函数的对称性与函数的图象变换
题型07 函数图象变换及利用对称性求和(解析版)

秒杀高考数学题型之函数图象变换及利用对称性求和【秒杀题型一】:平移变换。
『秒杀策略』:()()y f x y f x a =→=+,如果0a >,则向左平移a 个单位;反之向右平移a 个单位,即左加右减;()()y f x y f x b =→=+,如果0b >,则向上平移b 个单位,反之向下平移b 个单位,即上加下减。
1.(高考题)为了得到函数321x y -=-的图象,只需把函数2xy =上所有点 ( ) A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度 C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度 【解析】:选A 。
2.(高考题)将函数21x y =+的图象按 得到函数12x y +=的图象。
【解析】:先向左平移一个单位,然后向下平移一个单位。
3.(高考题)把函数e xy =的图象向右平移两个单位,得到()y f x =的图象,则()f x = ( )A.e 2x +B.e 2x -C.2e x - D.2ex +【解析】:选C 。
4.(高考题)若01,1a b <<<-,则函数()x f x a b =+的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解析】:选A 。
5.(高考题)为了得到函数13()3x y =⨯的图象,可以把函数1()3x y =的图象 ( ) A.向左平移3个单位长度 B.向右平移3个单位长度 C.向左平移1个单位长度 D.向右平移1个单位长度【解析】:函数可化简为:1113()()33x x y -=⨯=,即向右平移1个单位长度,选D 。
6.(高考题)为了得到函数3lg 10x y +=的图象,只需把函数lg y x =的图象上所有的点 ( )A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【解析】:函数可化简为:1)3lg(-+=x y ,即向左平移3个单位长度,再向下平移1个单位长度,选C 。
函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
函数的图象基础知识(艺考生)

函数的图象思维导图知识梳理1.利用描点法作函数的图象 其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换①y =f (x )――→关于x 轴对称y =-f (x ). ②y =f (x )――→关于y 轴对称y =f (-x ). ③y =f (x )――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)――→关于y =x 对称y =log a x (x >0). (3)翻折变换①y =f (x )――→保留x 轴及上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )――→保留y 轴及右边图象,并作其关于y 轴对称的图象y =f (|x |).(4)伸缩变换 ①y =f (x )a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变→y =f (ax ).②y =f (x )a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变→y =af (x ).题型归纳题型1 作函数的图象【例1-1】(2020秋•海淀区校级期中)已知函数21,1(),1121,1x f x x x x x <-⎧⎪=-⎨⎪->⎩.(Ⅰ)画出函数()y f x =的图象; (Ⅱ)若1()4f x ,求x 的取值范围; (Ⅲ)直接写出()y f x =的值域.【跟踪训练1-1】(2020秋•石河子校级月考)已知函数22||1y x x =--. (1)作出函数的图象;(2)由图象写出函数的单调区间.【名师指导】作函数图象的两种常用方法1.直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.2.图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序. 题型2 函数图象的识辨 【例2-1】(2020•天津)函数241xy x =+的图象大致为( ) A . B .C .D .【例2-2】(2020春•通州区期末)已知函数()f x 的图象如图所示,那么该函数可能为( )A .()||lnx f x x =B .||()ln x f x x= C .1,0()(1),0x x x x f x e x e x -⎧>⎪=⎨⎪+<⎩D .22,0()(),0lnxx x f x ln x x x ⎧->⎪⎪=⎨-⎪<⎪⎩【例2-3】(2020•乐山模拟)已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC ∆的面积为()S θ,则函数()S θ的图象大致是( )A .B .C .D .【跟踪训练2-1】(2019•新课标Ⅲ)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【跟踪训练2-2】(2020春•湖州期末)已知某函数的图象如图所示,则其解析式可以是( )A .sin()x x y e e -=+B .sin()x x y e e -=-C .cos()x x y e e -=-D .cos()x x y e e -=+【跟踪训练2-3】(2020•贵港四模)如图,点P 在以2AB =为直径的半圆弧上,点P 沿着BA 运动,记BAP x ∠=.将点P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【名师指导】识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特殊点,排除不合要求的图象. 题型3 函数图象的应用【例3-1】(2020春•龙凤区校级期末)函数322x y x lgx -=+的图象( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线y x =对称D .关于原点对称【例3-2】(2020秋•琼海校级月考)已知定义在R 上的偶函数()y f x =部分图象如图所示,那么不等式()0xf x >的解集为 .【例3-3】(2019•江苏模拟)已知函数[],0,()(1),0,x x x f x f x x -⎧=⎨+<⎩其中[]x 表示不超过x 的最大整数,如:[ 1.2]2-=-,[1.2]1=,[1]1=.若直线(0)y kx k k =+>与函数()f x 的图象恰好有三个不同的交点,则实数k 的取值范围是 .【跟踪训练3-1】(2021•嘉定区一模)已知函数()log a f x x =和()(2)g x k x =-的图象如图所示,则不等式()0()f xg x 的解集是 .【名师指导】1.利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.2.利用函数的图象研究方程根的个数:当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标.3.利用函数的图象研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.配套练习1.(2021·北京101中学高一期末)如图所示的是函数sin y x =(0x π≤≤)的图像,()A x y ,是图像上任意一点,过点A 作x 轴的平行线,交图像于另一点B (A ,B 可重合).设线段AB 的长为()f x ,则函数()f x 的图像是( )A .B .C .D .2.(2021·西藏高三其他模拟(文))函数2,02,0x x x y x -⎧≥=⎨<⎩的图像为( )A .B .C .D .3.(2021·全国高一)函数22()21xf x x =-的图像的是 ( )A .B .C .D .4.(2021·江苏无锡市·高一期末)函数2()ln f x x x =+的图像大致是( )A .B .C.D.5.(2021·天津南开区·南开中学高三月考)函数cos622x xxy-=-的图像大致为()A.B.C.D.6.(2021·天津滨海新区·高三月考)函数ln||cos()sinx xf xx x⋅=+在[),0π]π(0,-⋃的图像大致为()A.B.C.D.7.(2021·浙江高一期末)函数ln||()||x xf xx=的图像可能是()A .B .C .D .8.(2021·浙江高一期末)函数log (01)a y x a a =>≠且与函数2(1)21y a x x =---在同一坐标系中的图像可能是( )A .B .C .D .9.(2021·全国高一)向如下图所示的容器中匀速注水时,容器中水面高度h 随时间t 变化的大致图像是( )A .B .C .D .10.(2021·吉林长春市·长春外国语学校高一期末)我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 11.(2021·全国高一)如图,正方形ABCD 的边长为2,动点E 从A 开始沿A →B →C 的方向以2个单位长/秒的速度运动到C 点停止,同时动点F 从点C 开始沿CD 边以1个单位长/秒的速度运动到D 点停止,则AEF 的面积y 与运动时间x (秒)之间的函数图像大致形状是( )A .B .C .D .12.(2021·江苏高一)函数2()21f x ax x =++与()a g x x =在同一坐标系中的图像可能为( )A .B .C .D .13.(2021·上海浦东新区·高一期末)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0x f x ⋅的解集是____.函数的图象解析题型归纳题型1 作函数的图象【例1-1】(2020秋•海淀区校级期中)已知函数21,1(),1121,1x f x x x x x <-⎧⎪=-⎨⎪->⎩.(Ⅰ)画出函数()y f x =的图象; (Ⅱ)若1()4f x ,求x 的取值范围; (Ⅲ)直接写出()y f x =的值域.【解析】解:(Ⅰ)函数()y f x =的图象如图; (Ⅱ)当1x <-时,满足1()4f x , 当11x -,由1()4f x 得214x ,得12x 或12x -,此时112x --或112x , 当1x >时,1()4f x 恒成立, 综上得12x或12x -, 即x 的取值范围是得12x或12x -; (Ⅲ)由图象知()0f x ,即()y f x =的值域是[0,)+∞.【跟踪训练1-1】(2020秋•石河子校级月考)已知函数22||1y x x =--. (1)作出函数的图象;(2)由图象写出函数的单调区间.【解析】解:(1)函数22221,2||121,x x x y x x x x x ⎧--=--=⎨+-<⎩. 当0x 时,2(1)2y x =--; 当0x <时,(1)2y x =+-. 故图象如图所示;(2)函数的增区间为:(1-,0],(1,)+∞; 减区间为:(-∞,1]-,(0,1].【名师指导】作函数图象的两种常用方法1.直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.2.图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序. 题型2 函数图象的识辨 【例2-1】(2020•天津)函数241xy x =+的图象大致为( ) A . B .C .D .【解析】解:函数241xy x =+的定义域为实数集R ,关于原点对称,函数24()1x y f x x ==+,则24()()1xf x f x x -=-=-+,则函数()y f x =为奇函数,故排除C ,D , 当0x >是,()0y f x =>,故排除B , 故选:A .【例2-2】(2020春•通州区期末)已知函数()f x 的图象如图所示,那么该函数可能为( )A .()||lnx f x x =B .||()ln x f x x= C .1,0()(1),0x x x x f x e x e x -⎧>⎪=⎨⎪+<⎩D .22,0()(),0lnxx x f x ln x x x ⎧->⎪⎪=⎨-⎪<⎪⎩【解析】解:由图可知,函数()f x 为奇函数,而选项A 和C 中对应的函数是非奇非偶函数,于是排除选项A 和C ;当(0,1)x ∈时,从图象可知,()0f x <,而对于选项D ,0lnx <,20x >,所以()0f x >,与图象不符,排除选项D . 故选:B .【例2-3】(2020•乐山模拟)已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC ∆的面积为()S θ,则函数()S θ的图象大致是( )A .B .C .D .【解析】解:由题知,点(2,0)A ,点(2cos ,2sin )B θθ,点(2cos ,0)C θ, 则11()||||(22cos )2|sin |022S AC BC θθθ=⨯=-,故排除选项C 和D ,又因为当34πθ=时,1()(222122S θ=⨯+⨯>,排除选项B .故选:A .【跟踪训练2-1】(2019•新课标Ⅲ)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【解析】解:由32()22x x x y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .【跟踪训练2-2】(2020春•湖州期末)已知某函数的图象如图所示,则其解析式可以是( )A .sin()x x y e e -=+B .sin()x x y e e -=-C .cos()x x y e e -=-D .cos()x x y e e -=+【解析】解:令()x x s x e e -=+,该函数的定义域为R ,且()()x x s x e e s x --=+=, ()s x ∴为R 上的偶函数;令()x x t x e e -=-,该函数的定义域为R ,且()()()x x x x t x e e e e t x ---=-=--=-, ()t x ∴为R 上的奇函数,又正弦函数为奇函数,余弦函数为偶函数, 且图中所给出的函数为偶函数,排除A 与C ; 又由图可知,所求函数在[0,1]上为减函数,而B 中内层函数()t x 在[0,1]上为增函数,而外层函数正弦函数在[0,]2π上为增函数,故当x 大于0且在0附近时,B 中函数为增函数,排除B . 故选:D .【跟踪训练2-3】(2020•贵港四模)如图,点P 在以2AB =为直径的半圆弧上,点P 沿着BA 运动,记BAP x ∠=.将点P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【解析】解:()2cos 2sin )4y f x PA PB x x x π==+=+=+,选项D 符合题意, 故选:D . 【名师指导】识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势. (3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特殊点,排除不合要求的图象. 题型3 函数图象的应用【例3-1】(2020春•龙凤区校级期末)函数322x y x lgx -=+的图象( ) A .关于x 轴对称 B .关于y 轴对称C .关于直线y x =对称D .关于原点对称【解析】解:202x x ->+,2x ∴>或2x <-,即函数的定义域为(-∞,2)(2-⋃,)+∞(定义域关于原点对称), 32()2x y f x x lgx -==+,333222()()()222x x x f x x lg x lg x lg f x x x x --+-∴-=-=-==-+-+, ∴函数()y f x =是偶函数,关于y 轴对称,故选:B .【例3-2】(2020秋•琼海校级月考)已知定义在R 上的偶函数()y f x =部分图象如图所示,那么不等式()0xf x >的解集为 .【解析】解:根据题意,由()f x 的图象分析可得:在(0,1)和(2,)+∞上,()0f x >,在区间(1,2)上,()0f x <, 又由()f x 为偶函数,则在(1,0)-和(,2)-∞-上,()0f x >,在区间(2,1)--上,()0f x <, 0()0()0x xf x f x >⎧>⇒⎨>⎩或0()0x f x <⎧⎨<⎩, 则有01x <<或2x >或21x -<<-,即不等式的解集为{|01x x <<或2x >或21}x -<<-; 故答案为:{|01x x <<或2x >或21}x -<<-.【例3-3】(2019•江苏模拟)已知函数[],0,()(1),0,x x x f x f x x -⎧=⎨+<⎩其中[]x 表示不超过x 的最大整数,如:[ 1.2]2-=-,[1.2]1=,[1]1=.若直线(0)y kx k k =+>与函数()f x 的图象恰好有三个不同的交点,则实数k 的取值范围是 .【解析】解:函数[],0()(1),0x x x f x f x x -⎧=⎨+<⎩,∴函数的图象如下图所示:(1)y kx k k x =+=+,故函数图象一定过(1,0)-点若()f x kx k =+有三个不同的根,则y kx k =+与()y f x =的图象有三个交点 当y kx k =+过(2,1)点时,13k =,当y kx k =+过(3,1)点时,14k =,故()f x kx k =+有三个不同的根,则实数k 的取值范围是11[,)43故答案为:11[,)43.【跟踪训练3-1】(2021•嘉定区一模)已知函数()log a f x x =和()(2)g x k x =-的图象如图所示,则不等式()0()f xg x 的解集是 .【解析】解:由图象()log a f x x =可得(0,1)x ∈时,()0f x <, (1,)x ∈+∞时,()0f x >,当1x =时()0f x =由图象()(2)g x k x =-可得(,2)x ∈-∞时,()0g x >, (2,)x ∈+∞时,()0g x <,不等式()0()f x g x ,即()0()0f x g x ⎧⎨>⎩或()0()0f x g x ⎧⎨<⎩; [1x ∴∈,2) ∴不等式()0()f xg x 的解集为[1,2) 故答案为:[1,2) 【名师指导】1.利用函数的图象研究函数的性质对于已知或解析式易画出其在给定区间上图象的函数,其性质常借助图象研究: (1)从图象的最高点、最低点,分析函数的最值、极值; (2)从图象的对称性,分析函数的奇偶性;(3)从图象的走向趋势,分析函数的单调性、周期性.2.利用函数的图象研究方程根的个数:当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标.3.利用函数的图象研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.配套练习1.(2021·北京101中学高一期末)如图所示的是函数sin y x =(0x π≤≤)的图像,()A x y ,是图像上任意一点,过点A 作x 轴的平行线,交图像于另一点B (A ,B 可重合).设线段AB 的长为()f x ,则函数()f x 的图像是( )A .B .C .D .【答案】A 【解析】[0,]2x π∈时,B x x π+=()2,B f x AB x x x π∴==-=-[0,]2x π∈时()f x 表示递减的一次函数所以选A.2.(2021·西藏高三其他模拟(文))函数2,02,0x x x y x -⎧≥=⎨<⎩的图像为( )A .B .C .D .【答案】B【解析】解:根据题意,当0x ≥时,2x y =,为指数函数,单调递增,且在0x =时函数有最小值1; 当0x <时,122xx y -⎛⎫== ⎪⎝⎭为指数函数,单调递减,且函数值1y >. 故选:B.3.(2021·全国高一)函数22()21x f x x =-的图像的是 ( ) A . B .C .D .【答案】B【解析】解:因为22()21x f x x =-,所以2210x -≠,解得2x ≠±,故函数的定义域为|x R x ⎧⎪∈≠⎨⎪⎪⎩⎭,故排除AC ;当0x <<时,20x <,2210x -<,所以22()021x f x x =>-,故排除D ; 故选:B4.(2021·江苏无锡市·高一期末)函数2()ln f x x x =+的图像大致是( ) A . B .C .D .【答案】B【解析】()2ln f x x x =+,()()22ln ln ()f x x x x f x x -=-∴=+-+=,所以()f x 为偶函数,排除D ;当0x →时,()f x →-∞ ,排除AC ;故选:B.5.(2021·天津南开区·南开中学高三月考)函数cos622x x xy -=-的图像大致为( )A .B .C .D .【答案】D【解析】解:()cos622x x xy f x -==-定义域为()(),00,-∞⋃+∞,()()cos622x x xf x f x --==--即函数()f x 是奇函数,图象关于原点对称,故A 错误;当x →+∞是,2x →+∞,20x -→,[]cos61,1x ∈-,故()0f x →,故C 错误;当0x >且,0x →时,cos60x >,220x x -->,故()0f x >,故B 错误,D 正确;故选:D6.(2021·天津滨海新区·高三月考)函数ln ||cos ()sin x xf x x x ⋅=+在[),0π]π(0,-⋃的图像大致为( )A .B .C .D .【答案】D【解析】 因为ln ||cos()ln ||cos ()()sin()sin x x x x f x f x x x x x-⋅-⋅-==-=--+-+,[)π,00,π(]x -⋃∈, 所以()f x 为奇函数,因此函数()f x 的图像关于原点对称,故排除A ,又因为()10f ±=,π()02f ±=,π()03f >,()0f π<,故排除B ,C.故选:D 7.(2021·浙江高一期末)函数ln ||()||x x f x x =的图像可能是( ) A . B .C .D .【答案】B【解析】 函数的定义域是{}0x x ≠,且()()f x f x -=-,所以函数是奇函数,关于原点对称,排除A,C ,当01x <<时,ln 0x <,所以()0f x <,故排除D.故选:B8.(2021·浙江高一期末)函数log (01)a y x a a =>≠且与函数2(1)21y a x x =---在同一坐标系中的图像可能是( )A .B .C .D .【答案】C【解析】当1a >时,log a y x =单调递增,()2121y a x x =---开口向上,不过原点,且对称轴101x a =>-,可排除AB 选项;当1a <时,log a y x =单调递减,()2121y a x x =---开口向下,可排除D ,故选C 9.(2021·全国高一)向如下图所示的容器中匀速注水时,容器中水面高度h 随时间t 变化的大致图像是( )A .B .C .D .【答案】C【解析】结合容器的形状,可知一开始注水时,水高度变化较快当水位接近中部时变慢并持续一段时间,接近上部时,水位高度变快,故选C.10.(2021·吉林长春市·长春外国语学校高一期末)我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+【答案】A【解析】由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C ,故选:A11.(2021·全国高一)如图,正方形ABCD 的边长为2,动点E 从A 开始沿A →B →C 的方向以2个单位长/秒的速度运动到C 点停止,同时动点F 从点C 开始沿CD 边以1个单位长/秒的速度运动到D 点停止,则AEF 的面积y 与运动时间x (秒)之间的函数图像大致形状是( )A .B .C .D .【答案】A【解析】由题得12x ≤≤时,2(1)22,42,,2BE x x CE x CF x DF x =-=-=-==-,所以AEF 的面积y 211142(22)(42)2(2)34222x x x x x x =-⋅⋅--⋅⋅--⋅⋅-=-+, 它的图象是抛物线的一部分,且含有对称轴.故选:A12.(2021·江苏高一)函数2()21f x ax x =++与()a g x x =在同一坐标系中的图像可能为( )A .B .C .D .【答案】ACD【解析】当0a <时,()a g x x =为奇函数,定义域为{}|0x x ≠,且在()0,∞+上递减,而2()21f x ax x =++开口向下,对称轴为10x a =->,(0)1f =,故A 符合; 当()2a n n N+=∈时,()a g x x =为偶函数,且在()0,∞+上递增,2()21f x ax x =++开口向上,且对称轴为10x a =-<,440a ∆=-<,其图象和x 轴没有交点,故D 符合; 当()12a n N n+=∈时,函数()a g x x =的定义域为[)0,+∞,且在[)0,+∞上递增,2()21f x ax x =++开口向上,且对称轴为10x a=-<,440∆=->a ,图象和x 轴有两个交点,故C 符合. 故选:ACD .13.(2021·上海浦东新区·高一期末)定义在R 上的奇函数()f x 在[)0,+∞上的图像如图所示,则不等式()0x f x ⋅的解集是____.【答案】[]3,3-【解析】根据函数为奇函数,可作出函数的简图,如图所示:不等式()()000x x f x f x >⎧⋅⇒⎨≥⎩或()00x f x <⎧⎨≤⎩或0x =, 由图可得:03x <≤或-<3≤0x 或0x =, 综上:解集为:[]3,3-故答案为:[]3,3-.。
函数与像的对称性与变换

函数与像的对称性与变换函数与像的对称性与变换是数学中一个重要的概念和技巧,它主要用于研究函数图像的性质与特点。
通过对函数的变换和对称性的研究,可以更深入地了解函数的行为和特性,从而解决一些实际问题。
一、函数的对称性函数的对称性是指函数图像在某些操作下表现出的某种规律性。
常见的函数对称性有:奇函数、偶函数、周期函数和一般函数。
1. 奇函数:若对于任意x,有f(x)=-f(-x),则函数f(x)为奇函数。
奇函数的图像以原点为对称中心,即左右对称。
2. 偶函数:若对于任意x,有f(x)=f(-x),则函数f(x)为偶函数。
偶函数的图像以y轴为对称轴,即左右对称。
3. 周期函数:若存在正数T,对于任意x,有f(x+T)=f(x),则函数f(x)为周期函数。
周期函数的图像呈现出某种规律的重复性。
4. 一般函数:既不满足奇函数也不满足偶函数性质的函数称为一般函数,它的图像没有明显的对称性。
二、函数的变换函数的变换是指通过一系列的操作,改变函数图像的位置、形状、大小等特征。
常见的函数变换操作包括平移、伸缩、翻转和旋转等。
1. 平移:函数的平移是指将整个函数图像沿着坐标轴的方向移动一定的距离。
平移有水平平移和垂直平移两种情况,分别用平移量a和b 来表示。
2. 伸缩:函数的伸缩是指将整个函数图像在坐标轴的方向上进行拉伸或压缩。
伸缩有水平伸缩和垂直伸缩两种情况,分别用伸缩因子k 和h来表示。
3. 翻转:函数的翻转是指将整个函数图像关于某一直线对称。
翻转有水平翻转和垂直翻转两种情况,分别用翻转轴x=a和y=b来表示。
4. 旋转:函数的旋转是指将整个函数图像绕坐标原点或者某一点旋转一定的角度。
旋转用旋转中心和旋转角度来表示。
三、应用实例函数与像的对称性与变换在实际问题中有着广泛的应用。
以下举几个例子进行说明。
1. 对称轴的求解:利用函数的对称性,可以通过观察函数的图像来推断函数的对称轴,并进一步求解问题。
例如,通过观察一条曲线图像在x轴的对称性,可以得出该函数是偶函数,进而得到函数的性质和解析式。
函数的对称问题重点

函数的对称问题湖南彭向阳一、函数的自对称问题1.函数y=f(x的图象关于直线x=a对称f(a+x=f(a-x;特别,函数y=f(x的图象关于y轴对称f(x=f(-x.2.函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b;特别,函数y=f(x的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴(中心:除了三角函数y=sinx,y=cosx的对称轴(中心)可以由下列结论直接写出来(对称轴为函数取得最值时的x=,对称中心为函数与x轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例1 确定函数的图象的对称中心.解析1 设函数的图象的对称中心为(h,k),在图象上任意取一点P (x,y),它关于(h,k)的对称点为Q(2h-x,2k-y),Q点也在图象上,即有,由于,两式相加得,化简得(*).由于P点的任意性,即(*)式对任意x都成立,从而必有x的系数和常数项都为0,即h=1,k=1.所以函数的图象的对称中心为(1,1).解析2 设函数,则g(x为奇函数,其对称中心为原点,由于,说明函数f(x的图象是由g(x的图象分别向右、向上平移1个单位得到,而原点向右、向上分别平移1个单位得到点(1,1.所以函数的图象的对称中心为(1,1).例2 曲线f(x=ax3+bx2+cx,当x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1处切线的斜率为.(1求f(x;(2曲线上是否存在一点P,使得y=f(x的图象关于点P中心对称?若存在,求出点P的坐标,并给出证明;若不存在,请说明理由.解析 (1=3ax2+2bx+c,由题意知1-与1+是=3ax2+2bx+c=0的根,代入解得b=-3a,c=-6a.又f(x 在x=1处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .(2假设存在P(x0,y0,使得f(x的图象关于点P中心对称,则f(x0+x+f(x0-x=2y0,即,化简得. 由于是对任意实数x都成立,所以,而P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P中心对称.2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论(函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例3 求证函数的图象关于点P(1,3)成中心对称.证明1 在函数的图象上任意取一点A(x,y),它关于点P(1,3)的对称点为B(2-x,6-y),因为,所以点B在函数的图象上,故函数的图象关于点P(1,3)对称.证明2 因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移1个单位,向上平移3个单位,就得到函数的图象,所以的图象关于点P(1,3)对称.所以的图象关于点P(1,3)对称.3.已知函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解.例4 已知定义在R上的函数f(x的图象关于点对称,且满足则f(1+f(2+f(3+…+f(2005的值为().A.-2 B.-1 C.0 D.1解析由f(x的图象关于点对称,则说明函数是奇函数,也就是有,即,又,所以,即,函数f(x是偶函数.所以,又,即f(x以3为周期,f(2=f(-1=1,f(3=f(0=-2,所以f(1+f(2+f(3+…+f(2005=668(f(1+f(2+f(3)+f(2005=f(2005=f(1=1,选D.例5 已知函数f(x=的图象关于点中心对称,求f(x.解析1 设f(x图象上任意一点A(x,y),它关于点的对称点为B,由于A、B都在f(x上,所以,相加整理得,解得a=1.所以f(x=.解析2 由上面的公式有,代入化简整理得a=1.解析3 由题意知将函数y=f(x的图象向左平移1个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即y=,它是奇函数必须常数项为0,即a=1.二、函数的互对称问题1. y=f(x与y=g(x的图象关于直线x=a对称f(a+x=g(a-x;2. y=f(x与y=g(x的图象关于直线y=b对称f(x+g(x=2b;3. y=f(x与y=g(x的图象关于点(a,b对称f(a+x+g(a-x=2b.4. y=f(x与y=g(x的图象关于直线y=x对称f(x和g(x互为反函数.记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题. 主要题型:1.判断两个函数图象的对称关系例6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于( .A.直线x=1对称 B.x轴对称C.y轴对称D.直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y轴对称,所以选择C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y轴对称,选C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线(点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线(点的对称点也在前一个函数的图象上,这两个步骤不能少. 当然也可利用上面的结论来解决.例7 已知函数f(x=x3-x,将y=f(x的图象沿x轴、y轴正向分别平行移动t、s单位,得到函数y=g(x的图象.求证:f(x和g(x的图象关于点A()对称.解析由已知得g(x=(x-t3-(x-t+s.在y=f(x的图象上任取一点P(x1,y1,设Q(x2,y2是P关于点A的对称点,则有,∴x1=t-x2, y1=s-y2.代入y=f(x,得x2和y2满足方程: s-y2=(t-x23-(t-x2,即 y2=(x2-t3-(x2-t+s,可知点Q(x2,y2在y=g(x的图象上.反过来,同样可以证明,在y=g(x的图象上的点关于点A的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A()对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由已知函数求出另一函数的解析式,然后再由已知条件确定参数的值.例8 已知f(x是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1对称,且当时,g(x=2a(x-2-3(x-23,其中为常数,若f(x的最大值为12,求a的值.解析由于g(x的图象与f(x的图象关于直线x=1对称,所以f(1+x=g(1-x,即f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x是偶函数,所以当时,,f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2≤-2a+9<0,所以f(x在上是减函数,从而f(x 在上是增函数,所以f(x的最大值为f(1=f(-1=2a-3=12,即.。
函数图像的变换法则

( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
(整理版)第四讲函数图象的对称性与变换

第四讲:函数图象的对称性与变换一、 两个函数的图象的对称性:1、y=f 〔x 〕与y=-f 〔x 〕关于x 轴对称。
2、y=f 〔x 〕与y=f 〔-x 〕关于y 轴对称。
3、 y=f 〔x 〕与y=-f 〔-x 〕关于原点对称。
4、y=f 〔x 〕与y=f 1-〔x 〕关于直线y=x 对称,〔或y=f 〔x 〕与x=f 〔y 〕关于直线y=x 对称〕。
5、y=f 〔x 〕与y=f 〔2a -x 〕{注:y=f 〔a+x 〕与y=f 〔a -x 〕关于直线x=0对称}关于直线x=a 对称。
6、y=f 〔x 〕与y=-f 〔2a -x 〕+2b 关于点〔a,b 〕对称.二、 一个函数的图象的对称性:1、关于直线x=a 对称时,f 〔x 〕=f 〔2a -x 〕或f 〔a -x 〕=f 〔a+x 〕,特例:a=0时,关于y 轴对称,此时 f 〔x 〕=f 〔-x 〕为偶函数。
2、y=f 〔x 〕关于〔a,b 〕对称时,f 〔x 〕=2b -f 〔2a -x 〕,特别a=b=0时, f 〔x 〕=-f 〔-x 〕,即f 〔x 〕关于原点对称,f 〔x 〕为奇函数。
3、y=f 〔x 〕关于直线y=x+b 对称时,由上面知y=f 〔x 〕关于直线y=x+b 对称的函数的解析式是y=f 1-〔x+b 〕+b 。
它与y=f 〔x 〕应是同一函数,所以:f 〔x 〕=f1-〔x+b 〕+b 。
特别当b =0时,f 〔x 〕=f 1-〔x 〕,即一个函数关于直线y=x 对称时,它的反函数就是它本身。
4、类似4有y=f 〔x 〕关于直线y=-x+b 对称时, f 〔x 〕=b -f 1-〔b -x 〕。
特别当b =0时,f 〔x 〕=-f 1-〔-x 〕, f 〔x 〕关于直线y=-x 对称.5、假设f(a+x)=f(b-x),那么f(x)的图像关于直线2b a x +=对称, 三:图象平移与伸缩变换、翻折变换。
1、平移变换〔向量平移法那么〕:y=f 〔x 〕按a =〔h,k 〕平移得y=f 〔x -h 〕+k,即F 〔x,y 〕=0按a =〔h,k 〕平移得F 〔x -h,y -k 〕=0,当m>0时,向右平移,m<0时,向左平移。
数学中的对称性与变换的性质与应用

电磁波:对称性在电磁波的传播和散射中的应用
相对论:对称性与时空结构的关系
对称性与化学分子的关系
对称性在化学分子中具有重要应用,可以预测分子的性质和行为。
对称性可以用于描述化学反应的过程和机制,帮助理解反应机理。
对称性在化学合成中具有指导作用,可以预测化合物的合成路线和产物结构。
对称性在化学分析中也有应用,可以通过对称性分析确定化合物的晶体结构和分子结构。
拉普拉斯变换:将时域函数转换为复平面上的函数,用于求解微分方程、控制系统等领域
Z变换:将离散信号转换为连续信号,用于数字信号处理、离散控制系统等领域
小波变换:用于多尺度分析、信号处理和图像压缩等领域
变换在几何学中的应用:刚体变换、仿射变换等
投影变换:将三维图形投影到二维平面上,包括正投影、斜投影和透视投影等。
对称性在几何学中的其他应用:除了对称空间和对称流形外,对称性在几何学中还有许多其他应用,如对称函数、对称群等。这些应用在数学和物理学等领域有广泛的应用。
对称性在数学中的重要性:对称性是数学中的重要概念之一,它在数学各个分支中都有广泛的应用。通过对称性的研究,可以深入了解数学对象和数学结构的基本性质和特点,为数学的发展和应用提供重要的理论支持和实践指导。
对称性在分析学中的应用:对称函数、对称级数等
对称函数:具有对称性质的函数,如正弦函数、余弦函数等
对称积分:利用对称性简化积分的计算,如奇偶函数积分性质等
对称微分:利用对称性简化微分方程的求解,如对称变换求解微分方程等
对称级数:具有对称性质的级数,如正项级数、交错级数等
对称性在几何学中的应用:对称空间、对称流形等
常见的变换包括平移、旋转、缩放、镜像反射等,这些变换在几何、代数和微积分等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题3:分别在同一坐标系中作出下列各组函 数的图象,并说明它们之间有什么关系?
(1)y=2x与y=2|x|
y
|x| y=2 y=2x
1
O
x
由y=f(x)的图象作 y=f(|x|)的图象:保留y=f(x)中y轴右侧部分, 再加上y轴右侧部分关于y轴对称 的图形.
y
由y=f(x)的图象作 y=|f(x)|的图象:
描绘函数图象的两种基本方法: ①描点法;(通过列表﹑描点﹑连线三个步骤完成) ②图象变换;(即一个图象经过变换得到另一个与 之相关的函数图象的方法)
函数图象的三大变换
平移
对称
伸缩
问题1:如何由f(x)=x2的图象得到下列各函 y 数的图象? y=f(x)+1
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2 (3)f(x)+1=x2+1 (4)f(x) -1=x2-1 函数图象的平移变换: y=f(x) y=f(x) a>0,向左平移a个单位 y=f(x+a)左右平移 a<0,向右平移|a|个单位 k>0,向上平移k个单位 y=f(x)+k 上下平移 k<0,向下平移|k|个单位
y
x 2
o
1
-2
x 2
例1.将函数y=2-2x的图象向左平移1个单位,再作关于 原点对称的图形后.求所得图象对应的函数解析式. y=2-2x
向左平移1个单位 x 换成 x+1
y=2-2(x+1)
关于原点对称
x换成-x y换成-y
y=-22x-2
-y=2-2(-x+1)
例2.已知函数y=|2x-2| (1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
y=f(x+1)
y=f(x-1) 1 -1 O 1
x
y=f(x)-1 -1
同步练习:
①若函数f(x)恒过定点(1,1),则函数f(x-4)-2恒过 定点
(5,-1) .
x=5
对称.
②若函数f(x)关于直线x=1对称,则函数f(x-4)-2
关于直线
问题2. 设f(x)=
1 x
(x>0),求函数y=-f(x)、y=f(-x)、
y
f(2a-x)=2b-f(x) f(a+x)=2b-f(a-x)
b o
a
x
思考?
(1)若y=f(x)满足f(a-x)=-f(b+x), 则函数图像关于
点( a+b ,0 ) 2 对称
(2)若y=f(x)满足f(a-x)=2c-f(b+x), 则函数图像关于点 (
a+b ,C ) 对称 2
轴对称
函数的对称性
有些函数 其图像有着优美的对称性, 同时又有着优美的对称关系式
知识回顾(偶函数)
从”形”的角度看, Y=f(x)图像关于直线x=0对称
Y
从”数”的角度看, f(-x)=f(x)
f (1) f (1) f (2) f (2) f ( x) f ( x)
-x
变式2: 已知函数f(x)=2x-2,作出y=|f(|x|)| 图象
小
结
1.已学的画函数图象的基本方法: (1)描点法: (2)图象变换法:平移变换、对称变换 2.画函数图象时可先确定函数的定义域、讨论函数的性 质(如单调性、奇偶性、特殊点等),再用描点法或图象 变换法得出图象。 3.用图象变换法画函数图象的简图时,往往要找出该函 数的基本初等函数,分析其通过怎样的变换(平移、对称 等)而得到。有时要先对解析式进行适当的变形。 4.利用函数的图象判定单调性、求方程根的个数、解 不等式、求最值等,体现了数形结合的数学思想。
-1+x
1 2 3 4 5 6 7 8
x
x=-1
若y=f(x)图像关于直线x=a对称
f(x)= f(2a-x) f(a-x)=f(a+x)
xa
轴对称性
y=f(x)图像关于直线x=a对称
f(x)= f(2a-x) f(a-x)=f(a+x)
特例:a=0
xa
y=f(x)图像关于直线x=0对称
思考:“函数y=f(x)与函数y=f(2a-x)的图像关于直线x=a对称”与 “函数y=f(x)满足f(x)= f(2a-x),则函数y=f(x)关于直线x=a对称” 两者间有何区别?
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
则函数图像关于 对称 (2)若y=f(x)满足f(3-x)=f(4+x) (3)若y=f(x)满足f(-2-x)=-f(-2+x), (4)若y=f(x)满足f(3-x)=-f(4+x)
(5)若y=f(x)满足f(3-x)=3-f(4+x)
函数图象是研究 函数的重要工具,它能 为所研究函数的数量 关系及其图象特征提 供一种”形”的直观 体现,是利用”数形结 合”解题的重要基础.
f(x)= f(-x)
思考? 若y=f(x)满足f(a-x)=f(b+x), x= a+b 直线 则函数图像关于 2 对称
类比探究
中心对称性
从”形”的角度看, y=f(x)图像关于(0,0)中心对称
y
从”数”的角度看, f(-x)=-f(x)
-x
o
x a
x
类比探究
中心对称性
从”数”的角度看, f(x)=-f(2a-x)
x 2
o
-1
1
2
x
y = f(-x)
y = - f(x)
练习:已知函数y=f(x) 1 的图象如图所,分别画 o 1 -1 出下列函数的图象: -2 -0.5 (1) y = f(-x); (2) y = - f(x). (3) y = f(|x|); (4) y = |f(x)|.
y -1 -0.5 y 1 o 1 x 2 -2 -1 -0.5 1
从”形”的角度看, y=f(x)图像x o
a
x
x
类比探究
中心对称性
从”形”的角度看, y=f(x)图像关于(a,0)中心对称
y
从”数”的角度看, f(x)=-f(2a-x)
f(a-x)=-f(a+x)
b
a-x o
a
a+x
x
类比探究
中心对称性
y=f(x)图像关于(a,b)中心对称
函数图像关于直线x=0对称
中心对称性
函数图像关于(0,0)中心对称
-x
x
f(-x)=f(x)
f(-x)=-f(x) 函数图像关于(a,0)中心对称
函数图像关于直线x=a对称 f(x)=f(2a-x) f(a-x)=f(a+x)
x=a
a
f(x)=-f(2a-x) f(a-x)=-f(a+x)
练习: (1)若y=f(x)满足f(-2-x)=f(-2+x),
x
x2
2 3 4 5
f(x)=f(4-x)
6
x
从”形”的角度看,
Y=f(x)图像关于直线x=2对称
Y
从”数”的角度看,
f(x)=f(4-x) f(1+x)=f(3-x) f(2+x)=f(2-x)
f ( x)
对于任意的x 你还能得到怎样的等式?
4-x
-3 -2 -1 0 1
x
x2
2 3 4 5 6 7
x
思考?若y=f(x)图像关于直线x=-1对称
Y
f(x)=f(-2-x)
-2-x
-3 -2 -1 1
x
2 3 4 5 6 7 8
x
x=-1
思考?若y=f(x)图像关于直线x=-1对称
Y
f(x)=f(-2-x)
f(-1+x)=f(-1-x)
-1-x
-3 -2 -1
y=-f(-x)的解析式及其定义域,并分别作出它们的图象。
y
y=f(-x) y=f(x)
y
y=f(x)
y
y=f(x)
o
1
x
o
1
x
o
y=-f(-x)
1
x
y=-f(x)
对 (1)y=f(x)与y=f(-x)的图象关于 y 轴 称 (2)y=f(x)与y=-f(x)的图象关于 x 轴 变 (3)y=f(x)与y=-f(-x)的图象关于 原 点 换
y
y=2x
y=2x-2
1
O
y=|2x-2|
y=|2x-2|
1
2
3
x
-1
例2.已知函数y=|2x-2| (1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
y
y=|2x-2|
1
O
1
2
3
x
-1
例3.已知函数y=|2x-2| (1)作出函数的图象; (2)指出函数 的单调区间; (3)指出x取何值时,函数有最值。
对称; 对称; 对称;
练习:说出下列函数的图象与指数函数y=2x的 图象的关系,并画出它们的示意图. (1)y=2-x (2)y=-2x (3)y=-2-x
y y y
1
O
1 x
O
1 x -1
O
-1
x
函数图象对称变换的规律:
1.函数y=f(-x)与函数y=f(x)的图像关于y轴对称