系列处理器已经占据了大部分嵌入式处理器的中高端产品市场,而嵌入式系统的应用开发对从业者要求很高,初学者若要快速掌握其原理并在实际工程中加以应用,必须改变传统的思维方式并构建新的设计理念■本文以STM32F103RC处理器(Cortex-M普通型号之一)为平台,通过对定时器、中断系统和LCD显示模块的组合设计为例,针对基于固件库设计思想的方法进行探讨与总结,以开启嵌入式系统的应用设计学习之门⑵.1固件库概述固件库是指“STM32标准函数库”,它是由ST公司针对STM32提供的函数接口,即API(Application Program Interface),是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征.它是架设在构成部件的寄存器与用户驱动层之间的代码,向下处理与寄存器直接相关的配置,向上为用户提供配置寄存器的接口⑶.部件的调用和基本操作写成了通用的子函数,对复杂的硬件操作实现了函数封装■在以51单片机为代表的8位机由于硬件系统相对简单,通常采用宜接配置寄存器的方式来进行应用开发;而32位处理器核内系统复杂,外设资源丰富•应用系统若仍旧采用传统的设计方式,不但效率低、可移收稿日期:2020-04-30作者简介:郭辛(1971-),男,四川成都人,讲师,硕士,研究方向:汽车电子控制技术.绵阳师范学院学报(自然科学版)植性差,而且技术难度大,已不能适应较复杂的工程应用•基于固件库的技术思想为解决这一问题提供了新思路:开发者根据具体任务需求按照CMSIS标准构建工程,利用固件库提供的资源,设计和改造相关函数以实现对部件的操作•本文结合综合实验项目的开发——电子时钟的设计为例,首先介绍库函数中主要涉及的定时器和LCD显示驱动的基本结构和工作原理,在此基础上利用现有库资源进行功能设计与系统构建•2定时器概述STM32F1系列中,共有8个定时器TIM1-TIM8,分为基本定时器,通用定时器和高级定时器.基本定时器TIM6和TIM7是一个16位的只能向上计数的定时器,它只能定时,没有外部I/O;通用定时器TIM2/ 3/4/5是一个16位的可以向上/下计数的定时器,可以定时、输出比较和输入捕捉,每个定时器有四个外部I/O;高级定时器TIM1/8是一个16位的可以向上/下计数的定时器,可以定时、输出比较,输入捕捉,以及实现三相电机互补输出信号,每个定时器有8个外部I/O⑷.此例以TIM6作定时器,设计一款LCD屏显电子时钟,计时60min,最小显示值Is.2.1TIM6定时器组成根据STM32参考手册基本定时器的功能结构如图1所示⑶.定时器若要向外提供基本时钟信号,需对相关寄存器进行参数设置:1)时钟源TIM*CLK:根据STM32时钟系统设置,通常挂载APB1时钟总线,默认取值为72MH z[5];2)16位分频器PSC:用于存放预分频值,分频范围1-65536,则时钟周期图1基本定时器功能框图Fig.l Block Diagram of Basic Timer FunctionCK_CLK=(PSC+1)/TIM*CLK(1)即每计1个数的时间间隔3)自动重装载寄存器ARR:用于存放16位计数值,用于设定定时长度Td=CK_CLK*ARR(2)综上所述,首先对定时器初始化,将所预设参数写入到对应的结构体中,赋值包含以下内容:#define BASIC_TIM#define BASIC_TIM_CLK #define BASIC_TIM_ARR #define BASIC_TIM_PSC TIM6RCC_APB1Periph_TIM6 1000-171按照以上参数设置,基本定时时长为:Td=〔(PSC+1)/TIM*C LK〕*A RR=(72/72M)*1000=1ms(3) 2.2电子时钟定时原理如图2所示,内部定时器提供基准时长Td=lms,引入定时中断,每计时1ms中断一次;中断次数time二1000产生Is定时,即LCD显示屏每隔1s更新一次秒位(sec)计数值;每计满60s更新一次分位(min)计数值,并将其分别显示到LCD屏上.2.3LCD显示内部时基信号产生后,还需将结果显示出来,每次中断定时时长为:Td=((PSC+1)/TIM*CLK)*ARRL J701ARR MAX(65535)ls=Td*t ime(中断次数)图2定时原理示意图Fig.2Schematic Diagram of Timing PrincipleSTM32F103实验板配2.8吋16位数据接口液晶屏,控制芯片采用了ILI0341.ILI0341是一个用于TFT液晶郭辛:基于STM32的电子时钟设计显示的单芯片控制驱动器,具有262,144色的240RGBX320像素显示方案;IU0341支持8/9/16/18位数据总线的MCU接口,6/16/18位数据总线的RGB接口以及3/4线的SPI接口⑷,本示例中液晶屏控制器采用了预先配置的8080接口通讯,使用16根数据线的RGB565格式.其相关驱动程序按照IU9341标准编制,主要由如下几步完成:1)初始化LCD数据/控制管脚ILI9341_GPIO_Config().2)点亮背光ILI9341_BackLed_Control(ENABLE).3)初始化控制寄存器ILI9341_REG_Config().4)设置显示模式ILI9341_GramScan(LCD_SCAN_MODE).初始化液晶屏完成后,调用显示驱动函数•5)清屏ILI9341_Clear(0,0,LCD_X_LENGTH,LCD_Y_LENGTH).6)设置显示字符字体(8x16)、颜色(红字)及背景(黑底)LCD_SetFont(&Font8xl6);LCD_SetColors (RED,BLACK).7)使用c标准库把时间变量转化成字符串并显示sprintf(dispBuff,"time:%d:%d”,y,x);[6]LCD_ ClearLine(LINE(6));ILI9341_DispStringLine_EN(UNE(6),dispBuff).将数据转换成字符串,存放于数组dispBuff并写入指定行•3系统设计在以51单片机为主控单元的系统中,我们往往采用直接配置寄存器控制字的方法来操控硬件,因为MCS-51内部寄存器只有21个,而且功能简单,程序设计宜观简便;而STM32作为系统主控制器,其内部设备多达几十个,而控制这些设备的寄存器有几百个,若要使系统维持基本运转,操作这些寄存器所需的驱动程序代码成千上万行,这对于应用开发者来说逐条写程序是不现实的•芯片厂商将这些外设的驱动源码封装成固件函数包提供给用户,由用户在此基础上进行应用开发,因此以STM32为主控制器的应用系统开发就包括项目搭建和程序设计两部分•3.1固件库文件结构分析1)启动文件startup_stm32fl0x_hd.s:设置堆栈、PC指针和配置系统时钟等.2)时钟配置文件system_stm32fl0x.c:将外部时钟倍频并为各子模块提供配套的时钟源.3)内核相关的驱动文件core_cm3.h:内核的外设寄存器映射;core_cm3.c:内核的夕卜设驱动固件库•NVIC(嵌套向量中断控制器)描述文件:misc.h和misc.c.4)夕卜设相关的库文件stm32fl0x.h:实现了内核之夕卜的寄存器映射;stm32fl0x_xx.c:夕卜设的驱动函数库文件;核外设备:GPIO、USRAT、I2C、SPI、FSMC等驱动文件.5)头文件的配置文件stm32flO X_conf.h头文件的配置文件,将多个外设的头文件进行统一调配管理,如:stm32fl0x_usart.h,stm32fl0x_i2c.h,stm32fl0x_spi.h,stm32fl0x_adc.h, stm32f10x_fsmc.h...对外设描述的结构体,映射地址的头文件都放在stm32fl0x_conf.h中进行声明,使用时只需包含该配置头文件即可,并可通过“宏断言”函数进行选配•6)专门注册中断服务函数的C文件:stm32fl0x_it.c和stm32fl0x_it.h.这些文件按照相应的规贝!]分布在不同的路径下,这个规则就是ST集团与各芯片开发商共同制订的CMSIS标准⑶.3.2工程项目构建参照CMSIS标准创建项目文件以及组文件夹:CMSIS、FWlib、inc、src、Project、Output和User,并将固件库提供的基本源代码拷贝到对应目录下,如:项目文件创建并保存在Project路径下;核外外设的驱动程序复制到src源码目录下;对描述部件的寄存器结构体统一定义在inc头文件目录下;而宜接针对任务而设计的程序文件通常放置在用户目录User中,如main()程序,中断服务程序等等.在本例的电子时钟设计中,根据前面所介绍的定时器和LCD的工作原理,配置相关驱动程序或函数集,并写入预设的定时参数,重新组合、设计功能程序:1)计算并确定定时初值以及另濒器参数;2)LCD初始化机模式配置,设计变量显示程序;3)中断服务程序的数据处理部分程序设计-绵阳师范学院学报(自然科学版)3.3程序设计首先对定时器、中断寄存器、AFIO 引脚以及液晶屏进 行初始化设置,并将设计的参数值写入对应寄存器中;开启 定时时钟和中断系统,主程序实时不间断显示时间——分 位(min)和秒位(sec);中断服务程序完成定时器计数值的 更新和处理,并将其转换成时间变量传回主程序显示,程序 流程图见图3.4结论由于内部时钟源能提供1K~72MHz 时钟信号,误差 为±1%,则时钟误差最小可以控制在0. 01 us 范围内.通 过上述实验教学项目的开发,总结出32位微处理平台在工 程实践中的设计流程:(1)任务分析:根据设计要求明确项 目所需实现功能,提出设计方案主体框架、功能模块构成、 技术实现路线;(2)搭建工程项目:根据STM32平台所提供 资源,确定主控系统模块并搭建项目主体框架;对照现有资 源匹配现有的子模块,制作与主系统的接口函数并确定底 层部件参数;(3)主系统集成:完成主要业务的程序编制并 进行系统整和调试.基于STM32平台的嵌入式系统开发, 应采用立足于对系统资源的整合和集成的思维方式,将各 部件的驱动程序看作一种供开发者使用的函数集合,开发 主程序流程图|清除定時中断标志|开始Itime++I 中断服务流程图图3程序流程图Fig.3 Program Flow Chart 者需要做的是将这些离散、抽象的“程序块”有机地进行组合,以搭积木的方式进行模块化设计,这才是嵌入 式系统应用的本质所在.参考文献:[1]严武军.后PC 时代计算机专业建设的思考和探索[J].现代计算机,2011,23:92-97.[2]张良.Multisim 在“自动控制原理”实验教学中的应用[J].绵阳师范学院学报,2019,11(38):27-32.[3]刘火良.STM32库开发实战指南[M].北京:机械工业出版社,2017:317-403.[4]田泽.ARM9嵌入式开发实验与实践[M].北京:北京航空和航天大学出版社,2006:279-282.[5]Jean brosse .嵌入式实时操作系统|jl C\OS-U [ M].邵贝贝译.北京:北京航天航空大学出版社,2007: 116-121.[6] 苏小红.C 语言大学实用教程[M].北京:电子工业出版社,2011:309-322.The Design of An Electronic Clock Based on STM32GUO Xin(School of Mechanical and Electrical Engineering , Mianyang Teachers x College , Mianyang , Sichuan 621000)Abstract : With the development of the embedded system technology , ARM32 bit processor has gradually taken a dominant position in the field of electronic consumer goods and industrial measurement and control manu facturing. This paper takes The STM32F103RC , a typical representative of Cortex-M series products , as the plat form, adopts the technical thought of firmware library as the guidance , and builds projects according to CMSIS standard , integrates various functional modules such as timer , LCD driver and interrupt system , and designs an e- lectronic clock. Through the application development of comprehensive design , a set of learning and design methods for STM32 is explored and summarized to provide new ideas for the application development of high-end processors.Keywords : STM32, embedded system , firmware library , timer , LCD display(责任编辑:陈桂芳)。
STM32F407的系统时钟配置

STM32F4的系统时钟树时钟系统是微处理器同步系统的基准和运行节拍,如同人的心跳节拍一样。
因此时钟系统是微处理器中最重要的一个核心部分。
STM32F4的时钟系统比较复杂,不像简单的51单片机一个系统时钟就可以解决一切。
问:采用一个系统时钟不是很简单吗?为什么STM32要有多个时钟源呢?答:因为首先STM32本身非常复杂,外设非常的多,但是并不是所有外设都需要系统时钟这么高的频率,比如看门狗以及RTC只需要几十k的时钟即可。
同一个电路,时钟越快功耗越大,同时抗电磁干扰能力也会越弱,所以对于较为复杂的MCU一般都是采取多时钟源的方法来解决这些问题。
时钟总线:STM32F407上挂载有3根时钟总线,分别为AHB、APB1、APB2;其芯片的外设大部分都挂载在这三根总线上,因此还需要弄清楚这三根总线的时钟频率。
在STM32F4中,有5个最重要的时钟源,为HSI、HSE、LSI、LSE、PLL。
PLL实际是分为两个时钟源,分别为主PLL和专用PLL。
从时钟频率来分可以分为高速时钟源和低速时钟源,在这5个中HSI,HSE以及PLL是高速时钟,LSI和LSE是低速时钟。
从来源可分为外部时钟源和内部时钟源,外部时钟源就是从外部通过接晶振的方式获取时钟源,其中HSE和LSE是外部时钟源,其他的是内部时钟源。
根据左边的时钟系统图中的红色标记分别为:①LSI是低速内部时钟,RC振荡器,频率为32kHz左右。
供独立看门狗和自动唤醒单元使用②LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
这个主要是RTC的时钟源。
③HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~26MHz。
HSE也可以直接做为系统时钟或者PLL输入。
④HSI是高速内部时钟,RC振荡器,频率为16MHz。
可以直接作为系统时钟或者用作PLL输入。
⑤PLL为锁相环倍频输出。
STM32F4有两个PLL:1)主PLL(PLL)由HSE或者HSI提供时钟信号,并具有两个不同的输出时钟。
STM32F051使用自带时钟48M设置

}
}
去掉外部晶振后,单片机时钟源会默认的使用内部高速RC振荡器HSI,HSI频率大约为8M,所以要想使系统获得48M的频率需要用PLL倍频后做为系统的时钟,PLL是一个锁相环,专门用来倍频或者分频的。(倍频后所得的频率一般叫PLL时钟)
RCC_PLLConfig(RCC_PLLSource_HSI_Div2,RCC_PLLMul_12);
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
while(RCC_GetSYSCLKSource() != 0x08) //µÈ´ýϵͳʱÖÓ³õʼ»¯³É¹¦
whilerccgetsysclksource去掉外部晶振后单片机时钟源会默认的使用内部高速rc振荡器hsihsi频率大约为8m所以要想使系统获得48m的频率需要用pll倍频后做为系统的时钟pll是一个锁相环专门用来倍频或者分频的
正确设置:
void RCC_Configuration(void);
void RCC_Configuration(void)
{
//ÉèÖÃPLLʱÖÓÔ´¼°±¶ÆµÏµÊý
RCC_PLLConfig(RCC_PLLSource_HSI_Div2,RCC_PLLMul_12);///*!< PLL input clock*12*/
//ʹÄÜPõʼ»¯³É¹¦
这句话的意思是将HSI时钟12倍频,为什么是12倍频而不是6倍频呢?如下图STM32F051系列的时钟树所示:
根据时钟树可以看出用PLL对HSI进行倍频时,硬件将首先对HSI二分频,也就是为4M,所以必须再对其进行12倍频才能变成48M,最后通过RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);语句将PLL时钟作为系统时钟,至此系统的时钟变为48M
图文详解stm32时钟树

对于广大初次接触STM32的读者朋友(甚至是初次接触ARM器件的读者朋友)来说,在熟悉了开发环境的使用之后,往往“栽倒”在同一个问题上。
这问题有个关键字叫:时钟树。
众所周知,微控制器(处理器)的运行必须要依赖周期性的时钟脉冲来驱动——往往由一个外部晶体振荡器提供时钟输入为始,最终转换为多个外部设备的周期性运作为末,这种时钟“能量”扩散流动的路径,犹如大树的养分通过主干流向各个分支,因此常称之为“时钟树”。
在一些传统的低端8位单片机诸如51,AVR,PIC等单片机,其也具备自身的一个时钟树系统,但其中的绝大部分是不受用户控制的,亦即在单片机上电后,时钟树就固定在某种不可更改的状态(假设单片机处于正常工作的状态)。
比如51单片机使用典型的12MHz晶振作为时钟源,则外设如IO口、定时器、串口等设备的驱动时钟速率便已经是固定的,用户无法将此时钟速率更改,除非更换晶振。
而STM32微控制器的时钟树则是可配置的,其时钟输入源与最终达到外设处的时钟速率不再有固定的关系,本文将来详细解析STM32微控制器的时钟树。
图1是STM32微控制器的时钟树,表1是图中各个标号所表示的部件。
标号图1标号释义1内部低速振荡器(LSI,40Khz)2外部低速振荡器(LSE,32.768Khz)3外部高速振荡器(HSE,3-25MHz)4内部高速振荡器(HIS,8MHz)5PLL输入选择位6RTC时钟选择位7PLL1分频数寄存器8PLL1倍频寄存器9系统时钟选择位10USB分频寄存器11AHB分频寄存器12APB1分频寄存器13AHB总线14APB1外设总线15APB2分频寄存器16APB2外设总线17ADC预分频寄存器18ADC外设19PLL2分频数寄存器20PLL2倍频寄存器21PLL时钟源选择寄存器22独立看门狗设备23RTC设备图1STM32的时钟树在认识这颗时钟树之前,首先要明确“主干”和最终的“分支”。
假设使用外部8MHz 晶振作为STM32的时钟输入源(这也是最常见的一种做法),则这个8MHz便是“主干”,而“分支”很显然是最终的外部设备比如通用输入输出设备(GPIO)。
STM32F103RC系统时钟配置

地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 STM32F103RC 系统时钟配置1、打开D:\program\KEL_MDT_ARM\STM32_Template\USER 目录,找到STM32-DEMO 文件,双击打开,KEIL-uVision4就开始运行了,得到下图:2、双击“STARTCODE ”下面的“start_stm32f10x_hd.s ”打开STM32F103RC 的启动文件,找“SystemInit ”,得到下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司3、点击当前的行,右击鼠标,将光标移动到“Go To Definition Of SystemInit”,见下图:4、点击“Go To Definition Of SystemInit ”,会跳转到system_stm32f10x.c 文件,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司5、在“system_stm32f10x.c ”文件中,在“void SystemInit (void)”函数体内找到“SetSysClock();”,见下图:6、点击“SetSysClock()”,右击鼠标,将光标移动到“Go To Definition Of SystemClock”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 7、点击“Go To Definition Of SystemClock”,会跳转到system_stm32f10x.c 文件,见下图:8、点击“defined SYSCLK_FREQ_72MHz ”,右击鼠标,将光标移到到“Go To Definition Of SYSCLK_FREQ_72MHz ”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司9、点击“Go To Definition Of SYSCLK_FREQ_72MHz ”,会跳转到下图:10、在上图中,我们可以设置所需要的系统时钟,这里设置系统时钟是SYSCLK_FREQ_72MHz ,见下面粘贴的部分#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL) /* #define SYSCLK_FREQ_HSE HSE_VALUE */#define SYSCLK_FREQ_24MHz 24000000#else/* #define SYSCLK_FREQ_HSE HSE_VALUE *//* #define SYSCLK_FREQ_24MHz 24000000 *//* #define SYSCLK_FREQ_36MHz 36000000 *//* #define SYSCLK_FREQ_48MHz 48000000 *//* #define SYSCLK_FREQ_56MHz 56000000 */#define SYSCLK_FREQ_72MHz 72000000 //这是我们要设置的系统时钟#endif。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
******/voidRccInitialisation(void){/*定义枚举类型变量HSEStartUpStatus
*/ErrorStatusHSEStartUpStatus;/*复位系统时钟设置*/RCC_DeInit();/*开启
HSE*/RCC_HSEConfig(RCC_HSE_ON);/*等待HSE起振并稳定
*/HSEStartUpStatus=RCC_WaitForHSEStartUp();/*判断HSE起是否振成功,
是则进入if()内部*/if(HSEStartUpStatus==SUCCESS){/*选择HCLK(AHB)
8MHz*9=72MHz*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1,
RCC_PLLMul_9);/*使能PLL*/RCC_PLLCmd(ENABLE);/*等待PLL输出稳
定*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET);/*选择
时钟源为SYSCLK1分频*/RCC_HCLKConfig(RCC_SYSCLK_Div1);/*选择
PCLK2时钟源为HCLK(AHB)1分频
*/RCC_PCLK2Config(RCC_HCLK_Div1);/*选择PCLK1时钟源为
HCLK(AHB)2分频*/RCC_PCLK1Config(RCC_HCLK_Div2);/*设置
设计tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!
设置stm32系统各部分时钟
函数如下:
/********************************************************************
******
*函数名:RccInitialisation*函数描述:设置系统各部分时钟*输入参SH延时周期数为2*/FLASH_SetLatency(FLASH_Latency_2);/*使能
FLASH预取缓存*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/*选择锁相环(PLL)时钟源为HSE1分频,倍频数为9,则PLL输出频率为
SYSCLK时钟源为PLL */RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/*等待PLL成为SYSCLK时钟源*/while(RCC_GetSYSCLKSource() !=0x08);}
}
在main函数中调用此函数即可完成时钟的正常配置。
STM32单片机中文官网STM32单片机官方开发工具STM32单片机参考