高中数学立体几何教学论文

合集下载

高中数学立体几何教学论文

高中数学立体几何教学论文

高中数学立体几何教学论文一、立体几何的特点立体几何的典型特点就在于其“立体”,即三维。

在学习平面几何时,学生完全可以通过平面的点、线以及相关的公理来证明和判断它们之间的关系,但是在立体几何学习过程中,如果仍仅仅依靠这样的判断是不够的,还需要增加空间想象能力。

初学立体几何时,很多学生难以适应,其主要原因是难以从二维平面中感知到三维图像,也就是说,学习立体几何除了相关的公理之外,最重要的就是空间想象能力,这是立体几何的特点所决定的。

二、实现高中数学立体几何的有效性相应的,高中数学立体几何的教学,不是一个简单的过程,恰恰相反,由于不同的学生有不同的特点,加上立体几何教学过程本身就十分繁琐,因此,对高中数学立体几何的有效性的实现,需要采取众多策略。

1.通过画图来提高学生对基础知识的运用立体几何学习的难度,不仅仅在于通过二维空间表现三维空间的特点,还在于通过文字来表现三维空间,而后者则要求学生能够根据文字的描述,进行图画的创造。

其实,教师引导学生通过画图来解答题目,还在一定程度上加深了学生对基础知识的理解和运用。

比如在讲授面面垂直这一基本公理时,首先学生应该明白证明面A与面B垂直,只需要证明面A中的一条直线m与面B垂直,而要证明直线m垂直于面B,只需要证明直线m与面B中的两条相交的直线n和h垂直即可,通过这样的分析,学生就可以画出相应的图画。

虽然学生在解答立体几何题目中,题干中往往会给出特定的图像,但是教师在对学生的日常训练中,要引导学生自主画图像,这对于培养学生的空间想象力,无疑具有十分积极的意义。

2.通过多媒体的运用来提高学习效果多媒体教学最重要的特点,就是可以通过模拟的方式,来解决学生通过想象不能理解的问题。

其优势体现在以下几个方面:第一,可以加深学生对立体几何知识的理解。

前面提到过,学生学习立体几何最大的难点,就是需要通过空间想象能力来实现二维平面向三位空间的转换,而通过多媒体教学,可以向学生直观地展现三维的立体空间,以彻底打开学生的空间思维能力。

立体几何教学中培养学生的空间想象能力优秀获奖科研论文

立体几何教学中培养学生的空间想象能力优秀获奖科研论文

立体几何教学中培养学生的空间想象能力优秀获奖科研论文立体几何作为高中数学教学中一个重要的组成部分,是研究现实生活中物体尺寸、形状以及位置关系的学科,要求学生通过自我感知或者实践操作等方式了解和认识当前人类社会的现实事物.而空间想象力则是帮助学生理解立体几何知识,提高学生解决立体几何问题的能力.在新课标教育理念下,加强学生的空间想象能力培养刻不容缓.下面结合自己的教学实践谈点体会.一、借助实物模型,培养学生的空间想象能力“知识源于生活”.立体几何知识与生活实际具有紧密的联系.只要我们用心观察,不难发现当前的现实生活中处处存在着与立体几何知识相关的实物或者模型.但是在现阶段的高中立体几何教学中,教师大都按照教材中的有关立体图形讲解有关的立体几何知识,甚至单纯地通过口述讲解的方式来要求学生将这些立体几何知识通过死记硬背或者“题海战术”等方法加以记忆.而如果教师合理运用实物模型,那么学生可以直观地观察和分析有关的立体几何知识,尤其是可以促使学生实现从数学概念的感性认识向理性认识方向转化,有助于培养学生的空间想象能力,从而为提升学生的立体几何解题能力奠定基础.例如,在讲“两个平行平面”时,为了使学生切实理解和认识该部分的数学知识,教师可以以教室中的地面和天花板为例,那么墙角线和灯管则可以分别看作是垂直和平行于这两个平面的直线.教师还可以借助篮球、足球等球体,使学生深刻理解球体的概念和性质.此外,针对教学内容的实物模型而言,既可以是学生在现实生活中看到的各种实物和模型,也可以是学生耳熟能详或者借助网络等方式了解到的有关数学知识.例如,在讲“棱锥”时,教师可以以金字塔为例.一听到金字塔,学生就会不自觉地在头脑中形成一幅有关金字塔的图画,从而使学生深刻了解该部分的立体几何知识.二、恰用现代技术,培养学生的空间想象能力随着现代信息技术的迅猛发展,数字化教学资源在课堂教学中得到广泛的应用,为立体几何教学提供了极大帮助,同时为培养学生的空间想象能力奠定了扎实的基础.在高中数学立体几何教学中,数字化资源等现代技术的合理运用,可以将立体图形动态变化,并且可以配以动情的声音、生动的动画以及丰富的色彩,使学生全方位、多角度地观察和认识立体几何.比如,多媒体技术和几何画板,等均是比较典型的数字化教学资源.其中的几何画板,可以使学生便捷地绘制有关的立体几何图形,并且可以实现立体几何图形的三维变化,从而有助于培养学生的空间想象力.而多媒体的技术则同几何画板类似,但是其可以实现多媒体课件和运动观念进行有效地结合,有利于弥补传统立体几何教学中存在的直观性和立体感差等缺点和不足,同时有利于拓展学生的空间想象力,以便借此来逐步培养学生的空间想象力.例如,在讲“锥体”时,教师可以引导学生借助几何画板来自由绘制一个大棱锥,接着从其上部割下一个小棱锥,并将其移出去,学生即可观察到剩下的锥体部分实际上就是棱台.如此一来,学生可以直观地观察和了解棱台和锥体两者间的关系.在立体几何教学中,借助几何画板的合理运用,学生的学习兴趣被充分激发,相应的学习效果自然比较理想,同时使学生在掌握教学内容的基础上培养自己的空间想象能力.此外,借助多媒体技术的合理运用,教师可以借此编制出具有极强控制力的模拟演示,也可以借此来体现立体几何方面的数形结合思想,从而有利于培养学生的空间想象能力.三、践行教学训练,培养学生的空间想象能力“熟能生巧”.为了培养学生的空间想象能力,教师在教学中要引导学生参与教学训练活动,尤其是要为学生布置一些合适的作业练习任务.比如,在每堂课结束之后,教师要为学生布置一些与教学内容相关的作业练习题目,使学生通过反复训练来巩固自己的已学知识,培养学生的空间想象能力.此外,在为学生布置作业训练任务的过程中,教师需要本着圆周式的循环训练模式,以便将学生已学的数学知识反复重现在学生的眼前,从而增强学生的训练效果,尤其是要及时发现和解决学生在做作业过程中存在的各种错误或者问题,从而培养学生的空间想象能力.总之,空间想象能力是提升学生立体几何解题能力的关键.为了提升学生的立体几何解题能力,教师就要重视培养学生的空间想象能力.在立体几何教学中,教师要从学生的学习实际和教学内容出发,制定科学、合理的教学方法,创新教学方式,培养学生的空间想象力,从而提升学生的立体几何解题能力.。

高中数学教学论文 立体几何中图形能力的培养

高中数学教学论文 立体几何中图形能力的培养

立体几何中图形能力的培养随着新课改的深入,高中数学新《课程标准》对空间想像能力提出了更高的要求,并赋予了新的内容。

“空间想象能力” 是对空间形式的观察、分析、抽象的能力。

主要表现为识图、画图和对图形的想象能力识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形和对图形进行各种变换,对图形的想象主要包括有图想图和无图想图两种。

画出空间图形的直观图,对空间图形中位置关系的识别,恰当地变换处理图形,运用空间图形解决问题是学好立体几何的关键,是空间想像能力的核心部分。

因此,在实际教学中,应重视读图、视图能力的培养;重视耐心观察而获取感性认识的推理过程。

对此我提出如下建议供大家参考。

一.重视基本作图技能的训练,培养学生的作图能力立体几何离不开图形,学好立体几何应从图形入手,学会画图、视图、用图。

首先教师要高度重视作图教学,把图形教学落实到具体。

要认识到培养空间想像能力,必须过好作图这一关,教师应从学生的数学素质全面提高和终生发展出发,重视图形教学。

其次教师要从最基本的平面图形的直观图、几何体的直观图入手,作好示范、严格要求,引导学生作出一个个漂亮而富有立体感的直观图,丰富学生的美感和想像力。

不仅要讲清画图的规则,还要弄清该画法的原理,努力使学生通过学习,能掌握斜二侧画法的规则,知道从不同角度观察几何图形可以获得不同影像,而在解决问题时又能根据需要灵活地作出适合问题解决的图形。

再次是基本作图技能的训练。

如在作位置关系比较复杂的图形时,应先画出限制条件多 的线和面,再画限制条件少的线和面。

证明线面平行时可以通过“过直线,作平面,找交线”的思路确定要找的直线。

再如用平移法作异面直线所成的角等常规作图技能要强化训练。

使学生熟练的掌握。

最后要非常熟悉基本的几何图形(如三棱锥、正四面体、正方体、直角四面体等),并能正确画图,能在头脑中分析基本图形的基本元素之间的度量关系及位置关系,使学生关于空间模型的认知结构逐步丰富起来。

高中数学论文立体几何

高中数学论文立体几何

高中数学论文立体几何篇一:如何学好立体几何摘要:立体几何是研究空间图形的性质及其应用的一门学科,学好立体几何应注意下面几个环节。

关键词:立体几何;作图;语言互译一、立体几何入门从作图开始空间图形是立体几何特有的一种语言形式,因为很多时候,看题目里的文字,感到模模糊糊,画个图一看,就清清楚楚了。

在初中学习平面几何时,已经形成了强大的“思维定势”,结果对于立体几何图形也往往不加分析地从平面几何的角度来理解空间图形问题,常把空间图形看成平面图形,以至于妨碍三维空间的建立。

必须下大力气,尽快打破平面图形的思维习惯,逐渐熟悉根据纸上画的图形而想象出物体在空间的真实形状。

反过来,又能逐步学会将空间的三维物体用线条直观地在一张纸上表现出来。

为此,可采用实物,多角度地“写生”,多画图,才能从中悟出空间图形和平面图形的差异和联系,更合理地画出空间图形。

例如,可以对长方体进行观察,摆出不同的位置,从各种角度画出图形,看从哪些角度画出的图形更有立体感;又如,三个面在空间中相交的各种情况,是立体几何图形的基础,可以用硬纸片做模型,摆出各种不同情况的空间位置,逐一画图联系,打好绘制基本图形的功底。

二、分清平面几何与立体几何的联系与区别立体几何与平面几何有着紧密的联系。

因为立体几何中的许多定理、公式和法则都是平面几何定理、公式和法则的推广,处理某些问题的方法也有许多相似之处。

但必须注意的是,这两者又有着明显的区别,有时平面几何知识的局限性会对立体几何学习产生一些干扰阻碍作用,如果仅凭平面几何中的经验,把平面几何中的结论套用到空间中,就会产生错误。

因此,在解题时需要特别注意的是,并非所有的平面几何结论都可以推广到空间,必须在证明所研究的图形是平面图形之后,才能引用平面几何的结论。

三、三种语言互译十分必要立体几何中每个符合都有其固定的意义和用法,如果不明确它们的意义和使用范围,就经常会出现一些错误。

要提高立体几何的表达能力,应注意将所学的定义、公理、定理、命题等文字表达的语言译成图形语言和符号语言,这样能提高表达能力和空间想象能力。

高中学生数学教学论文10篇【论文】

高中学生数学教学论文10篇【论文】

高中学生数学教学论文10篇第一篇:高中数学情境教学分析一、情境教学在高中数学教学中的应用1.设置问题情境提问是数学教学中必要的交流方式,也是教师了解学生掌握情况的必要手段。

因此,创造科学的设问情境,可以有效地激发学生的求知欲望,从而提高数学教学的质量。

由于数学本身具有较强的抽象性,因此,教师在设置问题情境的时候,要抓住重点,不要过于宽广,要源自生活,这样的设问情境能让学生较快理解,并且能抓住重点。

例如,教师在讲图形平移时,可以让学生做开窗的活动,然后设置问题情境,问学生刚才开窗时窗户的移动属于什么变化。

这样的问题可以提高学生的思考能力,会在潜意识里增强学生的求知欲,同时也可以增强学生的兴趣。

由此可见,设置问题情境对提高学生的积极性具有重要的意义,教师要不断联系生活实际,让学生不断体会到数学在生活中的应用,进而可以有效地提高学生学习数学的求知欲。

2.设置游戏情境游戏是学生都喜欢的活动,无疑能激发学生的兴趣,让学生积极主动参与进来,在高中数学教学中,教师可以适当地引进游戏来增强学生的兴趣,以便让他们主动投入到学习中来。

另外,安排课堂游戏还可以活跃课堂,让学生带着积极愉快的心情学习数学知识。

例如,教师在讲“数学概率问题”的时候,可以带一些形状相同、颜色不同的小球,让学生蒙住眼睛随机抓取,然后让学生分析抓球的概率。

通过数次的实验,可以加强学生的兴趣,提高学生的积极性,让学生在愉快的氛围中学习到有用的数学知识,并且愉快的氛围可以加深学生对知识的牢记程度,进而有效提升数学成绩。

因此,高中数学教师在进行数学教学时,要适当引进学生感兴趣的活动,以有效提升学生的兴趣,从而提高数学教学质量。

3.设置故事情境高中数学教学中,往往教师的教学形式单一,加上数学本身的枯燥,导致学生缺乏学习数学的兴趣,从而在课堂上很难集中注意力听教师讲课,这就难以提高学生的学习效率,因此,教师要从根本出发,设置能够吸引学生的讲课情境,才能有效提高学生学习数学的兴趣,才能从根本上解决学生注意力不集中的问题。

立体几何教学能力培养论文

立体几何教学能力培养论文

立体几何教学能力培养论文一、在立体几何教学中要以概念、定理、公理为依据,以位置关系为线索,培养学生分析、思考和判断能力直线、平面以及直线和平面的位置关系是立体几何的最主要的内容之一,这些内容是通过定义、定理、公理,组织成一个严密的逻辑体系。

在进行这一内容的立体几何教学时,要依据这个体系中的某一个环节,以位置关系的转化,发展为线索去思考、分析和判断这是教师培养学生所必须具备和使用的方法。

例4已知空间四边形ABCD中,AB=AD,CD=CBM、N、P、Q是个边中点,求证:MNPQ是矩形。

分析:本题的关键在于如何证明MNPQ中有一个角是直角,而这个问题可以通过证明BD⊥AC来解决,两直线的垂直可由直线与平面的垂直或直线与直线的垂直转化而来,欲由直线平面垂直画出BD⊥AC,须造出与BD垂直的平面,使AC在这个平面内,由已知可取BD中点K连接AK、CK则平面AKC具有上述条件,能做出上述分析的关键是掌握转化的思想,创造转化的条件,从而完成转化。

二、加强归类思维的培养通过学习一些概念、公理、定义、公式等知识技能后,在学生的头脑中就形成了一定的习惯思路,特别是将题型分类后,总结出解题规律,形成思维定势,以后遇到相类似的问题,总可以将题归纳出某一题型将题解出,这是我们比较习惯的解题思路,也是学习过程中不可缺少的一个基本过程。

四、要向学生展示模型、教具、画图实例,以启发学生通过观察来提高其空间想象能力,从中使其逻辑思维能力也得到提高。

因为在立体几何中思维能力与空间想象力是相辅相成的,空间想象力差的学生,对于具体的一个问题或某一图形,不能在头脑中想象出来,对问题中的各种情形考虑的不完整不全面,因而就会造成错误的判断推理,也就影响着逻辑思维能力的提高,因此在立体几何教学中一定要注重空间想象能力的培养。

如:在讲授三垂线定理时,可将一三角板的一直角边放在桌子面上立起来,启发学生怎样放置,其斜边才能和桌子的某一边缘垂直,怎样放置,直角边才能和桌子的某一边缘垂直,从而加深学生对“三垂线定理“和””逆定理”中的题设和结论的理解近而知道应用“三垂线”定理及“逆定理”所必须具备的条件。

高中数学几何论文

高中数学几何论文

高中数学几何论文高中的数学教材分为两个重要的部分,一部分是代数,另一部分是几何,两者紧密结合,相互依存.而几何教学在某些方面来说是代数的铺垫.下面店铺给你分享高中数学几何论文,欢迎阅读。

高中数学几何论文篇一【摘要】信息技术与数学教学,是“信息技术与学科教学”中的一个重要组成部分,利用信息技术实现数字化学习,使其与学科融为一体,相辅相成。

数学教学中借助多媒体辅助课件和传统的教学方法有机地结合,对学生掌握基本概念与规律有很大的帮助。

目前,制作数学课件所使用的软件平台很多,其中几何画板作为电子尺规,能动态地观察几何图形运动状态,为学生学习数学知识提供了支持,是一个提高教学效率和教学质量的有力工具。

【关键词】几何画板数学教学整合几何画板容易学习、操作简单、功能强大,已经成为广大高中数学教师进行信息技术与数学教学的必备软件。

笔者仅就几何画板与数学教学整合问题谈一些做法与体会。

一、几何画板简介几何画板由美国Key Curriculum Press发行,是一个十分优秀的教育软件。

3.05版在1995年由人民教育出版社引入我国并汉化,现V5.0中文版己与广大数学教师见面。

几何画板是一个通用的数学教学环境,它提供了丰富而方便的创造功能,使用户可以随心所欲地编写自己需要的教学课件,是最出色的教学软件之一。

它主要以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画、跟踪轨迹等,构造出其他较为复杂的图形。

是数学教学中强有力的工具。

和其他同类软件相比,几何画板有如下几个优势,使得它成为数学中的强有力的工具。

1.动态性。

用鼠标拖动图形上的任一元素(点、线、圆),而事先给定的所有几何关系(即图形的基本性质)都保持不变。

比如,我们可以先在画板上任取三个点,然后用线段把它们连起来。

这时,我们就可以拉动其中的一个点,同时图形的形状就会发生变化,但仍然保持三角形。

再进一步,我们还可以分别构造出三角形的三条中线。

这时再拉动其中任一点时,三角形的形状同样会发生变化,但三条中线的性质永远保持不变。

论文一稿(立体几何)

论文一稿(立体几何)

论⽂⼀稿(⽴体⼏何)21第⼀章问题的提出1.1选题的背景从上个世纪90年代以来开始的近20年的⾼中数学课程改⾰来看,每次改⾰都涉及到从教材内容到处理⽅法及体系的变更。

⽽“⽴体⼏何”是⾼中数学⾮常经典的内容,也是⾮常重要的内容,所以⽴体⼏何内容的选择以及处理⽅式是每次改⾰的重点之⼀。

1996年前⽴体⼏何教材《⾼级中学课本⽴体⼏何》(全⼀册必修)是根据1986年制定的《全⽇制中学数学教学⼤纲》编写的,1990年⼜制定了《全⽇制中学数学教学⼤纲》(修订本)(以下简称1990年《⼤纲》,相应的教材称为1990 年《⼤纲》教材),对这本教材⼜进⾏了调整和修改,内容包括“直线和平⾯、多⾯体和旋转体”两章。

1996年《全⽇制普通⾼级中学数学教学⼤纲(供试验⽤)》(以下简称1996年《⼤纲》)推⾏“必修、限选修和任意选修”制度,⽴体⼏何内容给出了9(A)、9(B)两个⽅案,学校可以在两个⽅案中任选⼀个执⾏。

⽅案9(A)的内容包括原《⽴体⼏何》中“直线和平⾯”⼀章的内容,“多⾯体和旋转体”⼀章的棱柱、棱锥和球的内容。

⽅案9(B)在⽅案9(A)的基础上,增加空间向量的初步知识,并利⽤空间向量解决⽴体⼏何问题,这样学习9(B)的学⽣就掌握了解决⽴体⼏何的两种⽅法———综合法(指不使⽤其他⼯具,对⼏何元素及其关系⽤定理(或公理)演绎推理出有关结论)与向量法(以向量和向量的运算为⼯具,对⼏何元素及其关系进⾏讨论的⽅法,主要包括两种形式:⾮坐标运算法和向量坐标运算⽅式)。

1996的改⾰使得⽴体⼏何逐渐向“代数⼏何⼀体化”迈进。

在认真总结试验地区的反馈意见和数学课程改⾰的发展趋势的基础上,教育部对供试验⽤的⼤纲⼜进⾏了两次修订,分别是2000年版的《全⽇制普通⾼级中学数学教学⼤纲》(试验修订版)和2002年版的《全⽇制普通⾼级中学数学教学⼤纲(修订版)》(以下简称2002年《⼤纲》,相应的教材称2002年《⼤纲》教材),从1996年的空间向量的引⼊到2002年的修订完善,为进⼀步的课程改⾰奠定了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学立体几何教学论文
摘要:视觉思维是一种突破学生学习数学惯用思维的能力。

它不仅能够有效提高学生的思维活动能力,使其能够有效地从感性认知上升到理性认知。

还可以提高学生对数学问题的分析和解决能力。

因此学生新课标下的数学教育教学理念应该从多方面多角度进行改革和完善,加强对学生视觉思维的培养,对学生高中数学整体学习能力和教学有效性的提高有重要的现实意义。

数学是关于现实世界在空间形式和数量关系上的一门学科,具有知识的复杂性和多样性特点。

现阶段,我国高中读、写、算习惯化的教学方式虽然使学生在言语和逻辑思维上的能力得到了加强,但是视觉思维能力非常欠缺。

从而影响了学生几何思维能力的发展,因此高中数学教学中加强对学生视觉思维能力的培养重要而迫切。

一、高中数学教学中的视觉思维特点
(一)视觉思维的间接性
视觉思维是凭借知识经验对客观事物进行的间接的反映,并不是对观察客体完全的复制和模仿。

首先,视觉思维凭借着知识经验,对可以被直接感知的事物的一种间接反映;在认识事物的前提下进行无限的想象、梦想,假如都是在视觉思维的间接性基础上,对事物的无限的想象和拓展;能对无法直接感知的事物及其属性或联系进行反映已知条件中并未直接提及的相关知识,但是通过间接关系即可揭示事物的本质和内在规律性的联系。

(二)视觉思维的概括性
高中生的视觉思维有了一定的知识基础和广度支撑,具备一定的概括性。

他们善于将自己观察到得对象与已知意向相结合进行自主地抽象和概括数学对象的特点,对视觉意象的整理和归类更富有层次性。

学生掌握数学概念的特点,直接受他们的概括水平的高低所制约。

概括是思维活动的速度、灵活程度、广度和深度等智力品质的基础,是一切科学研究的出发点。

一切学习迁移、知识的运用,都离不开概括。

概括性越高,知识系统性越强,迁移越灵活,那么一个人的智力和思维能力就越发展。

概括性成为思维研究和培养的重要指标,概括水平成为衡量学生思维发展的等级的标志。

二、高中几何教学中学生视觉思维的培养策略
(一)丰富和巩固已有的视觉思维
高中数学知识是相互联系的有机统一体,并且也是由点到线,再由线到面的具备一定的数学特色。

高中学生的知识越来越丰富,大脑中形成了特定的视觉思维。

因此,学生所选取的视觉意象要尽可能有针对性的与数学新课程目标相辅相成,切中问题的要害,做到举一反三,从而巩固视觉思维。

例如对于一个椭圆形,可以用多种形式表现出来相互转化,椭圆的表现形式一:经过点(2,0)与圆(x+2)2+y2=36内切圆的圆心C 的估计方程;表现形式二:已知圆A:(x+2)2+y2=361内的一点B(2,O)与其上的动点D的链接线段BD的垂直平分线交AB于点Q,当点D 在圆A上运动一周时,求出点D的轨迹方程。

(二)创设和形成新的视觉意象
高中数字知识和初中数学知识最大区别在于数学概念的深刻性和抽象性。

视觉思维要想在高中学生数学学习的过程中发挥作用,就需要通过多种方式在学生的头脑中形成清晰而准确的记忆意象,尤其要重视高中数学概念和公式的直观化表示。

同时,高中生感受创新意识和行为的实现具有感性认识特点的影响,在教学中运用视觉思维更能让学生在体验和归纳的基础上形成观念体系。

在高中数学课堂教学中,教师可以利用实物展示、课堂板演、师生问答、引人生活实例等多种方式创设情境式的课堂,让学生在互动中留下关于数学知识更深的视觉意象。

例如,在学习等差数列前n项公式后.教师可以指导学生用图形对两个求和公式之间的关系进行表示。

(三)培养学生思维发散力和创新意识
在数学教学中采用一题多变的变式训练,更有助于增强思维的灵活性、变通性和创新性。

通过一题多解的训练培养学生求异创新的发散性思维;一题多变培养学生思维的变通性;多题归一,培养思维的收敛性。

通过寻求不同解法的共同本质,乃至不同知识类别及思考方式的共性,上升到思想方法、哲理观点的高度,从而不断地抽象出具有共性的解题思考方法,达到举一反三的教学效果,从而摆脱“题海”的束缚。

例如:在学习平面向量a与向量b的乘积为零,从而可以推导出向量a垂直于向量b。

如果向量a与向量b同时又是平行四边形的对角线,那么从几何的角度我们就可以推导出此平行四边形就是菱形。

(四)培养学生创新思维和实践能力
学生参与实际操作,不仅让学生掌握知识,更重要的是使学生经历知识的形成过程。

学生亲自操作的过程,是使学生自己去发现规律的重要过程。

诱导学生操作,让学生动眼、动脑、动口、动手等多种感官参与获取新知,使操作、观察、分析、比较、判断、推理、猜想、验证等活动有机地结合,使学生不仅掌握基础知识和基本技能,而且在启迪思维、解决问题,以及情感与态度价值观等方面都有所发展。

例如在《认识图形》一课中,我设计了让学生“看一看,画一画,剪一剪,拼一拼,说一说”等一系列活动内容。

经过短暂时间的思考和操作,一个个有创意的图形就拼出来了,在同学们眼前展现了一幅幅美丽的拼图。

在认识图形之后,我设计了一个活动环节——围出钉子板上的图形。

让每个学生自己操作、发挥想象力。

结果许多学生拼出的图形超出我意料之外,连平行四边形、梯形(包括直角梯形、等腰梯形)、菱形都圈出了,我将学生的思维成果展示出来,课堂学习气氛高涨。

三、结束语
视觉思维是一种突破学生学习数学惯用思维的能力。

它不仅能够有效提高学生的思维活动能力,使其能够有效地从感性认知上升到理性认知。

还可以提高学生对数学问题的分析和解决能力。

因此学生新课标下的数学教育教学理念应该从多方面多角度进行改革和完善,加强对学生视觉思维的培养,对学生高中数学整体学习能力和教学有效性的提高有重要的现实意义。

参考文献
汪君.视觉思维理论在高中数学教学中的应用.考试周刊.2013,5(76):57-57.
赵红旭.高中数学教学中视觉思维理论的应用研究.读写算(教育教学研究).2012,12(54):129-129.
索朗卓玛.高中数学教学中视觉思维理论应用分析.读写算(教育教学研究).2012,7(89):151-151。

相关文档
最新文档