六年级数学试题:《最短路线》的相关练习题
六年级上册数学讲义-小升初思维训练:最短路线 (解析版)全国通用

PC 第08讲最短路线教学目标:1、探索标数法在最短路径中的应用,掌握求最短路线的各种方法;2、探索最短路径的求法,总结最短路线的计算规律并加以应用;3、培养学生仔细认真的学习态度,激发学生的学习兴趣,并能提高解决实际问题的能力。
教学重点:理解并掌握“标数法”解最短路线问题。
教学难点:掌握“标数法”解较难的最短路线问题。
教学过程:【温故知新】1、两个数的和(差)与一个数相乘,可以把两个加数(被减数和减数)分别与这个数相乘,再把这两个积相加,所得的结果不变。
这叫做乘法分配律;2、如果用字母a、b分别表示两个加数,用字母c表示因数,乘法分配律可以写成:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c;3、会运用乘法分配律进行巧算。
【巩固作业1】计算:99×29+29解析部分:在计算时,可以把算式99×29+29中的加数29看成1×29,99个29加1个29,结果正好是100个29.运用了乘法分配律。
给予新学员的建议:让学员了解乘法分配律的含义;哈佛案例教学法:鼓励学生独立完成,课堂上分享解题方法。
参考答案:99×29+29= 99×29+1×29=(99+1)×29=100×29=2900【巩固作业2】根据乘法分配律,用两种方法进行巧算:125×88。
解析部分:把88分成8×11,然后125乘8的积再乘11,运用了乘法结合律。
或者把88分成80+8,125分别去乘80和8,最后把所得积相加。
运用了乘法分配律。
给予新学员的建议:让学员熟练使用乘法分配律巧算;哈佛案例教学法:鼓励学生独立完成,课堂上分享解题方法。
参考答案:125×88 125×88=125×(8×11)=125×(80+8)=(125×8)×11 =125×80+125×8=1000×11 =10000+1000=11000 =11000【预习】一只蚂蚁在长方形格纸上的A点,它想沿着格子线走到B点玩,但是不知走哪条路最近。
最短路径经典练习题

最短路径经典练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。
2. 什么是贝尔曼福特(BellmanFord)算法?它适用于哪些类型的图?3. 请解释A搜索算法中启发式函数的作用。
4. 如何判断一个图中是否存在负权环?5. 简述弗洛伊德(Floyd)算法的基本步骤。
二、单选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 初始化距离表B. 选择当前距离最小的顶点C. 更新相邻顶点的距离D. 重复步骤B和C,直到所有顶点都被访问A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 启发式函数B. 起始节点C. 目标节点D. 图的规模三、多选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 深度优先搜索算法D. 广度优先搜索算法A. 初始化距离矩阵B. 更新距离矩阵C. 查找负权环D. 输出最短路径A. 图的存储结构B. 顶点的数量C. 边的数量D. 起始顶点四、计算题A (3)>B (2)> D\ | ^ \ | | \(2)\ | (1)/C \|(4)A (1)>B (2)> D\ ^ |\(2)\ | (3)/C \ |(1)A (2)>B (3)> D\ | ^\(3)\ | (1)/C \ |(2)五、应用题1. 假设你是一名地图软件的开发者,请简述如何利用最短路径算法为用户提供导航服务。
2. 在一个网络游戏中,玩家需要从起点到达终点,途中会遇到各种障碍。
请设计一种算法,帮助玩家找到最佳路径。
六、判断题1. 迪杰斯特拉算法只能用于无向图的最短路径问题。
()2. 贝尔曼福特算法可以检测图中是否存在负权环。
()3. 在A搜索算法中,如果启发式函数h(n)始终为0,则算法退化为Dijkstra算法。
()4. 弗洛伊德算法的时间复杂度与图中顶点的数量无关。
()七、填空题1. 迪杰斯特拉算法中,用来存储顶点到源点最短距离的数组称为______。
六年级下册数学专题练习:29、实践与实际操作(含答案) 全国通用

29、实践与实际操作【最短路线】例1 一只蚂蚁要从A处出发,经粘合在一块木板上的正方体(如图5.74)的表面爬到B处。
请你在图上画出最短的路线(看得见的画实线,看不见的画虚线),有几条就画几条。
(1990年“新苗杯”小学数学竞赛试题)讲析:可将正方体的几个面,按正视位置的前面—上面展开,前面—右面展开,左面—后面展开,左边—上面展开,其展开图都是由两个正方形面组成的长方形(如图5.75所示)。
根据两点之间直线段最短的原理,故最短路线为每个长方形对角线,它们共有四条,如图5.76所示。
例2 请你在图5.77(3)、(4)、(5)上画出三种与图(2)不一样的设计图,使它们折起来后,都成为图(1)所示的长方形盒子(粗线和各棱交于棱的中点)。
(第四届《从小爱数学》邀请赛试题)讲析:解题的关键,是要分清实线与虚线,然后思考它们是按什么方式展开的。
不难想象,其答案如图(3)、(4)、(5)所示。
【切分图形】例1 请将图5.78分成面积相等,形状相同,且每一块中都含有“数学竞赛”字样的四块图形。
(“新苗杯”小学数学竞赛试题)讲析:从条件看,所分成的每一块图中,必须有四个小正方形,且只有五种(如图5.79)。
根据图中汉字的具体位置,可发现图5.79中图(1)、图(2)明显不合,图(3)、图(4)也不能分成。
于是只剩下图(5)。
进一步搜索,便可得到答案。
答案如图5.80所示。
例2 在一张正方形纸上画两个三角形,最多可以把这个正方形分成________块,画三个三角形,最多可以把这个正方形分成________块;画四个三角形,最多可以把这个正方形分成_________块。
(1990年无锡市小学数学竞赛试题)讲析:可先找出规律。
在正方形纸上,画一个三角形,依次画三条边时,增加了(1+1+1)块,最多可把它分成4块;画二个三角形,依次画三条边时,增加了(3+3+3)块,共13块;画三个三角形,依次画三条边时,增加了(5+5+5)块,共28块,如图5.81所示。
最短路线练习题

最短路线练习题在我们日常的生活中,经常会面临着需要找到最短路线的情况。
无论是出行、送货还是旅游,找到最短路线可以节省时间和精力。
为了提升解决这类问题的能力,下面我们来做一些最短路线的练习题。
练习题一:假如你正在一个陌生的城市旅游,你想从你所在的地方(点A)前往一个景点(点B)。
给定地图上的道路信息,以及各点之间的直线距离,请你找出从点A到点B的最短路线。
这道题目需要我们运用最短路算法来解决。
最常见的算法之一是迪杰斯特拉算法。
迪杰斯特拉算法的基本思想是:从起点开始,不断扩展已经找到的最短路线,直到找到终点为止。
具体步骤如下:1. 初始化:将起点到所有其他点的距离设置为无穷大,将起点到自身的距离设置为0。
2. 将起点标记为已访问。
3. 从起点开始,找到与起点直接相连且未被访问过的点中,距离最短的一个点。
4. 更新与该点相连的所有点的距离,如果通过该点到某个点的距离更短,则更新该点的距离。
5. 标记该点为已访问。
6. 重复步骤3到步骤5,直到找到终点或者所有点都被标记为已访问。
7. 如果找到终点,则回溯路径,即可得到最短路线。
练习题二:现在来做一个稍微复杂一些的练习题。
假设你是一名送货员,需要驾驶卡车从仓库(点A)出发,依次前往多个客户的位置(点B、点C、点D...)。
你希望按照最短距离完成任务。
为了解决这个问题,我们可以运用另一种常见的最短路算法,即弗洛伊德算法。
弗洛伊德算法的基本思想是:逐一考虑所有点作为中转点,计算出任意两点之间的最短距离。
具体步骤如下:1. 初始化:将各个点之间的距离初始化为无穷大。
2. 设置直接相连的两个点之间的距离为实际距离。
3. 逐一考虑每个点作为中转点,计算出通过该点的路径是否更短,若更短,则更新距离。
4. 重复步骤3,直到所有点都作为中转点计算过。
通过弗洛伊德算法,我们可以得到任意两点之间的最短距离。
然后,我们可以利用这些距离信息,进行路径规划,找出从仓库出发,依次前往各个客户位置的最短路线。
小学数学《最短路线》练习题

小学数学《最短路线》练习题【例1】甲、乙两村之间隔一条河,如图.现在要在小河上架一座桥,使得这两村之间的行程最短,桥应修在何处?【例2】如下图,A、B两个学校都在公路的同侧.想在这两校的附近的公路上建一个汽车站,要求车站到两个学校的距离之和最小,应该把车站建在哪里?【例3】如图是一个长、宽、高分别为4分米、2分米、1分米的长方体纸盒.一只蚂蚁要从A点出发在纸盒表面上爬到B点运送食物,求蚂蚁行走的最短路程。
【例4】如下图,在圆柱形的木桶外,有一个小甲虫要从桶外的A点爬到桶内的B点.已知A 点到桶口C点的距离为14厘米,B点到桶口D点的距离是10厘米,而C、D两点之间的弧长是7厘米.如果小甲虫爬行的是最短路线,应该怎么走?路程是多少?【例5】一个邮递员投送信件的街道如图,图上数字表示各段街道的千米数.他从邮局出发,要走遍各街道,最后回到邮局.问走什么样的路线最合理,全程要走多少千米?【例6】下图是一个城市道路图,数字表示各段路的路程(单位:千米),求出图中从A到F 的最短路程。
【例7】仍取上面拓展训练的图中八个行政村的位置和线路图,乡政府要在全乡沿村与村之间的道路挖渠修道,建立排灌系统.全乡的地势是西高东低,即A村最高,依次为B、F、G、H、E、C、D,水源在A村,问沿什么路线修道最合理?【例8】有八栋居民楼A1、A2、…、A8分布在公路的两侧,如下图,由一些小路与公路相连,要在公路上设一个汽车站,使汽车站到各居民楼的距离之和最小,车站应设在哪里?【例9】有两条通讯路线A和B,如下图,通讯员从C处出发,查完两条线后到D处,作图表示他怎样走路程最短(假设到达通讯线路的任何一处都可完成查线工作)?【例10】要在两条街道(如下图)A和B上各设立一个邮筒,M处是邮局,问邮筒设在哪里才能使邮递员从邮局出发,到两个邮筒取完信再回到邮局的路程最短?【作1】如下图,A、B、C三点分别是正方体三条棱的中点.假设一只蚂蚁沿着正方体的表面从中点A爬到中点C,图中所示路线是否为蚂蚁爬行的最短路线,为什么?【作2】一个小虫从圆柱体(如下图)的A点处绕圆柱体侧面一周,最后爬到顶点B处.请画出小虫从A点绕到圆柱体侧面到达B点的最短路线。
六年级数学路程问题应用题试题答案及解析

六年级数学路程问题应用题试题答案及解析1.(3分)一辆货车从甲地开往乙地,平均每小时行55千米.当这辆货车行了全程的20%时,如果再行79.2千米,那么已行的路程与全程的比正好是3:5.这辆货车从甲地到乙地要行多少时间?【答案】3.6小时.【解析】当这辆货车行了全程的20%时,如果再行79.2千米,那么已行的路程与全程的比正好是3:5,也就是已行的路程是全程的,79.2千米占全程的﹣20%,用除法得出甲乙两地的路程,再除以货车的速度即可得这辆货车从甲地到乙地要行的时间.解:79.2÷(﹣20%)=79.2÷40%=198(千米),198÷55=3.6(小时),答:这辆货车从甲地到乙地要行3.6小时.点评:本题考查了简单的行程问题﹣比的应用.得出79.2千米占全程的﹣20%.2.(5分)快、慢两车同时从相距480千米的两地相向而行,3小时后还相距全程的﹣,照这样的速度,两车还要经过几小时才能相遇?【答案】6小时【解析】3小时后还相距全程的,即两车三小时共行了全程的1﹣,根据分数除法的意义,两车共行全程即相遇需要3÷(1﹣)小时,所以照这样的速度,两车还要经过3÷(1﹣)﹣3小时才能相遇.解:3÷(1﹣)﹣3=3﹣3=9﹣3=6(小时)答:两车还需要6小时相遇.点评:完成本题根据分数除法的意义求出共需多少时间较简便,不需要计算具体速度.3.有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【答案】经过分钟,时针与分针第一次重合;经过时针与分针第二次重合。
【解析】在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“”,于是需要时间:。
所以,再过分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过分钟,时针与分针第二次重合。
小学数学《最短路线》练习题(含答案)

小学数学《最短路线》练习题(含答案)【例1】甲、乙两村之间隔一条河,如图.现在要在小河上架一座桥,使得这两村之间的行程最短,桥应修在何处?分析:设甲、乙两村分别用点A、B表示.要在河上架桥,关键是要选取一个最佳建桥的位置,使得从甲村出发经过桥到乙村的路程最短.即从甲村到甲村河边的桥头的距离加上桥长(相当于河的宽度),再加上乙村到乙村河边的桥头的距离尽可能短,这是一个求最短折线的问题.直接找出这条折线很困难,能否可以把它转化为直线问题呢?由于河的宽度不变,不论桥修在哪里,桥都是必经之路,且桥长相当于河宽,是一个定值,所以可以预先把这段距离扣除,只要使两镇到河边桥头的距离最短就可以了。
所谓预先将桥长扣除,就是假设先走完桥长,即先把桥平移到甲村,先过了桥,到C点,如下图,找出C到B的最短路线,实际上求最短折线问题转化为直线问题。
解:如下图.过A点作河岸的垂线,在垂线上截取AC的长等于河宽.连BC交与乙村的河岸于F点,作EF垂直于河的另一岸于E点,则EF为架桥的位置,也就是AE+EF+FB是两村的最短路线。
【例2】如下图,A、B两个学校都在公路的同侧.想在这两校的附近的公路上建一个汽车站,要求车站到两个学校的距离之和最小,应该把车站建在哪里?分析:车站建在哪里,使得A到车站与B到车站的距离之和最小,仍然是求最短折线问题,同例1一样关键在于转化成直线问题就好办了.采用轴对称(直线对称)作法。
答案:作点B关于公路(将公路看作是一条直线)的对称点B′,如下图,即过B点作公路(直线)的垂线交直线于O,并延长BO到B′,使BO=OB′.连结AB′交直线于点E,连BE,则车站应建在E处,并且折线AEB为最短。
为什么这条折线是最短的呢?分两步说明:(1)因为B与B′关于直线对称,根据对称点的性质知,对称轴上的点到两个对称点的距离相等,有BE=B′E,所以AB′=AE+EB′=AE+EB(2)设E′是直线上不同于E的任意一点,如图13—5,连结AE′、E′B、E′B′,可得AE′+E′B=AE′+E′B′>AB′(两点之间线段最短)上式说明,如果在E点以外的任意一点建车站,所行的路程都大于折线AEB.所以折线AEB最短。
最短路径问题练习题

最短路径问题Description:平面上有n个点(n<=100),每个点的坐标均在-10000到10000之间.其中的一些点之间有连线.若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离.现在的任务是找出从一点到另一点之间的最短路径.Input:共n+m+3行第一行为整数n.第2行到第n+行,每行两个整数x和y,描述了一个点的坐标(以一个空格分开)第n+2行为一个整数m,表示图中连线的个数.以后的m行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线.最后一行;两个整数s和t,分别表示源点和目标点.Output:仅一行,一个实数(保留两位小数),表示从s到t的最短路径长度Sample Input50 02 02 20 23 151 21 31 42 53 51 5Sample Output:3.41最小花费【问题描述】:在n个人中,某些人的银行账号之间可以互相转账。
这些人之间转账的手续费各不相同。
给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问A 最少需要多少钱使得转账后B收到100元。
【输入数据】:第一行输入两个正整数n,m,分别表示总人数和可以互相转账的人的对数。
以下m行每行输入三个正整数x,y,z,表示标号为x的人和标号为y的人之间互相转账需要扣除z%的手续费 (z<100)。
最后一行输入两个正整数A,B。
数据保证A与B之间可以直接或间接地转账。
【输出数据】:输出A使得B到账100元最少需要的总费用。
精确到小数点后8位。
【输入样例】:3 31 2 12 3 21 3 31 3【输出样例】:103.07153164【数据规模】: 1<=n<=2000公园漫步(park.pas)【问题描述】小M 和小Z 饭后在公园散步,走着走着小Z 忽然想起来家中的水龙头没有关,于是他们要在最快的时间内走出公园赶到家中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学试题:《最短路线》的相关练习
题
在学习几何知识时,同学们已经学过如下两个结论:
(1)连结两点的所有线中,直线段是最短的;
(2)直线外的一个定点与直线上的各点的连线以垂线为最短. 利用这两个结论可以解决许多实际生活中求最短路线的问题.
例1 甲、乙两村之间隔一条河,如图131.现在要在小河上架一座桥,使得这两村之间的行程最短,桥应修在何处?
分析:设甲、乙两村分别用点a、b表示.要在河上架桥,关键是要选取一个最佳建桥的位置,使得从甲村出发经过桥到乙村的路程最短.即从甲村到甲村河边的桥头的距离加上桥
长(相当于河的宽度),再加上乙村到乙村河边的桥头的距离尽可能短,这是一个求最短折线的问题.直接找出这条折线很困难,能否可以把它转化为直线问题呢?由于河的宽度不变,不论桥修在哪里,桥都是必经之路,且桥长相当于河宽,是一个定值,所以可以预先把这段距离扣除,只要使两镇到河边桥头的距离最短就可以了.
所谓预先将桥长扣除,就是假设先走完桥长,即先把桥平移到甲村,先过了桥,到c点,如图132,找出c到b的最短路线,实际上求最短折线问题转化为直线问题.
解:如图132.过a点作河岸的垂线,在垂线上截取ac的长等
于河宽.连bc交与乙村的河岸于f点,作ef垂直于河的另一岸于e点,则ef为架桥的位置,也就是ae+ef+fb是两村的最短路线.
例2 如图133,a、b两个学校都在公路的同侧.想在这两校的附近的公路上建一个汽车站,要求车站到两个学校的距离之和最小,应该把车站建在哪里?
分析:车站建在哪里,使得a到车站与b到车站的距离之和最小,仍然是求最短折线问题,同例1一样关键在于转化成直线问题就好办了.采用轴对称(直线对称)作法.
解:作点b关于公路(将公路看作是一条直线)的对称点b,如图134,即过b点作公路(直线)的垂线交直线于o,并延长bo 到b,使bo=ob.连结ab交直线于点e,连be,则车站应建在e处,并且折线aeb为最短.
为什么这条折线是最短的呢?分两步说明:
(1)因为b与b关于直线对称,根据对称点的性质知,对称轴上的点到两个对称点的距离相等,有be=be,所以
ab=ae+eb=ae+eb
(2)设e是直线上不同于e的任意一点,如图135,连结ae、eb、eb,可得
ae+eb=ae+ebab(两点之间线段最短)
分享到:新浪微博腾讯微博QQ空间QQ好友人人网百度贴吧复制网址
上式说明,如果在e点以外的任意一点建车站,所行的路程都大于折线aeb.
所以折线aeb最短.
例3 如图136,河流ef与公路fd所夹的角是一个锐角,某公司a在锐角efd内.现在要在河边建一个码头,在公路边修建一个仓库,工人们从公司出发,先到河边的码头卸货,再把货物转运到公路边的仓库里去,然后返回到a处,问仓库、码头各应建在何处,使工人们所行的路程最短.
分析:工人们从a出发先到河边码头,再到公路的仓库,然后回到a处,恰好走一个三角形,现在要求三角形的另外两个顶点分别建在河岸与公路的什么位置能使这个三角形的
三边之和为最小,利用轴对称原理作图.
解:过a分别作河岸、公路的对称点a、a,如图137,连结aa,交河岸于m,交公路于n,则三角形amn各边之和等于直线aa的长度,所以仓库建在n处,码头建在m处,使工人们所行的路程最短.
例4 如图138是一个长、宽、高分别为4分米、2分米、1分米的长方体纸盒.一只蚂蚁要从a点出发在纸盒表面上爬到b点运送食物,求蚂蚁行走的最短路程.
分析:因为是在长方体的表面爬行,求的是立体图形上的最短路线问题,往往可以转化为平面上的最短路线问题.将蚂蚁爬行经过的两个面展开在同一平面上,如图139,在展开图
中,ab间的最短路线是连结这两点的直线段,但要注意,蚂蚁可沿几条路线到达b点,需对它们进行比较.
解:蚂蚁从a点出发,到b点,有三条路线可以选择:(1)从a点出发,经过上底面然后进入前侧面到达b点,将这两个平面展开在同一平面上,这时a、b间的最短路线就是连线ab,如图139(1),ab是直角三角形abc的斜边,根据勾股定理,ab2=ac2+bc2=(1+2)2+42=25
(2)从a点出发,经过左侧面,然后进入前侧面到达b点,将这两个面展开在同一平面上,如图139(2),同理
ab2=22+(1+4)2=29
(3)从a点出发,经过上底面,然后进入右侧面到达b点,将这两个面展开在同一平面上,如图139(3),得
ab2=(2+4)2+12=37
比较这三条路线,25最小,所以蚂蚁按图139(1)爬行的路线最短,最短路程为5分米.
例5 如图1310,在圆柱形的木桶外,有一个小甲虫要从桶外的a点爬到桶内的b点.已知a点到桶口c点的距离为14厘米,b点到桶口d点的距离是10厘米,而c、d两点之间的弧长是7厘米.如果小甲虫爬行的是最短路线,应该怎么走?路程是多少?
分析:先设想将木桶的圆柱展开成矩形平面,如图1311,由于b点在桶内,不便于作图,利用轴对称原理,作点b关于
直线cd的对称点b,这就可以用b代替b,从而找出最短路线.
解:如图1311,将圆柱体侧面展成平面图形.作点b关于直线cd的对称点b,连结ab,ab是a、b两点间的最短距离,与桶口边交于o点,则ob=ob,ab=ao+ob,那么a、b之间的最短距离就是ao+ob,所以小甲虫在桶外爬到o点后,再向桶内的b点爬去,这就是小甲虫爬行的最短路线.
延长ac到e,使ce=bd,因为△aeb是直角三角形,ab是斜边,eb=cd=7厘米,ae=14+10=24(厘米),根据勾股定理:
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
ab2=ae2+eb2=242+72=625
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作
文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
所以ab=25(厘米)
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
即小甲虫爬行的最短路程是25厘米.。