混凝实验指导书
混凝实验

实验1 混凝实验一、实验目的通过本实验希望达到下述目的:1.学会求得给定水体最佳混凝条件(包括投药量、pH值)的基本方法。
2.加深对混凝机理的理解。
二、实验原理混凝通常能有效地去除原水中的悬浮物和胶体物质,降低出水浊度和BOD5;混凝一般适用于粒度在1nm~100μm的分散体系。
胶粒在水中受几方面的影响:由于胶粒带电,产生的静电斥力;布朗运动;分子之间存在着相互引力—范德华引力;极性水分子吸引到它周围形成一层水化膜。
受这几方面影响因素的影响,胶体微粒长期处于分散状态,比较稳定,难于被去除。
胶体颗粒被去除主要是通过以下三个作用:1.压缩双电层作用水中胶粒能维持稳定的分散悬浮状态,主要是由于胶粒的ξ电位。
如能消除或降低胶粒的ξ电位,就有可能使微粒碰撞聚结,失去稳定性。
ξ电位的降低是依靠胶粒表面的双电层变薄而实现的。
2.吸附架桥作用无机小分子的混凝剂溶于水后,经水解和缩聚反应形成高分子聚合物,具有线性结构。
这类高分子顺被胶体微粒所强烈吸附。
因其线性长度较大,当它的一端吸附某一胶粒后,另一端又吸附另一胶粒,在相距较远的两胶粒间进行吸附架桥,使颗粒逐渐结大,形成肉眼可见的粗大絮凝体。
3.网捕作用有些混凝剂水解后能生成沉淀物。
这些沉淀物在自身沉降过程中,能集卷、网捕水中的胶体等微粒,使胶体粘结。
影响混凝效果的因素有:(1)水温,水解是吸热反应,所以水温对无机盐类混凝的效果影响极大;(2)pH,硫酸铝:pH为6.5~7.5,除水中的浊度;pH为4.5~5,脱色。
Fe2+:pH>8.5,Fe3+:pH为6.0~8.4,一般高分子混凝剂尤其是有机高分子混凝剂,受pH的影响较小。
(3)水中杂质的成分、性质和浓度,例如:天然水中杂质为粘土类,加的絮凝剂量就少;污水中有机物含量大,消耗絮凝剂的量就大。
(4)水力条件,混凝过程包括混合和反应两个阶段。
混合阶段:快速和剧烈搅拌,几秒钟内可以完成。
反应阶段:随着絮凝体的结大而降低。
混凝实验指导书

用浊度仪测定原水浊度;用温度计测定原水温度。
用1000ml量筒分别向六个1000ml烧杯中各注入水样1000ml,烧杯置于搅拌机下,搅拌轴应位于烧杯中心处。
用5ml、10ml移液管以设计的加注量依次加入各烧杯中。
启动搅拌机,快速搅拌1分钟,转速为每分钟300转;中速搅拌5分钟,转速为每分钟120转;慢速搅拌10分钟,转速为每分钟80转。
4.正式实验
按照修改的实验设计方案和操作步骤认真进行正式实验,并强化小组成员的协调与配合,力争实验成功。实验过程中,记录好试验的原始数据;试验结束后,及时整理、分析实验结果。
5.撰写实验报告
各实验小组对实验数据进行归纳和处理,撰写实验报告和论文。
五. 实验成果分析
1.通过观察现象和实验成果分析,请指出如要进一步确定较准确的投药量或PH值应如何进行实验。
3.充分查阅相关文献资料,熟悉所用设备仪器的正确使用方法与注意事项,试验操作熟练,分析测定数据正确。
4.在完成设计性实验的整个过程中,充分发挥学生的实际水平与能力,力求有所创新。
5.通过本实验,观察矾花的形成过程及混凝沉淀效果。确定某水样的最佳药剂,最佳投药量和混凝最佳条件。
6.树立良好的团队和协作精神,严格遵守实验室各项规章制度。
附1:混凝沉淀实验参考资料
(一)实验目的和要求:
1.了解混凝实验设备的构造,掌握设备仪器的使用方法。
2.观察混凝现象,从而加深对混凝理论的理解。
3.掌握用实验方法确定某种水样最有效的混凝剂品种及最佳投加量。
4.掌握用实验方法求出所用混凝剂在混凝时的最佳PH值及其适用范围。
5.搅拌功率的计算
(二)实验原理:天然水中存在大量胶体颗粒,使原水产生浑浊度。我们进行水质处理的根本任务之一,则正是为了降低或消除水的浑浊度。
混凝搅拌实验作业指导书

混凝搅拌实验作业指导书混凝搅拌实验作业指导书一、实验器材六联搅拌器、浊度仪、pH计、称量天平、刻度吸管、容量瓶、烧杯、玻璃棒、聚合氯化铝(铁)二、实验步骤1.配制浓度为5g/L的聚合氯化铝(铁)溶液称取1.0g的聚合氯化铝(铁)用纯水溶于烧杯中,用玻璃棒充分搅拌成透明溶液,用容量瓶定容至200mL。
(注:称取的质量与容量瓶的容积可以按照配制浓度5g/L可以自行调整)2.设置好六联搅拌器的编程共有5个步骤,可以根据《混凝搅拌实验原始记录表》上的信息设置搅拌时间、转速、沉淀时间等等。
(注:编程设置一次就可以了,只要不删除就可以一直使用)3.六联搅拌器的运行①检测水源水的水温、pH、浑浊度,并用《混凝搅拌实验原始记录表》记录。
②记录好水源水的水温、pH、浑浊度后,将水源水充分摇匀,并将1L的水源水分装于6只搅拌杯中,并根据混凝剂的投加量用刻度吸管吸取相应体积比例的聚合氯化铝(铁)溶液注入搅拌杯上方的试管中。
点击编程的开始按键,待自动向搅拌杯倒入聚合溶液后,再次注入纯水清洗试管中残余药液,并手动转动横轴将清洗的残夜倒入搅拌杯,减少聚合溶液的损失。
③观察水体中絮凝反应的现象,根据设置的步骤记录矾花生成的时间、大小、密实度。
④待沉淀时间结束后,用配备的针筒抽取搅拌杯中的上清液至相应编号的烧杯,针筒可以用相应的上清液润洗以减少误差,通常抽取2筒100—120mL就足够检测pH、浑浊度了。
(注:通常液面上会漂浮矾花,要取液面2cm以下的上清液;盛上清液的烧杯及搅拌杯要编号,防止检测时混淆)4.上清液的检测根据编号1到6的顺序检测,上清液的浑浊度要重复检测3次,并记录,求平均值。
pH值待pH计数值稳定后便可以记录。
(注:浑浊度的变化在合理的混凝剂投加量区间范围内呈U型曲线;pH值通常同混凝剂投加量越大而变低呈下降的趋势,室内的温度、空气与液面的接触等因素也会对pH有一定的影响)三、混凝搅拌实验数据的汇总分析与报告混凝搅拌实验数据按照《混凝搅拌实验原始记录表》汇总并分析保存,要将数据报告至制水中心。
混凝实验指导书

《混凝沉淀实验》一、实验目的(1)熟悉混凝操作,观察混凝现象,深入理解混凝机理。
(2)确定混凝剂的最佳投药量。
(3)计算反应过程的G值和GT值。
二、实验原理水中的胶体颗粒,主要是带负电的黏土颗粒。
胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。
因此,胶体颗粒靠自然沉淀是不能除去的。
向水中投加的混凝剂能提供大量的正离子,压缩胶团的扩散层使ζ电位降低,静电斥力减少。
此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚。
水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤出去需要克服特殊的阻力,阻碍胶粒直接接触。
有些水化膜的存在决定于双电层状态,投加混凝剂降低电动电位,有可能使水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。
混凝是凝聚和絮凝的总称。
向水中投加混凝剂,可以使胶体颗粒脱稳,脱稳后的胶粒后相互聚结形成微絮粒的过程,称为凝聚;微絮粒相互粘附聚集或通过高分子物质吸附架桥作用而使微粒相互黏结,而形成絮凝体的过程,称为絮凝。
根据混凝过程的特点,混凝操作分为两个阶段,即混合阶段和絮凝阶段,两个阶段的操作要求明显不同。
混合阶段的操作要求是快速(1min之内)和剧烈搅拌(速度梯度G在500~1000s-1),而絮凝反应阶段的操作要求是反应时间较长(15~30min),搅拌强度较小(速度梯度G为10~70s-1),一般Gt值应控制在104~105之间。
三、实验设备与试剂(1) 无级调速六联混凝搅拌机。
(2) pH酸度计。
(3 )浊度计。
(4) 1ml,2ml,5ml,10ml, 移液管各1支。
(5) 200mL、500ml烧杯,1000ml量筒,吸耳球等。
(6)混凝剂为硫酸铝(AS)和聚合氯化铝(PAC),使用时分别配置成10g/L的溶液。
(7) 10%的NaOH溶液和l0%HCI溶液500mL各l瓶。
实验1 混凝实验

实验1 化学混凝实验混凝实验是水处理的基础实验之一,被广泛应用于科研、生产中。
分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除。
向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。
由于各种原水有很大差别,混凝效果不尽相同。
混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。
通过混凝实验,不仅可以选择投加药剂种类、数量,还可确定混凝最佳条件。
一、实验目的1. 学会求得某水样最佳混凝条件(包括pH值、投药量)的基本方法。
2. 了解混凝的现象及过程,观察矾花的形成及混凝沉淀效果。
3. 加深对混凝机理的理解。
二、实验原理化学混凝法是用来去除水中无机和有机的胶体颗粒。
通常废水中的胶体颗粒的大小变化约在100埃到10微米之间,胶粒之间的静电斥力、胶粒的布朗运动及胶粒表面的水化作用,使胶粒具有分散稳定性,使胶粒靠自然沉淀不能除去。
混凝过程包括胶体的脱稳和颗粒增大的凝聚作用,随后这些大颗粒可用沉淀、气浮或过滤法去除。
消除或降低胶体颗粒稳定因素的过程叫脱稳,脱稳是通过投加强的阳离子电解质如Al3+、Fe3+或阳离子高分子电解质来降低Zeta电位,或者是由于形成了带正电荷的含水氧化物而吸附胶体,或者是通过阴离子和阳离子高分子电解质的自然凝聚,或者是由于胶体被围在含水氧化物的矾花内等方式来完成的。
混凝剂使胶体脱稳的主要作用是压缩双电层和吸附架桥。
脱稳后的胶粒,在一定的水力条件下,能形成较大的絮凝体(俗称矾花),该过程称为凝聚。
由于布朗运动造成的颗粒碰撞絮凝,叫“异向絮凝”;由机械运动或液体流动造成的颗粒碰撞絮凝,叫“同向絮凝”。
异向絮凝只对微小颗粒起作用,当粒径大于1~5微米时,布朗运动基本消失。
从胶体颗粒变成较大的矾花是一连续过程,为了研究方便可划分为混合和反应两个阶段。
混合阶段要求混凝剂和废水快速混合均匀,一般在几秒钟或一分钟内完成,该阶段只能产生肉眼难以看见的微絮凝体;反应阶段要求搅拌强度随矾花的增大而逐渐降低以免结大的矾花被打碎而影响混凝的效果,反应时间约15~30min,该阶段微絮凝体形成较密实的大粒径矾花。
混凝实训

混凝实训一、实训目的⑴学会求得最佳混凝条件(包括投药量、pH值)的基本方法⑵加深对混凝机理的理解二、实训原理分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除,致使水中这种含浊状态稳定。
向水中投加混凝剂后,由于(1)能降低颗粒间的排斥能峰,降低胶粒的ζ电位,实现胶粒“脱稳”,(2)同时也能发生高聚物式高分子混凝剂的吸附架桥作用,(3)网捕作用,从而达到颗粒的凝聚,最终沉淀从水中分离出来。
三、实训步骤1.配制实训药剂(1)精制硫酸铝Al2(SO4)3·18H2O浓度100g/L(2)硫酸亚铁FeSO4浓度100g/L(3)聚合氯化铝[Al2(OH)m C16-m] 浓度100g/L(4)化学纯盐酸HCl浓度10%(5)化学纯氢氧化钠NaOH浓度10%(6)聚丙烯酰胺(1g/L)2.制作标准曲线(1)配制浓度0.5g/L的原水水样(2)分别取0mL、0.5 mL、1 mL、2 mL、5 mL、8 mL、10 mL、15 mL、50 mL原水水样放入比色管,用分光光度计做出标准曲线。
3.确定最佳混凝剂(1)确定原水特征,测定原水水样污染物浓度、pH值、温度。
(2)在4个500mL的烧杯中加入400mL的原水,用搅拌器(150r/min)转速搅拌,分别加入硫酸铝、硫酸亚铁、聚合氯化铝、聚丙烯酰胺,每次增加0.5mL混凝剂投加量,直至出现矾花位置。
这是混凝剂量就是最小投加量。
聚合氯化铝2mL的时候出现矾花,硫酸亚铁3mL出现矾花。
(3)停止搅拌,静置10分钟,取上清液去测吸光度,对照标准曲线,求出上清液的污染物浓度。
根据价格,投加量,处理效率,最后确定聚合氯化铝为最佳混凝剂。
4.确定最佳投药量(1)取6个烧杯,分别加入400mL的原水,分别加入1mL、2 mL、2.5 mL、3 mL、4 mL、6 mL的聚合氯化铝。
(2)启动搅拌器,转速(300r/min)搅拌半分钟,转速(150r/min)搅拌6分钟,转速(70r/min)搅拌10分钟。
环境工程专业综合实验指导书--实验四 药剂混凝最佳效果实验

实验四药剂混凝最佳效果实验一实验目的1、了解混凝法在废水处理中的应用。
2、观察并确定在一定水力梯度的搅拌条件下处理某种废水时最佳效果的pH值和最佳投药量。
3、进一步掌握混凝过程的作用机理。
二实验理论基础与方法要点生活污水与工业污水的特点是水量大、水质复杂且变化大,除含有机污染物外,还含有一定数量的悬浮物、洗涤中的氮、磷等污物。
对特种工业如石油炼制、石油化工、造纸、冶金、食品、制药、化肥等工业污水其污染物就更复杂,水质变化更大,在进入生化处理之前均应经过混凝、气浮作预处理,除去悬浮物和胶体污物。
这一过程包括凝聚和絮凝两步:凝聚主要是通过压缩双电层和电性中和机理作用,使胶体和悬浮物脱稳和聚集的过程,所加入的药剂称为凝聚剂;絮凝主要是通过吸附桥联机理作用成长为更大絮体的过程,所加入的药剂称为絮凝剂。
同时兼有这两者功能的过程称为混凝,具有这两种功能的药剂则称为混凝剂。
无机盐混凝剂如聚铝、聚铁等无机和有机高分子化合物混凝过程中起三种作用:(1)A13+(Fe3+)及其低聚合度高电荷的多核络离子的脱稳和凝聚作用;(2)高聚合度络离子的桥连絮凝作用;(3)氢氧化物沉淀形态和有机物高聚物形式存在时的网捕卷带作用。
这三种作用可同时存在,但在不同的条件下则可能以某一作用为主。
通常在pH偏低,胶体及悬浮物浓度高,投药量尚不足的反应初期,脱稳凝聚是主要形式;pH值较高,污染物浓度较低,投药量充分时,网捕是主要形式;而在pH值和投药量适中时,桥连卷带应为主要作用形式。
三实验装置材料和设备(1)六联式搅拌器(或磁力搅拌器):1台(2)光电式浊度仪GDS-3型:1台(3)色度计(光电比色计):1台(4)烧杯:1000mL 6个;250mL 8个(5)量筒:1000mL 1个;100mL 1个(6)移液管:1、2、5、10mL各2支(7)温度计:100℃1支(8)秒表:1只(9)酸度计:1台材料:(1)聚合氯化铝(PAC) (2)5%NaOH溶液(3)5%H2SO4溶液(4)聚丙烯酰胺(PAM)(5)生活污水(或周溪河水)(6)壶式塑料桶(10升):4只(全班共用)(7)COD测定仪(或CODcr -K2Cr2O7测定法全套装置)四实验步骤1、先将PAC配成10g/L的溶液,PAM配成1g/L的溶液,此项工作由实验员先准备。
混凝剂加药量实验指导书

实验一混凝剂加药量实验指导书1. 目的要求(1)观察混凝现象,从而加深对混凝理论的理解;(2)确定水样的最佳投药量。
2. 方法原理水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体表面的水化作用,致使水中胶体颗粒稳定的分散在水中,不能采用自然沉降的方法去除。
向水中投加混凝剂后,首先发生的是电离和水解反应。
如以硫酸铝[Al2(SO4)3·18H2O]作混凝剂为例,则生成氢氧化铝。
电离: Al2(SO4)3→2Al3+ + 3SO42-水解: Al3+ + 3H2O→Al(OH)3 + 3H+电离、水解过程很快,通常在30s内即可完成。
氢氧化铝是溶解度很小的化合物,当水的pH值合适时,即从水中析出带正电胶体的A1(OH)3胶体。
在一系列物理、化学作用下,析出的A1(OH)3胶体于水中的胶体颗粒结合,凝聚成粗大的絮状物(通常称为矾花),然后在重力的作用下沉降,使水中的胶体和悬浮物得到去除。
3. 实验仪器及药品混凝搅拌器、浊度仪、温度计、烧杯、量筒、移液管、10g/L硫酸铝溶液4. 实验步骤(1)了解混凝搅拌器的使用方法。
(2) 测定原水的浊度和水温。
(3) 量取200mL水样至烧杯中,确定原水能够形成矾花的近似最小混凝剂量。
方法是缓慢搅拌水样,用移液管每次增加0.5mL的混凝剂直至出现矾花为止。
这时的混凝剂量作为形成矾花的最小投加量。
(4)量取6份1000mL水样至烧杯中。
注意:所取水样要搅拌均匀,要一次量取,以尽量减少取样浓度上的误差。
(5) 以形成矾花的最小投加量的1/4为最小加药量,形成矾花的最小投加量的2倍为最大加药量,平均把混凝剂加入到6份水样中。
(6) 启动搅拌器。
首先以150r/min的速度快速搅拌3-5min,再以50-80r/min的速度搅拌20min。
搅拌过程中,注意观察并记录“矾花”形成的过程,“矾花”形成的快慢、外观、大小、密实程度、下沉快慢等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《混凝沉淀实验》
一、实验目的
(1)熟悉混凝操作,观察混凝现象,深入理解混凝机理。
(2)确定混凝剂的最佳投药量。
(3)计算反应过程的G值和GT值。
二、实验原理
水中的胶体颗粒,主要是带负电的黏土颗粒。
胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。
因此,胶体颗粒靠自然沉淀是不能除去的。
向水中投加的混凝剂能提供大量的正离子,压缩胶团的扩散层使ζ电位降低,静电斥力减少。
此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚。
水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤出去需要克服特殊的阻力,阻碍胶粒直接接触。
有些水化膜的存在决定于双电层状态,投加混凝剂降低电动电位,有可能使水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。
混凝是凝聚和絮凝的总称。
向水中投加混凝剂,可以使胶体颗粒脱稳,脱稳后的胶粒后相互聚结形成微絮粒的过程,称为凝聚;微絮粒相互粘附聚集或通过高分子物质吸附架桥作用而使微粒相互黏结,而形成絮凝体的过程,称为絮凝。
根据混凝过程的特点,混凝操作分为两个阶段,即混合阶段和絮凝阶段,两个阶段的操作要求明显不同。
混合阶段的操作要求是快速(1min之内)和剧烈搅拌(速度梯度G在500~1000s-1),而絮凝反应阶段的操作要求是反应时间较长(15~30min),搅拌强度较小(速度梯度G为10~70s-1),一般Gt值应控制在104~105之间。
三、实验设备与试剂
(1) 无级调速六联混凝搅拌机。
(2) pH酸度计。
(3 )浊度计。
(4) 1ml,2ml,5ml,10ml, 移液管各1支。
(5) 200mL、500ml烧杯,1000ml量筒,吸耳球等。
(6)混凝剂为硫酸铝(AS)和聚合氯化铝(PAC),使用时分别配置成10g/L的溶液。
(7) 10%的NaOH溶液和l0%HCI溶液500mL各l瓶。
(8) 实验原水为高岭土悬浊液,进行混凝操作前将原水pH值调节至6-8之间。
四、实验步骤
(1)测定原水的浊度,将原水pH值调节至6-8之间。
(2)用1000mL量简量取6份水样至6个1000mL烧杯中,将装有水样的烧杯放在搅拌器下,保持各烧杯中的搅拌器位置相同
(3)设定搅拌程序:首先是快速搅拌,时间为0.5min,搅拌器转速为200~300r/min;然后是缓慢搅拌,时间为15~30min,搅拌器转速为40~60r/min。
(4)用移液管依次量取六份不同剂量的混凝剂溶液,并添加到投药器中。
(5)启动搅拌程序,同时投加混凝剂,混凝操作开始。
(6)搅拌过程中,注意观察并记录矾花形成的过程、矾花大小、密实程度。
(7)混凝操作完成后,轻轻提升搅拌器,静置沉淀15min,并观察矾花沉淀情况。
(9)沉降完成后,从取样口分别取出各烧杯中的上清液,并测其浊度及相应的pH值。
(10)计算絮凝反应过程中的速度梯度G及GT值。
五、实验结果整理
(1)把原水特征、混凝剂投加情况、沉淀后的水样蚀度及pH值记入表格。
(2)以沉淀后水样浊度为纵坐标,混凝剂加注最为横坐标,绘出浊度与投药量关系曲线,并在图上求出最佳馄凝剂投加量。
(3)计算水样慢速搅拌过程的速度梯度G及GT值。
分析其是否在合适范围。
(4)实验记录参考格式。
实验小组名单:实验日期:
快速搅拌时间及转速:
慢速搅拌时间及转速:
混凝剂名称:
原水浊度:
原水pH值:
实验结果记录及整理表:
六、注意事项
(1)取水样时,所取水样要搅拌均匀,要一次量取以尽量减少所取水样浓度上的差别。
(3)沉淀完成后,移取烧杯中的上清液时,要在相同条件下移取,不要把沉下去的矾花搅起来。
七、思考题
(1)为什么最大投药量时,混凝效果不一定好?
(2)根据实验结果,分别采用AS和PAC作为混凝剂时,在相同投药量下,那种混凝剂的混凝效果更好?为什么?。