植物生理学简答题问答题
(新)植物生理学简答题试题库(附答案解析)

(新)植物生理学简答题试题库(附答案解析)1.什么是胁迫(逆境)蛋白?其生理意义如何?近年来由于分子生物学技术的渗透,抗性生理的分子基础研究有了进展,发现多种逆境因子(如高温、缺氧、紫外线、病原菌、低温、干旱、化合物、活性氧胁迫等)抑制原来正常蛋白质的合成,而诱导合成一些新的蛋白质,这就是胁迫蛋白。
这类蛋白除部分已被确定为适应过程必需的酶外,大部分其生理功能不清楚。
2.证明细胞分裂素是在根尖合成的依据有哪些?(1)许多植物(如葡萄、向日葵等)的伤流中有细胞分裂素,可持续数天。
(2)测定豌豆根各切段的细胞分裂素含量,在根尖0~1mm切段的细胞分裂素含量较远根尖切段的高。
(3)无菌培养水稻根尖,根可向培养基中分泌细胞分裂素。
3.试说明有机物运输分配的规律总和来说是由源到库,植物在不同生长发育时期,不同部位组成不同的源库单位,以保证和协调植物的生长发育,总结其运输规律(1)优先运往生长中心;(2)就近运输;(3)纵向同侧运输(与输导组织的结构有关);(4)同化物的再分配即衰老和过度组织(或器官)内的有机物可撤离以保证生长中心之需。
4.从干旱条件下植物可能通过细胞失水或细胞累积溶质两条途径降低水势的事实出发,阐述测定水势中各组分的值比测定总水势更能反映植物水分状况的观点。
当在细胞失水时,、同时降低,引起总水势降低;但当累积溶质时,降低而不变,也引起总水势降低,此时失水很少。
从上述可看出,具有相同总水势的细胞,其水分状况会相差极大。
细胞水分含量的多少与静水压力相关,只有细胞膨压大小更能反映细胞生理活动。
在上述情况下,总水势不能反映水分状况对生理活动的影响。
5.植物为什么选择蔗糖为物质运输的主要物质?它是光合作用的产物。
它是非还原糖,化学性质稳定。
溶解性高。
比葡萄糖等有优越的物理性质,如表面张力低,粘度低等。
6.植物受盐害的原因是什么?造成缺水的胁迫;造成离子的胁迫。
7. 花粉富含水解酶类,其生理意义是什么?花粉体积小,所携带营养物质有限,不能营独立生活。
植物生理学简答题(完整版)

1一月二月三月产品名称数量金额利润产品名称数量金额利润产品名称数量金额利润合计合计合计四月五月六月产品名称数量金额利润产品名称数量金额利润产品名称数量金额利润合计合计合计绪论1.植物生理学的发展大致经历了哪几个阶段?2.21世纪植物生理学的发展趋势如何?3.近年来,由于生物化学和分子生物学的迅速发展,有人担心植物生理学将被其取代,谈谈你的观点。
参考答案1.答:植物生理学的发展大致经历了以下三个阶段:第一阶段:植物生理学的奠基阶段。
该阶段是指从植物生理学学尚未形成独立的科学体系之前,到矿质营养学说的建立。
第二阶段:植物生理学诞生与成长阶段。
该阶段是从1840年Liebig建立营养学说时起,到19世纪末植物生理学逐渐形成独立体系。
第三阶段:植物生理学的发展阶段。
从20世纪初到现在,植物生理学逐渐在植物学科中占中心地位,所有各个植物学的分支都离不开植物生理学。
2.答:.①与其他学科交叉渗透,从研究生物大分子到阐明个体生命活动功能、生产应用,并与环境生态相结合等方面。
微观方面,植物生命活动本质方面的研究向分子水平深入并不断综合。
在宏观方面,植物生理学与环境科学、生态学等密切结合,由植物个体扩大到群体,即人类地球-生物圈的大范围,大大扩展了植物生理学的研究范畴。
②对植物信号传递和转导的深入研究,将为揭示植物生命活动本质、调控植物生长发育开辟新的途径。
在21世纪,对光信号、植物激素信号、重力信号、电波信号及化学信号等所诱导的信号传递和转导机制的深入研究,将会揭开植物生理学崭新的一页。
③植物生命活动过程中物质代谢和能量转换的分子机制及其基因表达调控仍将是研究的重点。
在新世纪里,对植物生命活动过程中物质代谢和能量代谢转换的深入研究占有特别重要的位置。
目前,将光和能量转换机制与生理生态联系起来进行研究正在走向高潮,从而将光和能量转换机制研究与解决人类面临的粮食、能源问题紧密联系起来,以便在生产中发挥更大的指导作用。
植物生理学简答题

简答题1、简述氧化酶的生物学特性与适应性。
植物体内含有多种呼吸氧化酶,这些酶各有其生物学特性(如对温度的要求和对氧气的反应,所以就能使植物体在一定范围内适应各种外界条件。
以对温度的要求来说,黄酶对温度变化反应不敏感,温度降低时黄酶活性降低不多,故在低温下生长的植物及其器官以这种酶为主,而细胞色素氧化酶对温度变化的反应最敏感。
在果实成熟过程中酶系统的更替正好反映了酶系统对温度的适应。
例如,柑橘的果实有细胞色素氧化酶、多酚氧化酶和黄酶,在果实末成熟时,气温尚高,呼吸氧化是以细胞色素氧化酶为主;到果实成熟时,气温渐低,则以黄酶为主.这就保证了成熟后期呼吸活动的水平,同时也反映了植物对低温的适应。
以对氧浓度的要求来说,细胞色素氧化酶对氧的亲和力最强,所以在低氧浓度的情况下,仍能发挥良好的作用;而酚氧化酶和黄酶对氧的亲和力弱,只有在较高氧浓度下才能顺利地发挥作用。
苹果果肉中酶的分布也正好反映了酶对氧供应的适应,内层以细胞色素氧化酶为主,表层以黄酶和酚氧化酶为主。
水稻幼苗之所以能够适应淹水低氧条件,是因为在低氧时细胞色素氧化酶活性加强而黄酶活性降低之故。
2、长期进行无氧呼吸会导致植株死亡的原因是什么?长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。
作物受涝死亡,主要原因就在于无氧呼吸时间过久。
3.举出三种测定光合速率的方法,并简述其原理及优缺点。
(1)改良半叶法,选择生长健壮、对称性较好的叶片,在其一半打取小圆片若干,烘干称重,并用三氯醋酸对叶柄进行化学环割,以阻止光合产物外运,到下午用同样方法对另一半叶片的相对称部位取相同数目的小圆片,烘干称重,两者之差,即为这段时间内这些小圆片累积的有机物质量。
植物生理学简答题

简答题1、简述氧化酶的生物学特性与适应性。
植物体含有多种呼吸氧化酶,这些酶各有其生物学特性(如对温度的要求和对氧气的反应,所以就能使植物体在一定围适应各种外界条件。
以对温度的要求来说,黄酶对温度变化反应不敏感,温度降低时黄酶活性降低不多,故在低温下生长的植物及其器官以这种酶为主,而细胞色素氧化酶对温度变化的反应最敏感。
在果实成熟过程中酶系统的更替正好反映了酶系统对温度的适应。
例如,柑橘的果实有细胞色素氧化酶、多酚氧化酶和黄酶,在果实末成熟时,气温尚高,呼吸氧化是以细胞色素氧化酶为主;到果实成熟时,气温渐低,则以黄酶为主.这就保证了成熟后期呼吸活动的水平,同时也反映了植物对低温的适应。
以对氧浓度的要求来说,细胞色素氧化酶对氧的亲和力最强,所以在低氧浓度的情况下,仍能发挥良好的作用;而酚氧化酶和黄酶对氧的亲和力弱,只有在较高氧浓度下才能顺利地发挥作用。
苹果果肉中酶的分布也正好反映了酶对氧供应的适应,层以细胞色素氧化酶为主,表层以黄酶和酚氧化酶为主。
水稻幼苗之所以能够适应淹水低氧条件,是因为在低氧时细胞色素氧化酶活性加强而黄酶活性降低之故。
2、长期进行无氧呼吸会导致植株死亡的原因是什么?长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。
作物受涝死亡,主要原因就在于无氧呼吸时间过久。
3.举出三种测定光合速率的方法,并简述其原理及优缺点。
(1)改良半叶法,选择生长健壮、对称性较好的叶片,在其一半打取小圆片若干,烘干称重,并用三氯醋酸对叶柄进行化学环割,以阻止光合产物外运,到下午用同样方法对另一半叶片的相对称部位取相同数目的小圆片,烘干称重,两者之差,即为这段时间这些小圆片累积的有机物质量。
植物生理学课后简答题及答案

植物⽣理学课后简答题及答案植物⽣理学课后简答题及答案第⼀章植物的⽔分⽣理1.将植物细胞分别放在纯⽔和1mol/L蔗糖溶液中,细胞的渗透势、压⼒势、⽔势及细胞体积各会发⽣什么变化?答:在纯⽔中,各项指标都增⼤;在蔗糖中,各项指标都降低。
2.从植物⽣理学⾓度,分析农谚“有收⽆收在于⽔”的道理。
答:⽔,孕育了⽣命。
陆⽣植物是由⽔⽣植物进化⽽来的,⽔是植物的⼀个重要的“先天”环境条件。
植物的⼀切正常⽣命活动,只有在⼀定的细胞⽔分含量的状况下才能进⾏,否则,植物的正常⽣命活动就会受阻,甚⾄停⽌。
可以说,没有⽔就没有⽣命。
在农业⽣产上,⽔是决定收成有⽆的重要因素之⼀。
⽔分在植物⽣命活动中的作⽤很⼤,主要表现在4个⽅⾯:①⽔分是细胞质的主要成分。
细胞质的含⽔量⼀般在70~90%,使细胞质呈溶胶状态,保证了旺盛的代谢作⽤正常进⾏,如根尖、茎尖。
如果含⽔量减少,细胞质便变成凝胶状态,⽣命活动就⼤⼤减弱,如休眠种⼦。
②⽔分是代谢作⽤过程的反应物质。
在光合作⽤、呼吸作⽤、有机物质合成和分解的过程中,都有⽔分⼦参与。
③⽔分是植物对物质吸收和运输的溶剂。
⼀般来说,植物不能直接吸收固态的⽆机物质和有机物质,这些物质只有在溶解在⽔中才能被植物吸收。
同样,各种物质在植物体内的运输,也要溶解在⽔中才能进⾏。
④⽔分能保持植物的固有姿态。
由于细胞含有⼤量⽔分,维持细胞的紧张度(即膨胀),使植物枝叶挺⽴,便于充分接受光照和交换⽓体。
同时,也使花朵张开,有利于传粉。
3.⽔分是如何跨膜运输到细胞内以满⾜正常的⽣命活动的需要的?①通过膜脂双分⼦层的间隙进⼊细胞。
②膜上的⽔孔蛋⽩形成⽔通道,造成植物细胞的⽔分集流。
植物的⽔孔蛋⽩有三种类型:质膜上的质膜内在蛋⽩、液泡膜上的液泡膜内在蛋⽩和根瘤共⽣膜上的内在蛋⽩,其中液泡膜的⽔孔蛋⽩在植物体中分布最丰富、⽔分透过性最⼤。
4.⽔分是如何进⼊根部导管的?⽔分⼜是如何运输到叶⽚的?答:进⼊根部导管有三种途径:①质外体途径:⽔分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻⼒⼩,移动速度快。
植物生理学简答题 问答题(完整版)

绪论1.植物生理学的发展大致经历了哪几个阶段?2.21世纪植物生理学的发展趋势如何?3.近年来,由于生物化学和分子生物学的迅速发展,有人担心植物生理学将被其取代,谈谈你的观点。
参考答案1.答:植物生理学的发展大致经历了以下三个阶段:第一阶段:植物生理学的奠基阶段。
该阶段是指从植物生理学学尚未形成独立的科学体系之前,到矿质营养学说的建立。
第二阶段:植物生理学诞生与成长阶段。
该阶段是从1840年Liebig建立营养学说时起,到19世纪末植物生理学逐渐形成独立体系。
第三阶段:植物生理学的发展阶段。
从20世纪初到现在,植物生理学逐渐在植物学科中占中心地位,所有各个植物学的分支都离不开植物生理学。
2.答:.①与其他学科交叉渗透,从研究生物大分子到阐明个体生命活动功能、生产应用,并与环境生态相结合等方面。
微观方面,植物生命活动本质方面的研究向分子水平深入并不断综合。
在宏观方面,植物生理学与环境科学、生态学等密切结合,由植物个体扩大到群体,即人类地球-生物圈的大范围,大大扩展了植物生理学的研究范畴。
②对植物信号传递和转导的深入研究,将为揭示植物生命活动本质、调控植物生长发育开辟新的途径。
在21世纪,对光信号、植物激素信号、重力信号、电波信号及化学信号等所诱导的信号传递和转导机制的深入研究,将会揭开植物生理学崭新的一页。
③植物生命活动过程中物质代谢和能量转换的分子机制及其基因表达调控仍将是研究的重点。
在新世纪里,对植物生命活动过程中物质代谢和能量代谢转换的深入研究占有特别重要的位置。
目前,将光和能量转换机制与生理生态联系起来进行研究正在走向高潮,从而将光和能量转换机制研究与解决人类面临的粮食、能源问题紧密联系起来,以便在生产中发挥更大的指导作用。
第一章植物的水分代谢问答题1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何?2、植物受涝后,叶片为何会萎蔫或变黄?3、低温抑制根系吸水的主要原因是什么?4、简述植物叶片水势的日变化5、植物代谢旺盛的部位为什么自由水较多?6、简述气孔开闭的主要机理。
植物生理学简答题整理

植物生理学简答题1.简述水分在植物生命活动中得作用。
(1)水就是植物细胞得主要组成成分;(2)水分就是植物体内代谢过程得反应物质,参与呼吸作用,光合作用等过程。
(3)细胞分裂与伸长都需要水分、(4)水分就是植物对物质吸收与运输及生化反应得溶剂。
(5)水分能使植物保持固有姿态、(6)可以通过水得理化特性以调节植物周围得大气温度、湿度等。
对维持植物体温稳定与降低体温也有重要作用。
2、简述影响根系吸水得土壤条件(1)土壤中可用水量:当土壤中可用水分含量降低时,土壤溶液与根部细胞间得水势差减小,根系吸水缓慢(2)土壤通气状况:土壤通气状况不好,土壤缺氧与二氧化碳浓度过高,使根系细胞呼吸速率下降,引起根系吸水困难。
(3)土壤温度:低温不利于根系吸水,因为低温下细胞原生质黏度增加,水分扩散阻力加大;同时根呼吸速率下降,影响根压产生,主动吸水减弱、高温也不利于根系吸水,土温过高加速根得老化进程,根细胞中得各种酶蛋白高温变形失活。
(4)土壤溶液浓度:土壤溶液浓度过高引起水势降低,当土壤溶液水势与根部细胞得水势时,还会造成根系失水、3、导管中水分得运输何以能连续不断?由于植物体叶片得蒸腾失水产生很大得负净水压,将导管中得水柱向上拉动,形成水分得向上运输;水分子间有相互吸引得内聚力,该力很大,可达20MPa以上;同时,水柱本身有重量,受向下得重力影响,这样,上拉得力量与下拖得力量共同作用于导管水柱,水柱上就会产生张力,但水分子内聚力远大于水柱张力。
此外,水分子与导管或管胞细胞壁纤维素分子间还具有很大得附着力,因而维持了导管中水柱得连续性,使得导管水柱连续不断,这就就是内聚力-张力学说。
4.试述蒸腾作用得生理意义。
(1)就是植物对水分吸收与运输得主要动力。
(2)促进植物对矿物质与有机物得吸收及其在植物体内得转运、(3)能够降低叶片得温度,以免灼伤。
5、根系吸水有哪些途径并简述其概念。
答:有3条途径:质外体途径:指水分通过细胞壁,细胞间隙等部分得移动方式。
植物生理学简答题

1、用酸生长学说简述生长素促进植物细胞生长的作用机理。
答:IAA通过激活细胞膜H+—ATPase向外分泌H+,引起细胞壁环境的酸化,进而激活了一种乃至多种适宜低pH的壁水解酶,如水解果胶的β-半乳糖苷酶和水解多糖的β-1,4-葡萄糖酶的活性成倍增加;纤维素微纤丝的氢键易断裂,联系松弛,因而细胞壁可塑性增加,液泡吸水扩大,细胞伸长。
(208p)2、植物的蒸腾作用的生理意义?答:蒸腾作用在植物生命活动中具有重要的生理意义:第一,蒸腾作用失水所造成的水势梯度产生的蒸腾拉力是植物被动吸水和运输水分的主要驱动力,特别是高大的植物,如果没有蒸腾作用,植物较高的部分很难得到水分;第二,蒸腾作用借助于水的高汽化热特性,能够降低植物体和叶片温度,使其免遭高温强光灼伤;第三,蒸腾作用引起的上升液流,有助于根部从土壤中吸收的无机离子和有机物以及根中合成的有机物转运到植物体的各部分,满足生命活动需要。
(54p)3、一般可将光合作用分为哪三大阶段?并简述各阶段中的能量转换过程及相互间的关系。
答:整个光合作用可大致分为3个步骤:①原初反应。
②电子传递(含水的光解、放氧)和光合磷酸化。
③碳同化过程。
原初反应:聚光色素分子吸收光子而被激发,以“激子传递”和“共振传递”两种方式沿着能量水平较低的方向进行能量传递。
在反应中心激发反应中心色素分子(可直接吸收光子)而发生电荷分离,将光能转变为电能。
电子传递和光合磷酸化:电子经过一系列电子传递体的传递,引起水的裂解放氧和NADP+还原成NADPH,并通过光合磷酸化形成ATP,把电能转化为活跃的化学能。
碳同化:光反应形成的同化力(ATP 和NADPH)将CO2转化为糖类即将活跃的化学能转化为稳定的化学能。
(152p)4、简述在胞内信号转导中CaM的作用方式。
答:CaM是一种耐热、酸性小分子可溶性球蛋白。
每个CaM分子具有4个Ca2+结合位点,CaM必须与Ca2+结合后发生构象改变才具有生理活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论1.植物生理学的发展大致经历了哪几个阶段?2.21世纪植物生理学的发展趋势如何?3.近年来,由于生物化学和分子生物学的迅速发展,有人担心植物生理学将被其取代,谈谈你的观点。
参考答案1.答:植物生理学的发展大致经历了以下三个阶段:第一阶段:植物生理学的奠基阶段。
该阶段是指从植物生理学学尚未形成独立的科学体系之前,到矿质营养学说的建立。
第二阶段:植物生理学诞生与成长阶段。
该阶段是从1840年Liebig建立营养学说时起,到19世纪末植物生理学逐渐形成独立体系。
第三阶段:植物生理学的发展阶段。
从20世纪初到现在,植物生理学逐渐在植物学科中占中心地位,所有各个植物学的分支都离不开植物生理学。
2.答:.①与其他学科交叉渗透,从研究生物大分子到阐明个体生命活动功能、生产应用,并与环境生态相结合等方面。
微观方面,植物生命活动本质方面的研究向分子水平深入并不断综合。
在宏观方面,植物生理学与环境科学、生态学等密切结合,由植物个体扩大到群体,即人类地球-生物圈的大范围,大大扩展了植物生理学的研究范畴。
②对植物信号传递和转导的深入研究,将为揭示植物生命活动本质、调控植物生长发育开辟新的途径。
在21世纪,对光信号、植物激素信号、重力信号、电波信号及化学信号等所诱导的信号传递和转导机制的深入研究,将会揭开植物生理学崭新的一页。
③植物生命活动过程中物质代谢和能量转换的分子机制及其基因表达调控仍将是研究的重点。
在新世纪里,对植物生命活动过程中物质代谢和能量代谢转换的深入研究占有特别重要的位置。
目前,将光和能量转换机制与生理生态联系起来进行研究正在走向高潮,从而将光和能量转换机制研究与解决人类面临的粮食、能源问题紧密联系起来,以便在生产中发挥更大的指导作用。
第一章植物的水分代谢问答题1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何?2、植物受涝后,叶片为何会萎蔫或变黄?3、低温抑制根系吸水的主要原因是什么?4、简述植物叶片水势的日变化5、植物代谢旺盛的部位为什么自由水较多?6、简述气孔开闭的主要机理。
7、什么叫质壁分离现象?研究质壁分离有什么意义?8、简述蒸腾作用的生理意义。
9、解释“烧苗”现象的原因。
10、在农业生产上对农作物进行合理灌溉的依据有哪些?参考答案1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何?水分进入植物主要是从根毛——皮层——中柱——根的导管或管胞——茎的导管或管胞——叶的导管或管胞——叶肉细胞——叶细胞间隙——气孔下腔——气孔,然后到大气中去。
在导管、管胞中水分运输的动力是蒸腾拉力和根压,其中蒸腾拉力占主导地位。
在活细胞间的水分运输主要靠渗透。
2、植物受涝后,叶片为何会萎蔫或变黄?植物受涝后,叶子反而表现出缺水现象,如萎蔫或变黄,是由于土壤中充满着水,短时期内可使细胞呼吸减弱,根压的产生受到影响,因而阻碍吸水;长时间受涝,就会导致根部形成无氧呼吸,产生和累积较多的乙醇,致使根系中毒受害,吸水更少,叶片萎蔫变质,甚至引起植株死亡。
3、低温抑制根系吸水的主要原因是什么?低温降低根系吸水速度的原因是(1)水分本身的粘度增大,扩散速度降低;原生质粘度增大。
(2)水分不易透过原生质;呼吸作用减弱,影响根压;根系生长缓慢,有碍吸收表面积的增加。
(3)另一方面的重要原因,是低温降低了主动吸水机制中所依赖的活力。
4、简述植物叶片水势的日变化(1)叶片水势随一天中的光照及温度的变化而变化。
(2)从黎明到中午,在光强及温度逐渐增加的同时,叶片失水量逐渐增多,水势亦相应降低;(3)从下午至傍晚,随光照减弱和温度逐渐降低,叶片的失水量减少,叶水势逐渐增高;(4)夜间黑暗条件下,温度较低,叶片水势保持较高水平。
5、植物代谢旺盛的部位为什么自由水较多?(1)因为自由水可使细胞原生质里溶胶状态,参与代谢活动,保证了旺盛代谢的正常进行;(2)水是许多重要代谢过程的反应物质和介质,双是酶催化和物质吸收与运输的溶剂;(3)水能使植物保持固有的姿态,维持生理机能的正常运转。
所以,植物体内自由水越多,它所点的比重越大,代谢越旺盛。
6、简述气孔开闭的主要机理。
气孔开闭取决于保卫细胞及其相邻细胞的水势变化以及引起这些变化的内、外部因素,与昼夜交替有关。
在适温、供水充足的条件下,把植物从黑暗移向光照,保卫细胞的渗透势显著下降而吸水膨胀,导致气孔开放。
反之,当日间蒸腾过多,供水不足或夜幕布降临时,保卫细胞因渗透势上升,失水而缩小,导致气孔关闭。
气孔开闭的机理复杂,至少有以下三种假说:(1)淀粉——糖转化学说,光照时,保卫细胞内的叶绿体进行光合作用,消耗CO2,使细胞内PH值升高,促使淀粉在磷酸化酶催化下转变为1-磷酸葡萄糖,细胞内的葡萄糖浓度高,水势下降,副卫细胞的水进入保卫细胞,气孔便张开。
在黑暗中,则变化相反。
(2)无机离子吸收学说,保卫细胞的渗透系统亦可由钾离子(K+)所调节。
光合磷酸化产生ATP。
ATP使细胞质膜上的钾-氢离子泵作功,保卫细胞便可逆着与其周围表皮细胞之间的离子浓度差而吸收钾离子,降低保卫细胞水势,气孔张开。
(3)有机酸代谢学说,淀粉与苹果酸存在着相互消长的关系。
气孔开放时,葡萄糖增加,再经过糖酵解等一系列步骤,产生苹果酸,苹果酸解离的H+可与表皮细胞的K+交换,苹果酸根可平衡保卫细胞所吸入的K+。
气孔关闭时,此过程可逆转。
总之,苹果酸与K+在气孔开闭中起着互相配合的作用。
7、什么叫质壁分离现象?研究质壁分离有什么意义?植物细胞由于液泡失水而使原生质体和细胞壁分离的现象称为质壁分离。
在刚发生质壁分离时,原生质与细胞壁之间若接若离。
称为初始质壁分离。
把已发生质壁分离的细胞置于水势较高的溶液和纯水中,则细胞外的水分向内渗透,使液泡体积逐渐增大因而原生质层与细胞壁相接触,恢复原来的状态,这一现象叫质壁分离复原。
研究质壁分离可以鉴定细胞的死活,活细胞的原生质层才具半透膜性质,产生质壁分离现象,而死细胞无比现象;可测定细胞水势,在初始质壁分离时,此时细胞的渗透势就是水势(因为此时压力势为零):还可用以测定原生质透性、渗透势及粘滞性等。
8、简述蒸腾作用的生理意义。
(1)是植物水分吸收和运输的主要动力。
(2)促进植物对矿物质和有机物的吸收及其在植物体内的运输。
(3)能够降低叶片的温度,防止植物灼伤。
9、解释“烧苗”现象的原因。
一般土壤溶液的水势都高于根细胞水势,根系顺利吸水。
若施肥太多或过于集中,会造成土壤溶液水势低于根细胞水势,根系不但不能吸水还会丧失水分,故引起“烧苗”现象。
10、在农业生产上对农作物进行合理灌溉的依据有哪些?(1)作物从幼苗到开花结实,在其不同的生育期中的需水情况不同。
所以,在农业生产中根据作物的需水情况合理灌溉,既节约用水,又能保证作物对水分的需要。
(2)其次,要注意作物的水分临界期,一般在花粉母细胞、四分体形成期,一定要满足作物水分的需要。
(3)其三,不同作物对水分的需要量不同,一般可根据蒸腾系数的大小来估计其对水分的需要量。
以作物的生物产量乘以蒸腾系数可大致估计作物的需水量,可作为汇聚灌溉用水量的参数。
第二章植物的矿质营养问答题1、支持矿质元素主动吸收的载体学说有哪些实验证据?并解释之。
2、 2、N 肥过多时,植物表现出哪些失调症状?为什么?3、为什么将N 、P 、K 称为肥料的三要素?4、肥料适当深施有什么好处?5、举出10种元素,说明它们在光合作用中的生理作用。
6、NO3-进入植物之后是怎样运输的?在细胞的哪些部分、在什么酶催化下还原成氨?7、是谁在哪一年发明了溶液培养法?它的发明有何意义?8、固氮酶有哪些特性?简述生物固氮的机理。
9、设计一个实验证明植物根系对离子的交换吸附。
10、钾在植物体内的生理作用是什么?举例说明。
11、影响植物根部吸收矿质的主要因素有哪些?12、何为根外营养?其结构基础是什么?它有何优越性?13、试述矿物质在植物体内运输的形式与途径,可用什么方法证明?14、什么是营养临界期及营养最大效率期?它们对作物产量形成有何影响?15、必需矿质元素应具备哪几条标准?目前已知植物必需元素共有多少种?其中大量与微量元素各为多少种?各是指哪些元素?16、目前,生物因素氨的机理之主要内容是什么?参考答案1、支持矿质元素主动吸收的载体学说有哪些实验证据?并解释之。
(1)选择吸收。
不同的离子载体具有各自特殊的空间结构,只有满足其空间要求的离子才能被运载过膜。
由于不同的离子其电荷量和水合半径可能不等,从而表现出选择性吸收。
例如,细胞在K +和Na +浓度相等的一溶液中时,即使二离子的电荷相等,但它们的水合半径不等,因而细胞对K +的吸收远大于对Na +的吸收。
(2)竞争抑制。
Na +的存在不影响细胞对的K +吸收,但同样是第一主族的+1价离子Rb +的存在,却能降低细胞对K +的吸收。
这是因为不仅Rb +所携带的电荷与K +相等,而且其水合半径也与K +的几乎相等,从而使得Rb +可满足运载K +的载体对空间和电荷的要求,结果表现出竞争抑制。
(3)饱和效应。
由于膜上载体的数目有限,因而具有饱和效应。
2、N 肥过多时,植物表现出哪些失调症状?为什么?叶色墨绿,叶大而厚且易披垂、组织柔嫩、茎叶疯长、易倒伏和易感病虫害等。
这是因为N 素过多时,光合作用所产生的碳水化合物大量用于合成蛋白质、叶绿素和其它含氮化合物,使原生质含量大增,而用于合成细胞壁物质(纤维素、半纤维素和果胶物质等)的光合产物减少。
这样一来,由于叶绿素的合成增加,因而表现出叶色墨绿;原生质的增加使细胞增大,从而使叶片增大增厚,再加上原生质的高度水合作用和细胞壁机械组织的减少,使细胞大而薄,且重,因而叶片重量增加,故易于披垂;由于光合产物大理用于原生质的增加,而用于细胞壁物质的合成减少,因而表现出徒长和组织柔嫩多汁,其结果就是易于倒伏和易感病虫害。
3、为什么将N 、P 、K 称为肥料的三要素?因为植物对N 、P 、K 这三种元素的需要量较大,而土壤中又往往供应不足,成为植物生长发育的明显限制因子,对于耕作土壤更是如此。
当向土壤中施加这三种肥料时,作物产量将会显著提高。
所以,将N 、P 、K 称为肥料的三要素。
4、肥料适当深施有什么好处?因为表施的肥料氧化剧烈,且易于流失和挥发,对4NH N +-肥尤其如此。
所以,肥料适当深施可减少养分的流失、挥发和氧化,从而增加肥料的利用率,并使供肥稳而久。
此外,植物根系生长具有趋肥性,所以肥料适当深施还可使作物根系深扎,植株健壮,增产显著。
5、举出10种元素,说明它们在光合作用中的生理作用。
(1)N :叶绿素、细胞色素、酶类和膜结构等的组成成分。
(2)P :NADP 为含磷的辅酶,ATP 的高能磷酸键为光合碳循环所必需;光合碳循环的中间产物都是含磷酸基因的糖类,淀粉合成主要通过含磷的ADPG 进行;促进三碳糖外运到细胞质,合成蔗糖。