鱼类生殖与发育
鱼类生殖系统的解剖学与生理学研究

鱼类生殖系统的解剖学与生理学研究鱼类是一种生殖力极强的生物,其繁殖能力广泛影响到了人类对水资源的利用和管理。
而了解鱼类的生殖系统解剖学与生理学研究,则有助于对鱼类的生理特性和生殖繁殖机制进行深入探讨。
本文将详细探讨鱼类生殖系统的解剖和生理方面的研究现状。
一、鱼类生殖系统的解剖鱼类生殖系统由性腺和生殖道组成,根据性腺形态和分泌物特性可将鱼类性腺分为两类:卵巢和睾丸。
从功能上看,性腺伴随生殖周期而发生形态和分泌物变化,进而影响到生殖行为和繁殖。
1. 鱼类卵巢卵巢是雌鱼的两个主要性腺之一,具有制造卵子的主要功能。
从形态上看,鱼类卵巢通常由一系列卵泡(支持细胞和生殖细胞)组成,而卵泡的数量和大小则决定卵巢的大小和结构。
在繁殖期,支持细胞开始分解使卵子膨胀、发育进而成熟,整个生长发育过程称为卵泡发育。
发育完成后,卵子通常于正常生理循环或受外界刺激后通过导管,由原位脱落、营养外泌和吸收贮存,等待进一步的受精和发育过程。
2. 鱼类睾丸睾丸是雄鱼的两个主要性腺之一,与卵巢类似,主要作用是制造精子。
从形态上看,鱼类睾丸不像卵巢那样构成囊状结构,而是内含睾丸小叶,小叶间则有间质组织相隔,控制生精细胞的分化和产生。
在睾丸微小管中,不同的生精细胞逐渐分化和进一步发育,并且在长期的生长过程中,会产生相对成熟的精子。
3. 鱼类交配行为和繁殖方式鱼类的交配行为和繁殖方式则由生殖生理角度来探讨。
鱼类的交配行为和繁殖方式受到环境、季节、物理、化学和生物的综合影响。
雄鱼通常会对配偶体现出主动、攻击和保护的特征,而雌鱼则会采取被动的性态。
不同的鱼类交配方式不同,包括包括内受精和外受精两种。
其中,内受精通常包括性器官的结构和功能以及卵巢和精巢等性腺待,有益于保证卵细胞萌发、精子移动和受精等整个过程。
外受精则多发生于水中环境中,通常卵子和精子在系统中流动、碰撞和混合等,能够迅速完成受精、卵细胞萌发和胚胎形成过程。
二、鱼类生殖系统的生理生殖生理则是与鱼类生殖系统息息相关的一部分。
养殖鱼类的生长与发育特点

养殖鱼类的生长与发育特点鱼类的养殖在农业中占据重要地位,为了有效地进行鱼类养殖,了解鱼类的生长与发育特点是至关重要的。
本文将探讨养殖鱼类的生长与发育特点,为养殖者提供参考。
(正文开始)一、生理特点鱼类在生理方面有许多与陆生动物不同的特点。
首先,鱼类的生长速度相对较快,很多鱼类在一年内就能达到较大的体型。
其次,鱼类的生殖能力非常强,能够大量繁殖后代。
此外,鱼类的呼吸器官是鳃,它们通过鳃呼吸来吸收氧气,与通过肺呼吸的陆生动物存在差异。
最后,鱼类的免疫系统相对较弱,容易受到疾病的侵害。
二、生长特点鱼类的生长过程可以分为几个阶段,包括孵化、仔鱼期、稚鱼期和成鱼期。
首先是孵化阶段,鱼类的卵经过一定的时间后孵化成为仔鱼。
仔鱼期是鱼类生长过程的最初阶段,鱼类此时体型较小,对养殖环境的要求较高。
在稚鱼期,鱼类逐渐增长体型,并且开始进食固体饲料。
最后是成鱼期,鱼类的体型达到一定的大小并进入到繁殖期。
鱼类的生长速度受许多因素影响,如水质、饲料、温度等。
良好的水质是鱼类正常生长的基础,包括适宜的水温、溶解氧和PH值等。
合理的饲料供给也是鱼类生长的关键,饲料的种类和营养成分要根据鱼类的不同品种和生长阶段进行科学搭配。
此外,温度对鱼类的生长也有很大影响,适宜的温度可以促进鱼类的食欲和新陈代谢,从而提高生长速度。
三、发育特点鱼类的发育过程也包含多个关键阶段,如配偶选择、产卵、受精、孵化等。
鱼类的配偶选择主要通过种内竞争和交流行为进行,雄性鱼类通常会展示繁殖色,在求偶过程中吸引雌性鱼类。
产卵是鱼类的重要繁殖行为,它通常发生在适宜的水温和环境条件下。
受精是指雄性鱼类产生精子与雌性鱼类卵子结合形成受精卵。
孵化是指受精卵经过一段时间后孵化成为仔鱼。
鱼类的发育过程对环境的要求较高,需创建适宜的繁殖环境。
例如,在产卵期,鱼类需要准备适合产卵的场所,如河床的石缝、河底的沙粒等。
此外,水质的酸碱度和温度也对受精和孵化过程起着重要的影响。
提供良好的环境条件,如适宜的水温、适量的养分供应等,有助于保障发育过程的顺利进行。
鱼类生殖系统的构造与发育

鱼类生殖系统的构造与发育鱼类是水生生物中数量最多、种类最多的一类动物,他们在水中游动、觅食、繁殖和生长。
而鱼类的生殖系统就是他们繁衍后代的重要部位之一。
下面就探讨一下鱼类生殖系统的构造与发育。
一、鱼类生殖系统的构造1.雌鱼生殖系统雌鱼的生殖系统主要由卵巢、输卵管、oviduct和生殖孔组成。
具体如下:(1)卵巢:卵巢是雌鱼成熟后产生卵子的地方。
卵巢的大小会随着年龄和繁殖状态的不同而发生变化。
(2)输卵管和Oviduct:输卵管是卵巢和oviduct连接的通道,能将卵子带到oviduct中。
Oviduct负责接受精子,将精子和卵子结合形成受精卵,并将受精卵嵌入地貌或者胎盘中。
(3)生殖孔:生殖孔是雌鱼的最终排泄器官,也是卵子排出体外的地方。
2.雄鱼生殖系统雄鱼的生殖系统主要包括睾丸、精囊、输精管和生殖孔。
具体如下:(1)睾丸:睾丸是生产精液的地方。
雄鱼的睾丸一般会在身体的上部,离体表最近的地方。
(2)精囊:精囊是贮存精液的地方,可以保护精子不受伤害,也可以调节精液的质量和数量。
(3)输精管:输精管是精子从睾丸传输到泄殖腔和肛门的通道。
(4)生殖孔:生殖孔是雄鱼的排泄器官,可以排出尿液和精液。
二、鱼类生殖系统的发育鱼类的生殖系统的发育是一个非常复杂的过程,下面将介绍其中的一些阶段。
1.性腺的生成性腺是指雄性和雌性生殖细胞的产生器官,它们在鱼类的胚胎发育过程中从原肠胚的中央部位产生。
在雌性幼鱼体内,这些细胞逐渐发育成为卵巢组织;而在雄性幼鱼体内,这些细胞逐渐发育成为睾丸组织。
2.性腺的分化分化是指无性细胞逐渐发育成为性细胞的过程,在这个过程中,性器官的分化也随之进行。
在雌性幼鱼体内,卵巢的分化是由最初种子细胞向皮肤的扩散而开始的;而在雄性幼鱼体内,则由最初种子细胞向生殖前体的发育而开始。
3.性腺发育的成熟性腺的成熟是指幼鱼性腺逐渐发育成为成年鱼的性腺,包括生殖细胞的产生和性器官的成熟。
成熟的性腺不仅可以产生大量的生殖细胞,而且还可以产生性激素,促进性腺发育和控制繁殖行为。
鱼类生殖细胞发育调控的研究

鱼类生殖细胞发育调控的研究鱼类是水生动物中数量最多、种类最丰富的一类,同时也是人类的主要食品来源之一。
因此,对于鱼类的生殖研究,既具有学术价值,也具有重要的实际应用意义。
在鱼类研究中,生殖细胞发育调控是一个非常重要的方向,涉及到鱼类的繁殖、人工养殖以及鱼类资源的保护等方面。
一、鱼类生殖细胞发育的特点鱼类的生殖细胞发育与其他动物相比有很多独特之处。
首先,鱼类的生殖细胞在几乎所有种类中都是在体内发育的,和其他动物不同的是,鱼卵在卵巢中发育不成熟的状态下就被释放出来,并在水中继续发育。
其次,鱼类的生殖周期非常短,通常只有几个月到一年的时间,因此研究鱼类生殖细胞发育所需的时间和复杂度比其他动物更高。
最后,不同鱼类之间的生殖细胞发育差异也非常显著,这也给研究带来了困难。
二、鱼类生殖细胞发育调控研究的重要性鱼类生殖细胞发育调控的研究对鱼类繁殖和人工养殖控制具有重要的意义。
在养殖过程中,掌握鱼类的生殖细胞发育规律,可以有效地促进鱼类的繁殖,提高鱼类养殖的效益。
同时,鱼类的资源保护也需要对其生殖细胞发育进行深入的研究。
相关的研究可以帮助我们更好地了解鱼类的繁殖生态,控制繁殖行为,尽可能减少对资源的损害,促进资源可持续利用。
三、鱼类生殖细胞发育调控研究的现状目前,对于鱼类的生殖细胞发育调控研究已经取得了很多重要的进展。
例如,已经发现调节生殖细胞发育的许多关键基因,如Gdf9、Bmp15和Dmrt1等。
另外,在生殖细胞发育的不同阶段中,激素的作用和信号转导也发挥着重要的作用。
对于这些调控因子的研究,不仅可以帮助我们更好地了解鱼类的生殖生态,还可以提高鱼类的繁殖效率。
除此之外,一些新技术的发展也在推动着鱼类生殖细胞发育调控的研究。
例如,基因编辑技术、单细胞测序等,使得我们能够更加深入地研究鱼类生殖细胞的发育调控机制。
四、鱼类生殖细胞发育调控研究的前景随着科技的不断进步和研究的深入,鱼类生殖细胞发育调控的研究也将越来越深入。
鱼类生殖行为与繁殖策略

鱼类生殖行为与繁殖策略鱼类生殖行为和繁殖策略是鱼类繁殖过程中至关重要的一部分,不同鱼类在生殖行为和繁殖策略上存在着差异。
本文将从生殖行为和繁殖策略两个方面来讨论鱼类的繁殖方式和策略。
一、鱼类生殖行为1.外育外育是一种由雌性鱼类将卵产到水中,卵经精子受精后在水中孵化和发育的生殖方式。
这种方式常见于多数鱼类,如金鱼、鲤鱼等,它们在适当的季节会选择合适的水域以及水质来产卵。
此外,一些海洋鱼类也采用了外育的方式,如鳐鱼、鲨鱼等。
2.内育内育是一种由雌性鱼类体内孵化卵并将幼鱼产下的生殖方式。
这种方式主要存在于一些特殊的鱼类,如鲫鱼、鲈鱼等。
在这种繁殖方式中,雌性鱼会将卵孵化成幼鱼,然后通过产道将幼鱼产出。
内育的好处是能够提高幼鱼的存活率和适应环境的能力。
3.口育口育是一种特殊的内育方式,也称为孵化养育。
在这种方式中,雌性鱼类将卵产到雄性鱼的口中,然后雄性鱼会孵化卵并养育孵化出的幼鱼。
这种繁殖方式常见于一些口孵类鱼类,如孔雀鱼、若鱼等。
雄性鱼在孵化期间会保护卵和幼鱼,直到幼鱼具备独立存活的能力。
二、鱼类繁殖策略1.选择配偶鱼类在选择配偶时往往会考虑多种因素,如颜色、大小、行为特征等。
有些鱼类通过展示自己的鲜艳颜色或特殊行为来吸引异性配偶,例如孔雀鱼的雄性会在交配期间展开美丽的尾巴以吸引雌性配偶。
2.筑巢鱼类中的一些物种会进行筑巢行为,以提供一个安全的环境来产卵和孵化幼鱼。
筑巢的方式有很多种,如用鱼沫、植物纤维等建造巢穴,如泥巴鳅会利用泥巴筑巢来孵化卵。
3.群体繁殖群体繁殖是一种多个个体参与的繁殖策略。
在一些鱼类中,雄性和雌性会组成一个群体,协作进行产卵和受精。
例如,在一些珊瑚鱼中,雌性会选择一颗珊瑚作为产卵地,雄性会在周围护卫并释放精子,以提高受精成功率。
4.受精方式鱼类的受精方式主要分为外受精和内受精两种。
外受精是指雄性鱼的精子在水中与雌性鱼的卵结合,这种方式适用于大部分鱼类。
而内受精是指雄性鱼将精子直接注入雌性鱼体内,这种方式适用于一些具有内育繁殖方式的鱼类。
带鱼的生长发育过程

带鱼的生长发育过程鱼类是生活在水中的脊椎动物,其中包括了众多不同种类的鱼类。
而带鱼作为一种常见的食用鱼类,其生长发育过程备受人们的关注。
本文将为您详细介绍带鱼的生长发育过程,从幼鱼到成鱼的不同阶段。
带鱼的繁殖与生长带鱼通常在温暖的海洋和河口区域繁殖。
成熟的雌性带鱼会产卵,雄性带鱼则会产生精子。
雌性带鱼将卵子散布在水中,而在此期间雄性带鱼会释放精子进行受精。
受精完成后,卵子会漂浮在水中。
孵化期进入孵化期后,卵子将经历一系列变化。
首先,卵子的外层会变硬,形成一个保护层来保护里面的胚胎。
然后,胚胎会开始分裂,形成一个个小的细胞。
当胚胎发育到一定程度时,它们将会孵化出来。
孵化后的幼鱼被称为仔鱼。
它们非常小,全长约为3-5毫米,身体呈透明状。
仔鱼会依靠卵黄囊中储存的营养来生存,并逐渐开始进行摄食。
幼鱼期在幼鱼期,仔鱼会迅速生长。
它们会吃掉水中的浮游生物,如浮游动物和浮游植物,以获取营养。
同时,幼鱼还会游离在水表层附近,以避免被掠食动物捕食。
在幼鱼期,它们会逐渐形成鱼鳞和鱼鳍,身体逐渐变得有颜色。
此外,幼鱼会逐渐增长体长,但相对于成鱼来说,它们还是很小。
幼鱼期的持续时间因带鱼的种类而有所不同,通常为数月至一年左右。
稚鱼期稚鱼期是带鱼生长发育的关键阶段。
在这个阶段,带鱼的身体开始迅速长大,并逐渐形成它们独特的外形特征。
稚鱼的体长会在几个月内迅速增长,从几厘米长到十几厘米长。
除了体长的增加,稚鱼也会逐渐发育出不同的器官,如鳞片、鳍和头部特征。
它们的鳞片会变得更加发达和坚硬,以提供更好的保护。
稚鱼还会开始进食更大的食物,如小型鱼类和甲壳类动物,以满足其营养需求。
成鱼期当带鱼进入成鱼期时,它们的生长速度会开始放缓,并且不再经历显著的改变。
成鱼的体长通常可以达到几十厘米至一米以上,根据不同的鱼种而有所不同。
除了体长的增加,成鱼的身体颜色也会变得更加鲜艳和有吸引力。
成鱼之间会逐渐分化出雌性和雄性的特征,如体型和颜色上的差异。
鱼类的繁殖和发育阶段的划分鱼类的性成熟鱼类性成熟的年龄

鱼类的繁殖和发育阶段的划分第一节鱼类的性成熟◆鱼类性成熟的年龄及其变动1、鱼类经生长发育达到初次生殖,即标志其进入性成熟期。
香鱼(初次性成熟)2、在性别上,通常雄鱼比雌鱼的性成熟年龄要早,个体小。
虹鳟鱼(上:雌鱼,下:雄鱼)3、鱼类的性成熟年龄是种的特性之一,和种生长特性以及对于生活环境条件的适应特点有着密切的关系,大体上可分为三种类型*低龄性成熟类型性成熟年龄为l龄或1龄以下。
例如洄游性的香鱼为1龄性成熟。
*高龄性成熟类型性成熟年龄在10龄左右或更高。
如大型鲨鱼。
鲨鱼*中等年龄性成熟类型大多数鱼类属这类型,性成熟年龄为2—3龄或4—5龄。
影响鱼类性成熟的外界因子很多,主要有水温、光照、盐度和水流等。
▲ 水温生活在不同温度条件下的同种鱼,达到性成熟所需时间不同。
例如鲢以华南地区为最短,最小为2—3龄,黑龙江地区则需5—6龄。
▲ 光照大部分鱼类性腺的发育需要光照。
▲ 盐度盐度对于洄游性鱼类和咸淡水鱼类的性成熟有重大影响。
例如鲻鱼的性成熟也必需经过海水过渡的阶段。
◆鱼类的性周期鱼类达到性成熟后,性腺周期发育,此发育周期就是性周期。
其实质是指每批卵母细胞从形成到发育成熟所经历的周期。
按鱼类性周期的长短可分为三种类型:1、性周期为一年的类型大多数鱼类的性周期为一年,性腺由排出性产物后至下一批性产物的成熟,大体要经历一年时间。
例如草、青、鲢、鳙在自然条件下,性周期大多为一年。
2、短性周期类型此类型的性周期远不足一年,大多出现在热带和亚热带性鱼类。
例如罗非鱼的性周期为45—60d左右;食蚊鱼两次生殖相隔数月。
食蚊鱼3、性周期为二年的类型大部分鲟形目鱼类的性周期长达二年,甚至更长,即性腺隔年成熟一次。
◆ 鱼类性腺发育程度的测定1、成熟系数成熟系数是指性腺重量和鱼体重量(或去内脏后的体重)的百分比,是衡量性腺发育的主要指标,其计算公式为:成熟系数=性腺重/体重(去内脏后的体重)*100%如梁子湖青梢红鮊的性腺从3月下旬开始发育,至5月下旬其成熟系数达到最大值,雌鱼为16.7%左右,雄鱼为6.5%左右,这时正是青梢红鮊的生殖季节。
《鱼类生理学》第十二章生殖

《鱼类生理学》第十二章生殖第十二章生殖生殖是生物延续和繁殖种系的重要生命活动,高等动物生殖是通过两性生殖器官的活动和两性生殖细胞的结合而实现的。
生殖器官包括主性器官和附性器官。
鱼类主性器官器官为精巢和卵巢,主性器官除产生生殖细胞外,还分泌激素,所以又称生殖腺或性腺。
附性器官雄性:输精管,某些鱼类具有交接器雌性:输卵管,某些鱼类具有产卵器大多数鱼类为雌雄异体,部分鱼类为雌雄同体包括三类:两种性腺同步发育,精卵子同时成熟,如鳉科,鯔科;雌性先熟而后变为雄性,如合鳃科的黄鳝;雄性先熟,然后卵巢发育成熟,如鲷科鱼。
第一节鱼类性腺的形态学一、精巢的形态大部分硬骨鱼类的精巢为一对延长的器官,附着在体腔背壁上,精巢向后延伸部分形成输精管,终止在直肠和输尿管之间的生殖乳突上。
硬骨鱼类的精巢与哺乳动物的一样,由间质和小叶(或小管)组成,间质位于小叶之间,由间质细胞、成纤维细胞和血管、淋巴管组成。
其中间质细胞与哺乳类的Leydig’s细胞同源,是合成激素的场所。
小叶(或小管)具有两种类型的细胞,即生殖细胞和排列在小叶或小管周围的体细胞(小叶界细胞),后者称为谢尔托立氏细胞(Sertoli cell),由它们组成小叶或小管内的小囊。
根据精子发生的模式,可将鱼类精巢结构分成两种类型:小叶型和小管型。
小叶性为绝大部分硬骨鱼类所具有,它由许多被结缔组织分隔成的小叶组成,小叶中的原始生殖细胞经历若干次有丝分裂,形成含有数个精原细胞的生精小囊。
在成熟过程中,一个生精小囊内的所有生殖细胞大都处于相同的发育阶段,随着精子发生到精子形成,生精小囊不断扩大,最后破裂,精子被释放进入与输精管相连的小叶腔中。
另一种为管状结构的精巢,即小管型。
见于花鳉科鱼类和鳉科鱼类。
这种精巢为许多小管规则地排列在外端固有膜和中央腔之间。
原始生殖细胞仅位于小管近盲端部分,随着精子发生到精子形成,生精小囊逐渐向中央腔方向移动,成熟的精子被释放入与输精管相连的中央腔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Spawning time,spawning frequency and fecundity of Japanese chub mackerel,Scomber japonicus in the waters around the Izu Islands,JapanTomohide Yamada a ,Ichiro Aoki a,*,Isamu Mitani baDepartment of Aquatic Bioscience,Graduate school of Agricultural and Life Science,The University of Tokyo,Bunkyo,Tokyo 113,JapanbKanagawa Prefectural Fishery Experimental Station,Youroushi,Jogashima,Misaki,Kanagawa 238-02,JapanReceived 4July 1997;accepted 5April 1998AbstractFemale Japanese chub mackerel,Scomber japonicus ,were collected in 1993from April to June (36days),in the water around Izu Islands,Japan,which is one of the primary spawning areas.Spawning time,spawning frequency and batch fecundity were determined by histological methods.Temporal frequency of hydrated oocytes and new postovulatory follicles showed that female chub mackerel spawned actively from 22.00to 24.00hours.The average spawning frequency was 17.4%during this sampling period.We estimated that chub mackerel spawned every 5.7days (6.3times)during these 36days.Fifteen females spawned almost every day.Twelve females which had hydrated oocytes in their ovaries were used for estimating batch fecundity.The average batch fecundity was 89200oocytes per female,and the relative batch fecundity was 158eggs per gram female wet weight.The batch fecundity was signi®cantly correlated with condition factor.This shows that batch fecundity was affected by nutritional state of spawning female.#1998Elsevier Science B.V .All rights reserved.Keywords:Japanese chub mackerel;Batch fecundity;Postovulatory follicle;Spawning frequency;Spawning time;Ovary histology1.IntroductionJapanese chub mackerel (Scomber japonicus )is one of the most important ®shery stocks in Japan.The size of this stock increased in the 1960s and remained high in the 1970s.The stock,however,decreased continu-ously in the 1980s and is currently at a low level.Spawning dynamics is a fundamental element in assessing and managing ®sh stocks.Maturation and spawning of Japanese chub mackerel have beenreported around the Izu Islands,Japan,which appears to be one of the main spawning grounds (Murayama et al.,1995;Yamada et al.,1996).Daily egg produc-tion methods (DEPM)(Alheit,1993)may be applied to estimate the spawning biomass of chub mackerel populations.Priede and Watson (1993)suggested that DEPM should be preferred for estimation of biomass in Atlantic mackerel (Scomber scombrus ).By this method,the spawning frequency de®ned as the ratio of the number of females and the batch fecundity as the number of eggs released per spawning,are essen-tial parameters.The spawning frequency and batch fecundity of chub mackerel have been reportedonly*Corresponding author.Tel.:+81338122111,ext.5307;fax:+81338120529;e-mail:aoki@hongo.ecc.u-tokyo.ac.jp 0165-7836/98/$±see front matter #1998Elsevier Science B.V .All rights reserved.P I I :S 0165-7836(98)00113-1by Dickerson et al.(1992)for the population off the west coast of North America.Similar data do not exist for the Japanese population located in the north-western Paci®c Ocean.The annual egg production method has been applied to the Japanese chub mackerel on the basis of the number of oocytes greater than 0.5mm diameter in the ovary (Watanabe,1983).However,serial spawners such as chub mackerel do not have annual egg pro-duction determined prior to the spawning season (Hunter et al.,1985).The objectives of the present study are to apply the DEPM to the Japanese chub mackerel stock,and in addition to investigate spawn-ing time,spawning frequency and batch fecundity of this species around the Izu Islands.2.Materials and methods 2.1.SamplingFemale chub mackerel were collected by hook-and-line or dip net ®shing conducted at night aboard the R.V .Enosima-maru in April±June 1993off the Izu Islands (Fig.1).A total of 192female chub mackerel was collected over a period of 36days (Table 1).The samples were strati®ed into 2-h intervals by the time of day to examine the spawning rhythm over 24-h periods.Samples were not obtained 22:00±04:00hours from 19to 20May;02:00±04:00hours on 28May and 18:00±02:00hours from 1to 2June.Although,wetried to catch chub mackerel in the daytime by hook-and-line,none was caught between 04:00and 18:00hours.Sea surface temperature at the sampling stations ranged from 16.58C to 18.88C.2.2.Fish measurementsThe ®sh were kept in cold storage at 2±58C on the ship,and then fork length (mm),and total body weight (g)were measured in the laboratory.After ovaries were removed,body weight without ovary (g)and ovary weight (g)were measured.Afterwards,ovary samples were preserved in 10%neutral buffered formalin.The mean fork length of all ®sh was 381mm.We considered all individuals in our samples to be capable of spawning,because their lengths were larger than the size at sexual maturity as estimated by Watanabe (1970).The gonad somatic index (GSI)and condition factor (CF)were de®ned asGSI Gonad Weight g a Somatic Weight g Â100CF Somatic Weight g a Fork Length 3 mm Â1002.3.Histological analysisA portion of each ovary from each of the 192females was embedded in paraf®n for histological examination.Sections (8m m)were stained with hematoxylin and eosin.As a preliminary examination,sections from six parts (right and left,fore,middle,and rear)of 12ovaries were examined to differentiate the maturation stage in relation to position in the ovary.No difference was found in maturation stage in respect to ovary position.Based on these ®ndings,a tissue sample from the middle part of the right ovary was used for histological examination.2.4.Classification of maturation stage of the oocyteand the postovulatory follicles The oocytes were classi®ed into the following ®ve maturation stages:primary yolk globule stage,sec-ondary yolk globule stage,tertiary yolk globule stage,migratory nucleus stage,and hydrated oocytes stage.We estimated the age of postovulatory follicles according to the criterion established byDickersonFig.1.Location of sampling station of Japanese chub mackerel (Scomber japonicus )in April,May and June 1993.Broken line 200m.84T.Yamada et al./Fisheries Research 38(1998)83±89et al.(1992):0day(0±24h after spawning),1day (24±48h after spawning),2days(over48h after spawning).We estimated the spawning time and spawning frequency by classifying reproductive states of females from the maturation stage of oocyte and age of the postovulatory follicle in ovaries,based on female samples of2-h segments.The reproduction states of females were classi®ed into the followings.1.Migratory nucleus oocytes:<24h prior to spawn-ing.2.Hydrated oocytes:spawning imminent.3.Hydrated oocytes and new postovulatory follicles: in the act of spawning.4.0day postovulatory:<24h after spawning.5.1day postovulatory follicles:24±48h after spawn-ing6.2days postovulatory follicles:>48h after spawn-ing.2.5.Estimation of batch fecundityBatch fecundity was estimated according to the method of Hunter et al.(1985),which was based on the number of hydrated oocytes in the ovary.The number of hydrated oocytes was counted using a microscope.Females that had both new postovulatory follicles and hydrated oocytes at the same time were not appropriate for batch fecundity estimation, because such females were considered to have begun to spawn the time of sampling.These specimens were excluded from the batch fecundity estimation.Thus, only12females were available for the estimation of the batch fecundity.3.Results3.1.Spawning timeTemporal patterns of reproductive states of females are illustrated in Fig.2.The frequencies of occurrence of the hydrated occytes were12%and15%for18:00±20:00hours and20:00±22:00hours,respectively,but they decreased to3%for22:00±24:00hours and to zero after24:00hour.In contrast,while the0day postovulatory follicles occurred about6%between 20:00and22:00hours,they appeared in30%of females after22:00hour.Females having both hydrated oocytes and new postovulatory follicles were found for20:00±02:00hours,though the percentage was small.The frequency of the individuals that had1Table1Number of samples,sea surface temperature(SST)of sampling stations,and mean fork length(FL)Æstandard deviation(SD)Date Sampling time(h)18±2020±2222±240±22±4SST(8C)16.516.717.317.217.1Mean FLÆSD(mm)345Æ29381Æ16382Æ21381Æ18389Æ24 19May Number9*13*SST(8C)17.918.3Mean FLÆSD(mm)365Æ28378Æ1527±28May Number1615*1514*SST(8C)17.217.617.117.2Mean FLÆSD(mm)390Æ22383Æ17378Æ27383Æ131June Number18* SST(8C)18.8Mean FLÆSD(mm)384Æ15 Total Number3347403438 FLÆSD(mm)374Æ30381Æ16381Æ23382Æ16386Æ20GSIÆSD8.14Æ3.018.89Æ3.628.49Æ3.009.07Æ2.558.35Æ2.23CFÆSD11.17Æ0.7411.13Æ0.8011.21Æ0.8211.33Æ0.6410.81Æ0.75 Fish were caught by hook-and-line and dipnet,but in several cases(*)only by hook-and-line.Blank columns no samples.Means of fork length,gonadosomatic index(GSI)and condition factor(CF)are also shown for2h sampling segmentsT.Yamada et al./Fisheries Research38(1998)83±8985day or 2day postovulatory follicles was independent of the time of day,about 10%.There were no sig-ni®cant differences in fork length,GSI and CF among female samples from different times of day (ANOV A,P <0.05).Spawning of the female started at around 20:00hour,with spawning activity peaking between 22:00and 24:00hours,and completed by 02:00hour.3.2.Spawning frequencyThe spawning frequency of a serial spawner was de®ned as the ratio of spawning females to all females (Hunter and Macewicz,1980).The average spawning frequency of the chub mackerel was estimated from the three independent ratios of spawning females:(1)the ratio of the females with the migratory oocytes,(2)the ratio of females with the hydrated oocytes and the new postovulatory follicles,(3)the ratio of the female with the 1day postovulatory follicles.While the average spawning frequencies on 26±27April and 19May were 8.0%and 7.6%,those on 27±28May and 1June were about 30%(Table 2).This shows seasonal variability of the spawning frequency.The average spawning frequency of all females during the entire sampling period (36days)was estimated to be 17.4%.Hence,female chub mackerel spawned on the average every 5.7days and 6.3times during those 36days.It was noted that 15females had migratory nucleus oocytes,hydrated oocytes,and postovulatoryfolliclesFig.2.Temporal changes in frequencies of the females with migratory nucleus oocytes (MN),hydrated oocytes (HO),and postovulatory follicles within 0±24h after spawning (PO a ),24±48h after spawning (PO b ),and 48h after spawning (PO c ).HO PO a indicates females with both hydrated oocytes and postovulatory follicles.Table 2Spawning frequencies of chub mackerel females,which were estimated from percentages of females in the three spawning states Date Number of mature females Spawning per day (%)MN HO,HO PO a ,PO a PO b Mean 19May 22 4.69.19.17.627±28May 6021.751.718.330.61June 1827.844.427.833.3All19215.126.610.417.4MN:Migratory nucleus oocyte.HO:Hydrated oocyte.PO a :Postovulatory follicles within 24h after spawning.PO b :Postovulatory follicles 24±48h after spawning.HO PO a :In the act of spawning.86T.Yamada et al./Fisheries Research 38(1998)83±89at the same time (Table 3).Twelve of these 15females had spawned on 2or 3successive days.The mean spawning interval was 1.20days during these 36days (Table 3).3.3.Batch fecundityMost of the samples used for estimating the batch fecundity were collected between 18:00and 22:00hours.Batch fecundity showed a wide variation among females.The maximum and minimum was 157600and 18900,respectively,while the average was 89200(Table 4).Relative batch fecundity was de®ned as,batch fecundity per gram female bodyweight without ovary.The average relative batch fecundity was calculated to be 158.The average fecundity per female during the 36day sampling period was estimated at 562000(spawning times (6.3)Âaverage batch fecundity (89200)).Although there was no signi®cant correlation between batch fecundity and fork length (r 0.219,P >0.05)and body weight (r 0.479,P >0.05),batch fecundity was clearly correlated with condition factor (r 0.721,P <0.05)(Fig.3).4.Discussion4.1.Spawning in relation to time of dayIn our study,the state of oocytes changed and the frequency of females with new postovulatory folliclesTable 3Numbers of chub mackerel females with migratory nucleus oocytes,hydrated oocytes,and postovulatory follicles simulta-neously,and mean spawning intervals of these females Spawning state Day interval between spawning (i )Number offemales (N )PO a PO b 14MN PO a14MN PO a PO b 13HO PO b 11MN PO b 23AverageiN /N 18/15 1.2MN:Migratory nucleus oocyte.HO:Hydrated oocyte.PO a :Postovulatory follicles within 24h after spawning.PO b :Postovulatory follicles 24±48h after spawning.Table 4Batch fecundity of chub mackerel females (n 12)with hydrated oocytes Date Fork length (mm)Body weight without ovary (g)Ovary weight (g)Batch fecundity Relative batch fecundity 26April 368556.371.08150014626April 371532.266.0733*******May 329366.535.84650012719May 393607.371.87430012227May 369549.794.410220018627May 380636.582.58990014127May 353482.272.182********May 385702.694.915760022427May 388587.748.7189003227May 362514.580.811390022127May 381605.5107.515120025027May 380603.883.079000131Mean372562.175.789200158Relative batch fecundity batch fecundity/body weight withoutovary.Fig.3.Relation between batch fecundity and condition factor (somatic weight (g)/fork length (mm)3)Â102.T.Yamada et al./Fisheries Research 38(1998)83±8987increased after22:00hour,while females with hydrated oocytes were not present after24:00hour. Watanabe(1970)collected eggs with a plankton net in time series in the spawning grounds,and estimated that spawning of chub mackerel gradually started after sunset with peak spawning activity between22:00and 24:00hours,so our results are consistent with his. The Japanese sardine,Sardinops melanostictus, spawns primarily between20:00and23:00hours (Matsuura,1992;Morimoto,1993;Murayama et al., 1994).The Japanese anchovy,Engraulis japonicus, discharges eggs actively between22:00and 24:00hours(Takano et al.,1983;Turuta,1992).Thus, the spawning times of such small pelagic®shes are similar.This may be a mechanism to reduce predation on newly spawned eggs by zooplanktivores.More-over,as adults are off their guard when spawning, night spawning could also insure the safety of small ®shes.4.2.Spawning frequencyThe histological results revealed seasonal changes in spawning activity.The average spawning frequency indicated that females spawned more actively in late May(30.6%)through early June(33.3%),than from late April(8.0%)to mid May(7.6%).In a study of chub mackerel from the west coast of North America,the average spawning frequency was 8.7%during sampling periods(101days)(Dickerson et al.,1992).Our estimate of the average spawning frequency of17.4%was higher than that of the North America mackerel.Our sample did not cover the entire spawning season and the high frequency was probably caused by our sampling period being concentrated at the peak of spawning.The spawning frequency may be low at the beginning and end of spawning season. Dickerson et al.(1992)reported that32of271 females spawned every1.3days.Similarly,15females of192chub mackerel females in our study spawned every1.2days.Daily spawning appears to occur at the peak of the spawning season.The spawning frequency estimation of Hunter and Goldberg(1980)is based on the assumption that a spawning population does not move in and out of the sampling area and during the spawning season. Although,we did not investigate the movement of the spawning®sh,in some tagging experiments,chub mackerel rarely moved within the spawning area in the peak of spawning season(I.Mitani,unpublished data). It has been reported that the disappearance time of the postovulatory follicles may be in¯uenced by ambient water temperature(Goldberg et al.,1984; Hunter and Macewicz,1985;Turuta,1992).The dragonet,Callionymus enneactiis,spawns every day at28±308C and postovulatory follicles of this species are not seen in ovaries15h after spawning(Takita et al.,1983).In the Japanese sardine,Sardinops malanostictus,postovulatory follicles are not seen 38h after ovulation at208C and48h after spawning at178C(M.Shiraishi,unpublished data).Descriptions by Dickerson et al.(1992)of the change in postovu-latory follicles of chub mackerel were based on rear-ing experiments at208C.In our study,the sea surface temperature in the sampling area was16.5±18.88C. The estimated age of postovulatory follicles may have been a little longer.4.3.FecundityOur estimate of average batch fecundity(89200 oocytes)was greater than that(68400oocytes)of Dickerson et al.(1992).This is due to the difference in body size.The average batch fecundity per gram body weight without ovary in our study(158oocytes/g)was close to(168oocytes/g)in Dickerson et al.(1992). Dickerson et al.(1992)estimated batch fecundity by calculating the migratory nucleus oocytes.The oocytes frequency method usually gives results similar to those based on counts of hydrated oocytes,if females with highly advanced oocytes are used (Hunter and Goldberg,1980;Laroche and Richardson, 1980).There was a signi®cant correlation between condi-tion factor and batch fecundity.This suggests that nutritional condition affects batch fecundity.One female in our samples had an extremely low fecundity; 18900(relative batch fecundity 32).There were many beta atresia oocytes and no yolked oocytes in this female,whereas,the other females did not have beta atresia oocytes in their ovaries.The presence of beta atresia oocytes and the absence of yolked oocytes indicate the end of spawning(Dickerson et al.,1992). Therefore,this female had most likely completed spawning for the season.The CF value of this female was the lowest of all the females.The batch fecundity88T.Yamada et al./Fisheries Research38(1998)83±89of the female was low possibly due to the consumption of nutrition by repeated times of spawning.For Atlan-tic mackerel,as spawning®sh migrate northwards the batch size decreases with progress of the spawning season(Watson et al.,1992).Thus,there may be a difference in batch fecundity between the start and end of the spawning season.In this study,only12females were sampled.More samples are needed to estimate more reliably batch fecundity.As batch fecundity in chub mackerel is likely to vary annually,it should be estimated annually in relation to appropriate environmental factors.AcknowledgementsWe would like to thank Dr.Manabu Shiraishi of the National Research Institute of Aquaculture,Dr. Nobuyuki Azuma of Hirosaki University,the captain and crew of the Enoshimamaru,and the staffs of Kanagawa Prefectural Fisheries Experiment Station.ReferencesAlheit,J.,e of the daily egg production method for estimating biomass of clupeoid fishes:a review and evaluation.Bull.Mar.Sci.53,750±767.Dickerson,T.,Macewicz,B.J.,Hunter,J.R.,1992.Spawning frequency and batch fecundity of chub mackerel Scomber japonicus1985.CalCOFI Rep.33,130±140. Goldberg,S.R.,Alarcon,V.H.,Alheit,J.,1984.Postovulatory follicle histology of the Pacific sardine Sardinops sagax,from Peru.Fish.Bull.U.S.82,443±445.Hunter,J.R.,Goldberg,S.R.,1980.Spawning incidence and batch fecundity in northern anchovy Engraulis mordax.Fish.Bull.U.S.77,641±652.Hunter,J.R.,Macewicz, B.J.,1980.Sexual maturity,batch fecundity,spawning frequency and temporal pattern in the northern anchovy,Engraulis mordax,during1979spawning season.CalCOFI Rep.21,139±149.Hunter,J.R.,Lo,N.C.H.,Leong,R.J.H.,1985.Batch fecundity in multiple spawning fishes.NOAA Tech.Rep.NMFS.36,67±77. Hunter,J.R.,Macewicz,B.J.,1985.Measurement of spawning frequency in multiple spawning fishes.NOAA Tech.Rep.NMFS.36,79±roche,J.L.,Richardson,S.L.,1980.Reproduction of northern anchovy,Engraulis mordax,off Oregon and Washington.Fish.Bull.U.S.78,603±618.Matsuura,S.,1992.Reproductive cycle of sardine.Kaiyo(Marine Science)24,289±294(in Japanese).Morimoto,H.,1993.Time of maximal oocyte hydration and spawning in the Japanese sardine in Tosa Bay,southwestern Japan.Nippon Suisan Gakkaishi59,7±14(in Japanese,with English abstract).Murayama,T.,Shiraishi,M.,Aoki,I.,1994.Change in ovarian development and plasma levels of sex steroid harmones in the wild females Japanese sardine(Sardinops melanostictus) during the spawning period.J.Fish Biol.45,235±245. Murayama,T.,Mitani,I.,Aoki,I.,1995.Estimation of the spawning period of the Pacific mackerel Scomber japonicus based on the changes in gonad index and the ovarian histology.Bull.Jpn.Soc.Fish.Oceanogr.59,11±17(in Japanese,with English abstract).Priede,I.G.,Watson,J.J.,1993.An evaluation of the daily egg production method for estimating biomass of Atlantic mackerel (Scomber scombus).Bull.Mar.Sci.53,891±911. Takano,K.,Kishida,T.,Ueda,K.,1983.Number of eggs of Japanese anchovy produced per female per year estimated by a rearing experiment.Bull.Nansei b.15,1±11 (in Japanese,with English abstract).Takita,T.,Iwamoto,T.,Kai,S.,Sogabe,I.,1983.Maturation and spawning of the Dragonet,Callionymus enneactis,in an aquarium.Jpn.J.Ichthyol.30,221±226.Turuta,Y.,1992.Reproduction in the Japanese anchovy(Engarulis japonica)as related to population fluctuation(in Japanese,with English abstract).Bull.Nat.Res.Inst.Fish.Eng.13,129±168.Watanabe,T.,1970.Morphology and ecology of early stages of life in Japanese common mackerel,Scomber japonicus Houttuyn, with special reference to fluctuation of population.Bull.Tokai b.62,1±283(in Japanese,with English abstract).Watanabe,T.,1983.Spawning survey method.In:Ishii,T.(Ed.), Population Dynamics of Fishery Resources,Koseisha-koseikaku, Tokyo,pp.9±29(in Japanese).Watson,J.J.,Priede,I.G.,Witthames,P.R.,Owari-Wadunde,A., 1992.Batch fecundity of Atlantic mackerel Scomber scombrus L.J.Fish Biol.40,591±598.Yamada,T.,Aoki,I.,Shiraishi,M.,Mitani,I.,1996.Maturation and spawning of the Japanese chub mackerel,Scomber japonicus,in the sea area of Izu Islands.Bull.Jpn.Soc.Fish.Oceanogr.60,331±338(in Japanese,with English abstract).T.Yamada et al./Fisheries Research38(1998)83±8989。