给排水专业毕业设计英文翻译--中英文对照

合集下载

给水排水英语

给水排水英语
7、 凝聚沉淀 coagulation sedimentation 加注凝聚剂的沉淀过程。
8、 凝聚剂 coagulant 在凝聚过程中所投加的药剂的统称。
9、 助凝剂 coagulant aid 在水的沉淀、澄清过程中,为改善絮凝效果,另设加的辅助药剂。
10、 药剂固定储备量 standby reserve 为考虑非正常原因导致药剂供应中断,而在药剂仓库内设置的在一般情况下不准动用的储备量。简称固定储备量。
22、 给水处理 water treatment 对不符合用不对象水质要求的水。进行水质改善的过程。
23、 污水处理 sewage treatment ,wastewater treatment 为使污水达到排水某一水体或再次使用的水质要求,对其进行净化的过程。
24、 废水处理 wastewater disposal 对废水的最终安排。一般将废水排入地表水体、排放土地和再次使用等。
11、 药剂周转储备量 current reserve 考虑药剂消耗与供应时间之间差异所需的储备量。简称周转储备量。
12、 沉沙池(沉砂池)desilting basin ,grit chamber 去除水中自重很大、能自然沉降的较大粒径沙粒或杂粒的水池。
13、 预沉池 pre-sedimentation tank 原水中泥沙颗粒较大或浓度较高时,在进行凝聚沉淀处理前设置的沉淀池。
2、 复用水系统 water reuse system 水经重复利用后再行排放或处理后排放的给水系统。
3、 循环水系统 recirculation system 水经使用后不予排放而循环利用或处理后循环利用的给水系统。
4、 生活用水 domestic water 人类日常生活所需用的水。

给水排水专业英语翻译

给水排水专业英语翻译

《给水排水专‎业英语》Lesso‎n 1speci‎f ic yield‎[spə'sifik‎][ji:ld] 单位产水量‎mass curve‎累积曲线capit‎a l inves‎tment‎投资recur‎ring natur‎a l event‎['nætʃə‎rəl] 重现历史事‎件subte‎r rane‎a n [sʌbtə‎'reini‎ən] 地下的groun‎d wate‎r地下水surfa‎c e water‎地表水tap [tæp]开关、龙头;在…上开空(导出液体)swamp‎l and ['swɔmp‎lænd] n. 沼泽地;沼泽地带capil‎l ary [kə'pilər‎i] n. 毛细管adj. 毛状的,毛细管的hygro‎- [词头] 湿(气),液体hygro‎s copi‎c [,haigr‎əu'skɔpi‎k] adj. 易湿的,吸湿的hygro‎s copi‎c moist‎u re 吸湿水strat‎u m ['strei‎təm] n. [地质学]地层,[生物学](组织的)层aquif‎e r ['ækwəf‎ə] ['ækwif‎ə] n.含水层,地下蓄水层‎satur‎a tion‎[,sætʃə‎'reiʃə‎n] n.饱和(状态),浸润,浸透,饱和度hydro‎s tati‎c[,haidr‎əu'stæti‎k] adj. 静水力学的‎,流体静力学‎的hydro‎s tati‎c press‎u re 静水压力water‎table‎ 1. 地下水位,地下水面,潜水面2. 【建筑学】泻水台;承雨线脚;飞檐;马路边沟[亦作 water‎-table‎]Phrea‎t ic surfa‎c e [fri(:)'ætik]地下水(静止)水位,浅层地下水‎面Super‎f icia‎l [sju:pə'fiʃəl‎] adj. 表面的,表观的,浅薄的Poros‎i ty [pɔ:'rɔsit‎i] n. 多孔性,有孔性,孔隙率Uncon‎f ined‎ ['ʌnkən‎'faind‎] adj. 无约束的,无限制的Perme‎a bili‎t y [,pə:miə'bilit‎i] n. 弥漫, 渗透, 渗透性Perme‎a mete‎r [pə:mi'æmitə‎] n.渗透仪,渗透性试验‎仪)Clay [klei] n. 粘土,泥土grave‎l ['ɡrævə‎l] n.[总称]砾,沙砾,小石;砾石cone of depre‎s sion‎[kəun] 下降漏斗, [水文学]下降锥体drawd‎o wn ['drɔ:daun] n. 水位下降(降落,消耗,减少)integ‎rate ['intig‎r eit] 【数学】作积分运算‎;求积分obser‎v atio‎n well [,əbzə:'veiʃə‎n] 观测井,观测孔extra‎c tion‎ [ik'stræk‎ʃən] n. 抽出,取出,提取(法),萃取(法)deriv‎a tion‎ [deri'veiʃə‎n] n. 1. 导出,引(伸)出,来历,出处,得出,得到;诱导,推论,推理;溯源【数学】1) (定理的)求导,推导2) 微商,微分,导数【语言】词源,衍生deple‎t e [di'pli:t] v. 耗尽, 使...衰竭refus‎e [ri'fju:z] n. 废物,垃圾vt. 拒绝,谢绝dump [dʌmp] n. 垃圾场,垃圾堆,堆存处vt. 倾卸,倾倒(垃圾)uncon‎f ined‎ aquif‎e r 潜水含水层‎,非承压含水‎层,无压含水层‎confi‎n ed aquif‎e r 自流含水层‎,承压含水层‎homog‎e neou‎s [,hɔməu‎'dʒi:njəs] adj. 同类的,相似的,均匀的,均相的;同种类的,同性质的;相同特征的‎Aquac‎l ude 不透水层,难渗透水的‎地层Offse‎t['ɔ:fset] n.偏移量抵销,弥补,分支,胶印,平版印刷,支管,乙字管Vt. 弥补,抵销,用平版印刷‎vi. 偏移,形成分支sophi‎s tica‎t ed [sə'fisti‎k eiti‎d] adj. 复杂的,需要专门技‎术的;诡辩的,久经世故的‎equil‎i briu‎m [,i:kwi'libri‎əm] n. 平衡,均衡Water‎Suppl‎y(给水工程)A suppl‎y of water‎is criti‎c al to the survi‎v al of life, as we know it.(众所周知,水对生命的‎生存至关重‎要。

给水排水专业英语翻译

给水排水专业英语翻译

《给水排水专业英语》Lesson 1specific yield [spə'sifik] [ji:ld] 单位产水量mass curve 累积曲线capital investment 投资recurring natural event ['nætʃərəl] 重现历史事件subterranean [sʌbtə'reiniən] 地下的groundwater 地下水surface water 地表水tap [tæp]开关、龙头;在…上开空(导出液体)swampland ['swɔmplænd] n. 沼泽地;沼泽地带capillary [kə'piləri] n. 毛细管adj. 毛状的,毛细管的hygro- [词头] 湿(气),液体hygroscopic [,haigrəu'skɔpik] adj. 易湿的,吸湿的hygroscopic moisture 吸湿水stratum ['streitəm] n. [地质学]地层,[生物学](组织的)层aquifer ['ækwəfə] ['ækwifə] n.含水层,地下蓄水层saturation [,sætʃə'reiʃən] n.饱和(状态),浸润,浸透,饱和度hydrostatic [,haidrəu'stætik] adj. 静水力学的, 流体静力学的hydrostatic pressure 静水压力water table 1. 地下水位,地下水面,潜水面2. 【建筑学】泻水台;承雨线脚;飞檐;马路边沟[亦作water-table]Phreatic surface [fri(:)'ætik]地下水(静止)水位,浅层地下水面Superficial [sju:pə'fiʃəl] adj. 表面的,表观的,浅薄的Porosity [pɔ:'rɔsiti] n. 多孔性,有孔性,孔隙率Unconfined ['ʌnkən'faind] adj. 无约束的,无限制的Permeability [,pə:miə'biliti] n. 弥漫, 渗透, 渗透性Permeameter [pə:mi'æmitə] n.渗透仪,渗透性试验仪)Clay [klei] n. 粘土,泥土gravel ['ɡrævəl]n.[总称]砾,沙砾,小石;砾石cone of depression [kəun] 下降漏斗, [水文学]下降锥体drawdown ['drɔ:daun] n. 水位下降(降落,消耗,减少)integrate ['intigreit] 【数学】作积分运算;求积分observation well [,əbzə:'veiʃən] 观测井,观测孔extraction [ik'strækʃən] n. 抽出,取出,提取(法),萃取(法)derivation [deri'veiʃən] n. 1. 导出,引(伸)出,来历,出处,得出,得到;诱导,推论,推理;溯源【数学】1) (定理的)求导,推导2) 微商,微分,导数【语言】词源,衍生deplete [di'pli:t] v. 耗尽, 使...衰竭refuse [ri'fju:z] n. 废物,垃圾vt. 拒绝,谢绝dump [dʌmp] n. 垃圾场,垃圾堆,堆存处vt. 倾卸,倾倒(垃圾)unconfined aquifer 潜水含水层,非承压含水层,无压含水层confined aquifer 自流含水层,承压含水层homogeneous [,hɔməu'dʒi:njəs] adj. 同类的,相似的,均匀的,均相的;同种类的,同性质的;相同特征的Aquaclude 不透水层,难渗透水的地层Offset ['ɔ:fset] n.偏移量抵销,弥补,分支,胶印,平版印刷,支管,乙字管Vt. 弥补,抵销,用平版印刷vi. 偏移,形成分支sophisticated [sə'fistikeitid] adj. 复杂的,需要专门技术的;诡辩的,久经世故的equilibrium [,i:kwi'libriəm] n. 平衡,均衡Water Supply(给水工程)A supply of water is critical to the survival of life, as we know it.(众所周知,水对生命的生存至关重要。

给排水工程屋顶排水中英文对照外文翻译文献

给排水工程屋顶排水中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Short and Long Term Advantage roof drainage design performance Decade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems.Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect.1. IntroductionIn the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device isgradually reduced, but the urban environment relatively high demand areas still require 100% waterproof and rapid drainage, such as the roof. Typically roof drainage system in the design, construction and maintenance has not been given due attention. Although the drainage system investment costs account for only a small portion of the total construction investment, but not able to judge the loss caused by poor design.There are two different forms of roof drainage system design methods, namely the traditional and siphon method. Traditional systems rely on atmospheric pressure work, the drive ram affected sink flow depth. Therefore, the conventional roof drainage systems require a relatively large diameter vertical drop tube, prior to discharge, all devices must be connected to the groundwater collection pipe network. In contrast, siphonic roof drainage pipe systems are generally designed to full flow (turbulent flow means that require less exhaust pipe), which will form a negative pressure, the larger the higher flow rate and pressure head. Typically siphon system requires less down pipe work under negative pressure to the water distribution network can mean higher altitude work, thereby reducing the amount of underground pipe network.Both systems consists of three parts: the roof, rainwater collection pipes, pipe network.All of these elements are able to change the water pressure distribution system. This section focuses on the role and performance of each part. Due to the principle of siphon system has not been well understood, resulting argument is relatively small, this article will highlight siphon system.2. RoofThe roof is usually designed by the architect, designer and not by the drainage design. There are three main roof.2.1 Flat roofFlat roofs are used in industrial buildings less rainfall regions and countries. This roof is not completely flat, but lower than the minimum roof slope may require. For example, the United Kingdom require maximum slope of 10 °. Setting minimum slope in order to avoid any unnecessary water.Despite the flat roof if it is not properly maintained will have more problems, but it will reduce the dead zone within the building, and the ratio of sloping roofs in favor of indoor air.2.2 sloping roofsMost residential and commercial buildings are pitched roof, inclined roof is the biggest advantage can quickly drain, thereby reducing leakage. In temperate regions, we need to consider carrying roof snow load. Once it rains, rainfall through the sloping roofs can be determined by calculation. When rainfall data can be used, you can use the kinematic theory to solve such problems.2.3 green roof (flat or inclined)It can prove roof is the oldest green roofs, including rainfall can reduce or disperse roof planted with plants. It can be planted with trees and shrubs roof garden, it can also be a vegetated roof light carpet. Wherein the latter technique has been widely used. Some of these applications tend to focus on aesthetic requirements and are often used in green development. Since the aesthetic requirements and pressure requirements, as well as green roofs thermal insulation function, reduce the heat island effect, silencer effect, extend the life of the roof.Green roofs in Germany, the most widely used, followed in North America, but to consider the impact on the aesthetics. Germany is by far the most experienced countries in the 19th centuryhave practical application, then as an alternative to reduce the risk of fire tar roof an option in urban areas. Germany is currently the main research question on the cultivation of other issues to consider smaller cities. A study from 1987 to 1989, was found packed with 70 mm thick green roof can be reduced by 60% -80% of heat loss. In a Canadian work computer model based on the roof indicates that as long as the sump, the area can reach 70% of the roof area can be reduced by 60 percent in one year, the same model was also used for artificial rainfall, which the results indicate that rainfall in the catchment season helps to drain away rainwater.However, none of these studies show that green roofs can play a useful role in the rainfall season, or how high collection efficiency of water supply. The United States did some tests, as long as the green roofs regular watering, can reduce 65 percent of the runoff in a rainfall. America's most authoritative green roof guidelines by the New Jersey state environmental agencies promulgated. The main principle is to solve the structural problems of light, and how can the normal drainage after two years.Rainfall period is based on the probability of failure is determined. The system is typically based on rainfall during rainstorms two minutes, two minutes, have a choice. Although this model will get more traffic, but there is no other better alternative. Studies have shown that the traditional model is applied to study green roofs are premature.Loss factor than traditional roof records should be small, about 98.7%.Peak flow will be reduced, although not penetrate, the surface roughness but also have a significant impact.Concentrated rainfall than two minutes for a long time, especially for large roof areas, such as public buildings, commercial buildings, industrial buildings.Urban drainage design should also consider other factors, for a complex system, a green roof in a rain is not enough. Water flow duration curve shows a longer than traditional systems. And two independent and will affect between is possible, which requires a more precise time period. 3. Rainwater CollectorBasic requirements rainwater collector is designed to be able to accommodate rainfall rainstorms. Although it is possible to make a slightly inclined roof drainage purposes, but the nature of the construction industry and building settlement will become flat roof Typically, the tank is placed in a horizontal, sectional view of the water is outwardly inclined, which the role of hydrostatic.3.1 drain outletAnalyzing rainwater collector has sufficient volume is the key to the sump outlet external setting conditions. Also affect the flow rate into the storm water drainage system piping, but also affect the depth of the water catchment. Although the depth of the sump will not bring any particular problems, but too deep can cause excessive sump.Numerous studies in the 1980s showed that the flow of conventional roof drainage system outlet can be divided into two cases. It depends on the size of the depth and size of the outlet. When the water depth is less than half the diameter of the outlet, the flow of the first type, and the outlet of the flow can be calculated by an appropriate equation; water depth increases, exports are slowly clogging the flow will become another form forms, at the same time, the flow of exports can be obtained through other equations. While conventional roof drainage systems are designed to be free-draining, but may cause limitations encountered in the design of the flow is not free. In this case, it will require additional depth.Siphon roof drainage systems, the outlet is designed to be submerged stream. In this case, the depth of the outlet of the decision is more complicated, because the design of the sump depends on the flow. Recent studies have shown that conventional roof drainage systems use a variety of non-standard catchment, their depth and height, bigger than the diameter of the outlet. This will eventually result in a siphon effect. For a given catchment, the flow depends on the starting end of the drop tube diameter. A similar phenomenon has also been used to study the standard catchment, in these circumstances, only limited siphon action occurs within relatively close distance from the exit.3.2 tank flow classificationIn the complex flow sump outlet flow classification, can be seen from Table 2a, the flow will be uniform layering, regardless of whether the same inlet flow. Table 2b and 2c show, export distribution will greatly influence the flow.When the outlet is not a free jet, sump outlet complex flow classification is difficult to describe. Because each catchment tank pressures are likely to be merged. For example, the siphon tube system design point is at near full jet outlet flow classification depends on the energy loss of each branch.3.3 hydrostatic sectionalSump shape of the water surface in the canal can be classified according to the flow equation. In most cases, a low flow rate means that there is less friction loss, if exports are free jet, the friction loss is negligible cross-section through the hydrostatic equation 1 to determine the horizontal distance.Where Q-- flow (m3 / s)T- surface width (m)g- acceleration of gravity (m / s2)F- flow area (m2)Equation 1 can not be ignored when the friction required to correct (or very long pipe velocity is large), or not a free jet.3.4 The current design methodsThe previous discussion has highlighted the main factors that should be considered with sink design. However, without the help of a certain number of models, computing hydrostatic sectional roof drainage system, the volume of the sump is possible. This large commercial and manufacturing industry, is a development opportunity, you can merge several kilometers of water routes. Thus, the conventional drainage system sump design methods are mainly based on experience, and assume that exports are free jet.Sump location in the building, it may cause the example to fail.Different interface sumpExcept in the case cited above, but also allows designers to use empirical data.3.5 Digital ModelLarge number of digital models can be used to accurately describe the flow of any form of catchment tank, regardless of whether the roof flows stable. An example of this model is a combination of roof space model. This model enables users to classify different aspects of the data indicated, includes: details of the rains, the roof surface drainage and other details. Kinematics have also been used to study rainwater tank to flow from the research collection. A typical method is based on open system to solve a basic problem of spatial mobility. This model automaticallyresolve the sump outlet flow situation, but also to deal with the case of free jet can also be simulated space limited mobility and submerged discharge. Output values include depth and flow rate.Currently, the model is essentially just a variety of research tools, but also through practical engineering test. However, we should face up to the various role models.4 pipe systems groupComposition in the form and scope of the tube group determines the roof drainage system relies mainly on the traditional system or siphon action.4.1 Traditional stormwater systemsConventional roof drainage systems, the ground plane is generally vertical pipe-line network, connected to the sump outlet and underground drainage systems, critical systems as well as compensating tube. It should be emphasized that the angle between the ground and the compensating tube is less than 10 °. Capacity of the entire system relies mainly on the outlet tube instead of down.Flow vertical tube is usually free-flowing, full of only 33%, the efficiency depends on the excess length of the tube. If the drop tube long enough (typically greater than 5m), there may be an annular flow. Similarly, under normal circumstances flow compensation pipe is free-flowing, full of up to 70%. Such designed process both for the design, various equations can also be used.4.2 Siphon roof drainage systemIn contrast with the traditional drainage systems, Siphon roof drainage system relies on air flow outside the system, and the tube is full pipe flow stream.The designs are usually made on the assumption that the design of heavy rain, the system can quickly siphon discharge rainwater. This assumption allows the application of hydrostatic siphon system theory. Often used steady flow energy equation. While this approach ignores the small amount of energy loss at the entrance, but after the experiment showed that there are still conducive to practical use.However, steady-state design methods in the siphon system is exposed to rain when the system does not meet the standard requirements or changes in rainfall intensity is large is not applied. In the first case, there will be some mixing of air quality, annular flow occurs. These problems are not integrated in the system when more serious. Because usually designed rains are common, it is clear now design methodology over time may not apply to siphon system. This is a major disadvantage, because the design of the main problem is the noise and vibration problems.Despite the disadvantages of the prior design approach, but a lot of the world's very few engineering failure reports. When a failure occurs, most likely for the following reasons: An incorrect understanding of the operation pointsSubstandard materials listInstallation defectsMaintenance mismanagementTo overcome these disadvantages, we have recently launched a series of research projects, to discuss the siphon system, and the development of digital models. From this work we learn a lot. In contrast with conventional design methods of some assumptions, siphon system mainly has the following aspects:1) non-flow system of full flow2) levels of certain pipe-flowing full pipe flow3) full pipe flow downstream propagation through a vertical pipe, riser, etc.4) the inner tube flow occurs over the vertical section, the system to reduce the pressure5) downward tube is full pipe flow, there will be air lock6) appears completely siphon action until well into the air system is lower than a certain levelTable 4a column data indicate that below the design point, the system will siphon unstable flow, depth of the water collecting tank is insufficient to maintain the siphon action. Table 4b show that the unsteady flow in siphon system when it will appear.Table 5 lists the data output of a digital model. It can be seen that the model can accurately describe the siphon action, siphon and steady state, the data also show that the model can accurately describe the complex siphon action.5 ConclusionThis article has illustrated the critical roof drainage systems, but these are often overlooked in the urban drainage system design. This article also shows that the design process is a complex process, rely mainly on the performance of exports. The following conclusions are based on the design summed up:1) Run depend on three interacting parts: the roof, sump, water pipes2) Green roofs can reduce traffic and beautify the city3) the export performance of the system is essential4) siphon drainage system have a greater advantage in large-scale projects, but must be considered high maintenance costs5) Design siphon drainage system should consider additional capacity and operational issuesAlthough the green roof is a more attractive option, but the traditional roof of a building in the country will continue to dominate. Green roofs will be gradually developed, and gradually been widely accepted. Similarly, the roof drainage system shown effective that it will continue to play a huge role in the commercial building drainage systems.Roof drainage system of the greatest threats from climate change, existing systems tend to be not simply aging; rainfall patterns of change will result in inefficient operation, self-cleaning rate will be reduced. Changes in wind speed and the roof will also accelerate the aging of the roof, it is necessary to carry out maintenance. Taking into account the climate change, the increase in materials, roof collected rainwater will be more extensive. Currently, the amount of rain around the globe per person per day 7-300 liters in the UK, with an average consumption of 145L / h / d, of which only about one liter is used by people, about 30 per cent of the toilet, study shows If water shortage, rainwater collected on the roof of developed and developing countries are recommended approach.屋顶排水设计性能的近期与远期优势最近十年见证了屋顶排水系统设计方面的巨大变化,特别的是,虹吸雨水排水系统已经得到逐步改善,并且有可能得到重点应用。

给水排水中英文对照外文翻译文献

给水排水中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North ChinaAbstract The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are tomaintain long-term dynamic balance between input and output of theground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve theproblem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,insustuial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.Keywords combination system of water drainage,water supply and eco-environment protection,optimal combination,resourcification of mine water.1Analyses of necessity for the combinationThere are three related problems in the basin.It is well known that the major mine-hydrogeological characteristics of the coal accumulated basin in North China display a stereo water-filling structure,which is formed by multi-layer aquifers connected hydraulically together with various kinds of inner or outer boundaries.Mine water hazards have seriously restricted the healthy development of coal industry in China because of more water-filling sources and stronger water-filling capacity in coal mines of the basin.Coal reserves in the basin are threatened by the water hazards.In Fengfeng,Xingtai,Jiaozuo,Zibao,Huaibei and Huainan coal mine districts,for example,it is estimatedthat coal reserves are threatened by the water hazards up to 52%,71.%40,%,60%,48%and 90%of total prospecting reserves respectively.It is obvious that un-mining phenomenon caused by the water hazards is serious.Water-bursting accidents under coal layers have seriously influenced safe production.Some statistical data show that there were 17 water-bursting accidents with over 1 m3/s inflow from 1985.Water drainage is an increasing burden on coal mines threatened by water hazards:high cost of water drainage raises coal prices and reduces profits of the enterprise.On the other hand,it is more and more difficult to meet the demand of water supply in coal mine districts in the basin.The reasons are not only arid and semi-arid weather conditions,but also a large amount of water drainage with deep drawdown in coal mines and irrational water exploitation.The deterioration of eco-environment is another problem.Phenomena of land surface karst collapse can be found.Many famous karst springs,which are discharge points for the whole karst groundwater syatem,stop flowing or their discharge rates decrease on a large scale.Desert cremophytes in large areas in west China die because of falling groundwater level.These three problems are related and contradictory.In order to solve the problems while ensuring safe mining,meeting water resource demands and slowing down the pace of eco-environment deterioration,it is necessary to study the optimum combination of water drainage,water supply and eco-environment protection in the basin.2The state of the art of research and the problemsAlthough research into the combination of water drainage and water supply started much earlier in some countries,their conception is simple and some shortcomings remain in their study on the theory and pattern of combination.China’s research history on the combination can be divided into three stages.The first stage is the utilization of mine water.A century ago mine water started to be used as water supply for mines.But the utilization scale and efficiency were quite limited at that time.The second stage is a comprehensive one:mine water was used while water hazards were harnessed.Great progress was made both in theory and practice of the combination.For example,the combination of water drainage and water supply not only means the utilization of mine water,but also means that it is a technique of preventing water hazards.It is unfortunate,however,that the combination research in this stage offered less sense ofeco-environment protection.Optimum combination management of water drainage,water supply and eco-environment protection is the third stage.Main features in this stage are to widen traditional research,and to establish an economic-hydraulic management model,in which safe mining,eco-environment protection and sustainable development demands,etc.are simultaneously considered as constraint conditions.3Trinity systemThe trinity system combines water drainage,water supply and eco-environment quality protection.The water-collecting structures of the system consist of land surface pumping wells in the mines,shallow land surface well in groundwater recharge areas and artificial relief wells under the mines.Both integration and coordination for the trinity system are distinguished according to the combination.The integration for the system means to utilize drainage water under the mines and pump water onto the land surface as water supply for different purposes without harming the eco-environmental quality.The coal mines are not only drainage sites,but also water supply sources.The purpose of drilling pumping wells on the land surface is to eliminate special influences on different consumers,which are caused by terminating drainage processes under the mines due to unexpected accidents in mining.The coordination for the system means to bulid some water supply sources for different consumers while ensuring eco-environmental quality in groundwater recharge positions,where pumping groundwater is quite effective on lowering groundwater heads in the mine areas.Itintercepts in advance the recharging groundwater flow towards the mines,which may not only provide consumers with good quality groundwater,achieve the goal of dropping down groundwater heads in the mines,but also effectively reduce the high costs of drainage and water treatment,which are needed by traditional dewatering measures with large drainage flow rates under the mines.The coordination changes the traditional passive pattern of preventing and controlling groundwater hazards under the mines into that of active surface interception.Both very developed karst flow belts and accumulated groundwater recharge ones under the ground are relatively ideal interceptive coordination positions in the system.For the integration of the trinity system,artificial relief wells under the mines and the land surface pumping wells mainly penetrate into direct thin bedded karst aquifers interbedded with the mining coal layers,while for the coordination of the system,the shallow land surface wells mainly penetrate into very thick karst aquifer.Therefore,hydrogeological conceptual model for the system involves the multi-layer aquifers connected hydraulically by different inner boundaries.Setting up stereo hydrogeological conceptual models and corresponding mathematical models is a prerequisite for solving the managemental problems for the system.Management of the trinity system not only considers the effects of lowering groundwater heads and safe operation for water drainage subsystem,but also pays attention to the water demands for water supply subsystem and quality changes for eco-environment protection subsystem.They play the same important role in the whole combination system.It controls the groundwater heads in each aquifer to satisfy the conditions of safe mining with certain water head pressures in the mines,and to guarantee a certain amount of water supply for the mines and near areas,but the maximum drawdown of groundwater must not be ex ceded,which may result in lowering eco-environmental quality.4Economic-hydraulic management modelIn the trinity system management,groundwater resources in the mines and nearby areas,which are assessed on the premise of eco-environment qualities and safe operation in the mines,may be provided as water supply prices,drainage costs,transportation costs(including pipeline and purchasing the land costs)and groundwater quality treatment costs for the three different waterconsumers,the optimum management models may automatically allocate to each consumer a certain amount of groundwater resources and a concrete water supply scenario based on comparisons of each consumer’s economic contribution to the whole system in objective function.Therefore the management studies on the optimal combination among water drainage,water supply and eco-environment protection involve both the management of groundwater hydraulic techniques and the economic evaluations,eco-environment quality protection and industrial structure programs.In addition to realizing an economic operation,they also guarantee a safe operation which is a key point for the combination of the whole system.5The management model for the trinity system can reach water supply goals with drainage water under the mines and the land surface pumping water on the premise of ensuring eco-environmental quality.And it can make use of one model to lay down comprehensively optimum management scenarios for each subsystem by means of selecting proper constraints and maximum economic benefit objective produced by multiple water consumers.The model can raise the security and reliability of operation for the whole trinity system,and the drainage water can be forecast for the mines and the management of water supply resource and the evaluation of eco-environment quality can be performed at the same time so as to respectively stop the separate or closed management,of departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation.This,in economic aspect,can not only avoid much geological survery and special assessment work which are often repeated by the three departments,and save a lot of funds,but also ,in technical aspect,make use of one model to simultaneously consider interference and influence on each other for different groundwater seepage fields so as to guarantee calculating precision of the forecast,the management and the evaluation work.The economic-hydraulic management model can be expressed as follows.6 A case studyA typical sector is chosen.It is located in the east of Jiaozuo coal mine,Henan Province,China.Itconsists of three mines:Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.The land surface is flat,and the whole area is about 30 km2.An intermittent river Shanmen flows through the sector from the north to the south.Average annual precipitation in the sector is about 662.3mm.Theprecipitation mainly concentrates inJune,July,August and September each year.Strata in the sector consist of very thick limestone in Middle Ordovician,coal-bearing rock series in Permo Carboniferous and loose deposits in Quaternary.There are four groups of faulted structures.The first is in northeast-southwest direction such as F3 and F1..The second is in the northwest-southeast direction such as Fangzhuang fault.The third is in the east-west direction such as Fenghuangling fault.The last is almost in north-south.These faults are all found to be normal faults with a high degree of dip angle.Four major aquifers have been found in the sector.The top one is a semi-confined porous aquifer.The next one is a very thin bedded limeston aquifer.The third is a thin bedded limestone aquifer.The last one at the bottom is a very thick limestone aquifer.Objective function of the management model is designed to be maximum economic benefit produced by domestic,industrial and agricultural water supply.Policy making variables of the model are considered as the domestic,industrial and agricultural groundwater supply rates in every management time step,and they are supplied by artificial relief flow wells under the mines,the land surface pumping wells in the mines and the shallow land surface wells in the groundwater recharge areas.All the 135 policy making variables are chosen in the model,27 for drainage wells under the mines in aquifer,27 for the land surface pumping wells in the mine districts in aquifer 27 in aquifer 27 in aquifer O2 27 for the shallow land surface wells in aquifer O2Based on the problems,the following constraint conditions should be considered:(1)Safe mining constraint with groundwater pressure in aquifer L8.There are altogether three coalmines in the typical sector,i.e.Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.Elevations of mining level for these mines are different because it is about 88-150 m in the second mining level for Hanwang Mine,and -200m in the second mining level for Yanmazhuang Mine,and-225 m in the first mining level for Jiulishan Mine.According to mining experiences,pressure-loaded heights for groundwater heads in safe mining state are considered as about 100-130m.Therefore,the groundwater level drawdowns in the three management time steps for aquifer L8 at three mines have to be equivalent to safe drawdown values at least in order to pervert groundwater hazards under the mines and to guarantee their safe operation.(2)Geological eco-environment quality constraint.In order to prevernt groundwater leakage fromupper contaminater porous aquifer into bottom one and then to seepage further down to contaminate the thin bedded limestone aquifer in the position of buried outcrop,the groundwater heads in the bottom porous aquifer must keep a certain height,i.e.the groundwater drawdowns in it are not allowed to exceed maximum values.(3)Groundwater head constraint at the shallow land surface wells in aquifer O2,The shallow landsurface wells should penetrate in aquifer O2 in order to avoid geological environment hazards,such as karst collapse and deep karst groundwater contamination.Groundwater head drawdowns in aquifer O2 for the shallow land surface wells are not allowed to exceed criticalvalues.(4)Industrial water supply constraint for the groundwater source in aquifer O2 .The rate ofindustrial water supply needed by the planned thermal power plant in the north of the sectoris designed to be 1.5 m3/s according to the comprehensive design of the system in thesector.In order to meet the demands of water,the rate industrial water supply for thegroundwater source in aquifer O2 in every management time step must be equivalent at leastto 1.5 m3/s.(5)Maximum amount constraint of groundwater resource available for abstraction.In order tomaintain the balance of the groundwater system in the sector for a long time and to avoid anyharmful results caused by continuous falling of groundwater head,the sum of groundwaterabstraction in each management time step is not allowed to exceed the maximum amount ofgroundwater resource available for abstraction.Since there is not only water drainage in the mines,but also water supply in the whole combination system,management period for the model is selected from June 1,1978 to May 31,1979,in which annual average rate of precipitation is about 50%.Management time steps for the period are divided into three.The first one is from June to September,the second from October to next January,and the last one from next February to May.According to comprehensive information about actual economic ability,economic development program and industrial structure adjustment in the sector at present and in the near future,and different association forms of water collecting structures among the land surface pumping wells,the shallow land surface wells and artificial relief flow wells under the mines,this paper designs 12 management scenarious,all of which take the safe operation in the trinity system as the most important condition.After making comparisons of optimum calculation results for the 12 scenarious,this paper comes to a conclusion that scenarios is the most ideal and applicable one for the typical sector.This scenario not only considers the effective dewatering advantage of the artificial relief flow wells under the mines and safe stable water supply advantage of the land surface pumping wells,but also pays attention to the disadvantage of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment in the land surface pumping wells.Meanwhile,eh shallow land surface wells inaquifer O2in this scenario would not only provide water supply for the thermal power plant as planned,but also play an important role in dewatering the bottom aquifer,which is major recharge source of groundwater for the mines.If the drainage subsystem under the mines runs normally,this scenario could fully offer the effective dewatering functions of the artificial relief flow wells under the mines,and makes the trinity system operate normally.But if the drainage subsystem has to stop suddenly because of unexpected accidents,the scenario could still fully utilize the land surface pumping wells and the shallow land surface wells,and increae their pumping rates in order to make up for temporary shortage of water supply for the trinity system and to make its economic losses reduced to a minimum extent.Increasing groundwater abstraction rate for the land surface pumping wells and the shallow land surface wells,in fact,is very favorable for harnessing the water-accidents under the mines and for recovery production of the mines.To sum up,this scenario sets up a new pattern for the combination of water drainage,water supply and eco-environment protection.It solves quite well the conflicts between the low safe guaranty rate and the effective dewatering result for the artificial relief flow wells under the mines.It makes full use of beneficial aspect of the conflicts,and meanwhile compensates for the unbeneficial one by arranging the land surface pumping wells in the coal mine districts.Therefore,this scenario should be comprehensive and feasible.In this scenario,Hanwan Mine,Yanmazhuang Mine and Jiulishan Mine are distributed optimally for certain amount of domestic and industrial water supply,but not for much agricultural water supply.The land surface pumping wells are also distributed for different purposes of water supply.The water supply for the thermal power plant (1.5 m3/s) is provided by the shallow land surface prehensive effects,produced by the above three kinds of water collecting structures,completely satisfy all of the constraint conditions in the management model,and achieve an extremely good economic objective of 16.520551million RMB yuan per year.In order to examine the uncertainty of the management model,12management scenarios are all tested with sensitive analysis.7Conclusion(1)The optimum combination research among water drainage,water supply and eco-environmentprotection is of great theoretical significance and application value in the basin of North China for solving unbalanced relation between water supply and demands,developing new potential water supply sources and protecting weak eco-environment.(2)The combination research is concerned not only with hydraulic technique management but alsowith constraints of economic benefits,society,ecology,environment quality,safe mining and sustainable development in the coal mines.(3)The combination model,for the first time,breaks up the closed situation existing for a longtime,under which the government departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation work respectively.Economically,it can spare the repeated geological survey and special assessment work done by the three departments and save a lot of funds;technically,one model is made use of to cover the interference and influence each other for different groundwater seepage fields soas to guarantee a high calculating precision of the forecast,the management and the evaluation work.(4)The management scenario presented in the case study is the most ideal and applicable for thetypical sector.This scenario not only makes full use of the effective dewatering advantages of the artificial relief flow wells under the mines and safe stable water supply advantages of the land surface pumping wells,but also pays attention to the disadvantages of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment for the land surface pumping wells.References1.Investigation team on mine-hydrogeology and engineering geology in the Ministry ofGeology and Mineral Resources.Investigation Report on Karst-water-filling Mines(inChinese).Beijing:Geological Publishing House,19962.Liu Qiren,Lin Pengqi,Y u Pei,Investigation comments on mine-hydrogeological conditionsfor national karst-water-filling mines,Journal of Hydrogeology and Engineering Geology(in Chinese),19793.Wang Mengyu,Technology development on preventing and curing mine water in coalmines in foreign countries,Science and Technology in Coal(in Chinese),19834.Coldewey,W.G.Semrau.L.Mine water in the Ruhr Area(Federal Republic of Germany),inProceedings of 5th International Mine Water Congress,Leicestershire:Quorn SelectiveRepro Limited,19945.Sivakumar,M.Morten,S,Singh,RN,Case history analysis of mine water pollution,inProceedings of 5th International Mine Water Congress,Leicestershire;Quorn SelectiveRepro Limited,19946.Ye Guijun.Zhang Dao,Features of Karst-water-filling mines and combination betweenwater drainage and water supply in China,Journal of Hydrogeology and EngineeringGeology(in China),19887.Tan Jiwen,Shao Aijun,Prospect analyses on Combination between water drainage andwater supply in karst water basin in northern China,Jounnal of Hebei College ofGeology(in Chinese),19858.Xin Kuide,Yu Pei,Combination between water drainage and water for seriouskarst-water-filling mines in northern China,Journal of Hydrogeology and Engineering Geology(in Chinese),19869.Wu Qiang,Luo Yuanhua,Sun Weijiang et al.Resourcification of mine water andenvironment protection,Geological Comments(in Chinese),199710.Gao Honglian,Lin Zhengping,Regional characteristics of mine-hydrogeological conditionsof coal deposits in China,Journal of Hydrogeology and Engineering Geology(in Chinese),198511.Jiang Ben,A tentative plan for preventing and curing measures on mine water in coal minesin northern China,Geology and Prospecting for Coaofield(in Chinese),1993中国北方煤炭积聚区的最佳组合排水,供水和生态环境保护摘要为了开采中国北方煤炭资源丰富的区域,不合理的排水使排水、供水和保护生态环境之间的冲突日趋严重。

给排水工程外文翻译

给排水工程外文翻译

给排水工程外文翻译 Final approval draft on November 22, 2020Short and Long Term Advantage roof drainage design performanceDecade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems.Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect.1. IntroductionIn the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device is gradually reduced, but the urban environment relatively high demand areas still require 100% waterproof and rapid drainage, such as the roof. Typically roof drainage system in the design, construction and maintenance has not been given due attention. Although the drainage system investment costs account for only a small portion of the total construction investment, but not able to judge the loss caused by poor design.There are two different forms of roof drainage system design methods, namely the traditional and siphon method. Traditional systems rely on atmospheric pressure work, the drive ram affectedsink flow depth. Therefore, the conventional roof drainage systems require a relatively large diameter vertical drop tube, prior to discharge, all devices must be connected to the groundwatercollection pipe network. In contrast, siphonic roof drainage pipe systems are generally designed to full flow (turbulent flow meansthat require less exhaust pipe), which will form a negative pressure, the larger the higher flow rate and pressure head. Typically siphon system requires less down pipe work under negative pressure to the water distribution network can mean higher altitude work, thereby reducing the amount of underground pipe network.Both systems consists of three parts: the roof, rainwater collection pipes, pipe network.All of these elements are able to change the water pressure distribution system. This section focuses on the role and performance of each part. Due to the principle of siphon system has not been well understood, resulting argument is relatively small, this article will highlight siphon system.2. RoofThe roof is usually designed by the architect, designer and not by the drainage design. There are three main roof.2.1 Flat roofFlat roofs are used in industrial buildings less rainfall regions and countries. This roof is not completely flat, but lower than the minimum roof slope may require. For example, the United Kingdom require maximum slope of 10 °. Setting minimum slope in order to avoid any unnecessary water.Despite the flat roof if it is not properly maintained will have more problems, but it will reduce the dead zone within the building, and the ratio of sloping roofs in favor of indoor air.2.2 sloping roofsMost residential and commercial buildings are pitched roof, inclined roof is the biggest advantage can quickly drain, thereby reducing leakage. In temperate regions, we need to consider carrying roof snow load. Once it rains, rainfall through the sloping roofs can be determined by calculation. When rainfall data can be used, you can use the kinematic theory to solve such problems.2.3 green roof (flat or inclined)It can prove roof is the oldest green roofs, including rainfall can reduce or disperse roof planted with plants. It can be planted with trees and shrubs roof garden, it can also be a vegetated roof light carpet. Wherein the latter technique has been widely used. Some of these applications tend to focus on aesthetic requirements and are often used in green development. Since the aesthetic requirements and pressure requirements, as well as green roofs thermal insulation function, reduce the heat island effect, silencer effect, extend the life of the roof.Green roofs in Germany, the most widely used, followed in North America, but to consider the impact on the aesthetics. Germany is by far the most experienced countries in the 19th century have practical application, then as an alternative to reduce the risk of fire tarroof an option in urban areas. Germany is currently the main research question on the cultivation of other issues to consider smaller cities. A study from 1987 to 1989, was found packed with 70 mm thick green roof can be reduced by 60% -80% of heat loss. In a Canadianwork computer model based on the roof indicates that as long as the sump, the area can reach 70% of the roof area can be reduced by 60 percent in one year, the same model was also used for artificial rainfall, which the results indicate that rainfall in the catchment season helps to drain away rainwater.However, none of these studies show that green roofs can play a useful role in the rainfall season, or how high collection efficiency of water supply. The United States did some tests, as long as the green roofs regular watering, can reduce 65 percent of the runoff ina rainfall. America's most authoritative green roof guidelines by the New Jersey state environmental agencies promulgated. The mainprinciple is to solve the structural problems of light, and how can the normal drainage after two years.Rainfall period is based on the probability of failure is determined. The system is typically based on rainfall during rainstorms two minutes, two minutes, have a choice. Although this model will get more traffic, but there is no other better alternative. Studies have shown that the traditional model is applied to study green roofs are premature.Loss factor than traditional roof records should be small, about 98.7%.Peak flow will be reduced, although not penetrate, the surface roughness but also have a significant impact.Concentrated rainfall than two minutes for a long time,especially for large roof areas, such as public buildings, commercial buildings, industrial buildings.Urban drainage design should also consider other factors, for a complex system, a green roof in a rain is not enough. Water flow duration curve shows a longer than traditional systems. And two independent and will affect between is possible, which requires a more precise time period.3. Rainwater CollectorBasic requirements rainwater collector is designed to be able to accommodate rainfall rainstorms. Although it is possible to make a slightly inclined roof drainage purposes, but the nature of the construction industry and building settlement will become flat roofTypically, the tank is placed in a horizontal, sectional view of the water is outwardly inclined, which the role of hydrostatic.3.1 drain outletAnalyzing rainwater collector has sufficient volume is the key to the sump outlet external setting conditions. Also affect the flow rate into the storm water drainage system piping, but also affect the depth of the water catchment. Although the depth of the sump will not bring any particular problems, but too deep can cause excessive sump.Numerous studies in the 1980s showed that the flow of conventional roof drainage system outlet can be divided into two cases. It depends on the size of the depth and size of the outlet. When the water depth is less than half the diameter of the outlet, the flow of the first type, and the outlet of the flow can be calculated by an appropriate equation; water depth increases, exports are slowly clogging the flow will become another form forms, at the same time, the flow of exports can be obtained through other equations. While conventional roof drainage systems are designed to be free-draining, but may cause limitations encountered in the design of the flow is not free. In this case, it will require additional depth.Siphon roof drainage systems, the outlet is designed to be submerged stream. In this case, the depth of the outlet of the decision is more complicated, because the design of the sump depends on the flow. Recent studies have shown that conventional roof drainage systems use a variety of non-standard catchment, their depth and height, bigger than the diameter of the outlet. This will eventually result in a siphon effect. For a given catchment, the flow depends on the starting end of the drop tube diameter. A similar phenomenon has also been used to study the standard catchment, in these circumstances, only limited siphon action occurs within relatively close distance from the exit.3.2 tank flow classificationIn the complex flow sump outlet flow classification, can be seen from Table 2a, the flow will be uniform layering, regardless of whether the same inlet flow. Table 2b and 2c show, exportdistribution will greatly influence the flow.When the outlet is not a free jet, sump outlet complex flow classification is difficult to describe. Because each catchment tank pressures are likely to be merged. For example, the siphon tube system design point is at near full jet outlet flow classification depends on the energy loss of each branch.3.3 hydrostatic sectionalSump shape of the water surface in the canal can be classified according to the flow equation. In most cases, a low flow rate meansthat there is less friction loss, if exports are free jet, thefriction loss is negligible cross-section through the hydrostatic equation 1 to determine the horizontal distance.Where Q-- flow (m3 / s)T- surface width (m)g- acceleration of gravity (m / s2)F- flow area (m2)Equation 1 can not be ignored when the friction required to correct (or very long pipe velocity is large), or not a free jet.3.4 The current design methodsThe previous discussion has highlighted the main factors that should be considered with sink design. However, without the help of a certain number of models, computing hydrostatic sectional roof drainage system, the volume of the sump is possible. This large commercial and manufacturing industry, is a development opportunity, you can merge several kilometers of water routes. Thus, the conventional drainage system sump design methods are mainly based on experience, and assume that exports are free jet.Sump location in the building, it may cause the example to fail. Different interface sumpExcept in the case cited above, but also allows designers to use empirical data.3.5 Digital ModelLarge number of digital models can be used to accurately describe the flow of any form of catchment tank, regardless of whether the roof flows stable. An example of this model is a combination of roof space model. This model enables users to classify different aspects of the data indicated, includes: details of the rains, the roof surface drainage and other details. Kinematics have also been used to study rainwater tank to flow from the research collection. A typical method is based on open system to solve a basic problem of spatial mobility. This model automatically resolve the sump outlet flow situation, but also to deal with the case of free jet can also be simulated space limited mobility and submerged discharge. Output values include depth and flow rate.Currently, the model is essentially just a variety of research tools, but also through practical engineering test. However, we should face up to the various role models.4 pipe systems groupComposition in the form and scope of the tube group determinesthe roof drainage system relies mainly on the traditional system or siphon action.4.1 Traditional stormwater systemsConventional roof drainage systems, the ground plane is generally vertical pipe-line network, connected to the sump outlet and underground drainage systems, critical systems as well as compensating tube. It should be emphasized that the angle between the ground and the compensating tube is less than 10 °. Capacity of the entire system relies mainly on the outlet tube instead of down.Flow vertical tube is usually free-flowing, full of only 33%, the efficiency depends on the excess length of the tube. If the drop tube long enough (typically greater than 5m), there may be an annular flow. Similarly, under normal circumstances flow compensation pipe is free-flowing, full of up to 70%. Such designed process both for the design, various equations can also be used.4.2 Siphon roof drainage systemIn contrast with the traditional drainage systems, Siphon roof drainage system relies on air flow outside the system, and the tubeis full pipe flow stream.The designs are usually made on the assumption that the design of heavy rain, the system can quickly siphon discharge rainwater. This assumption allows the application of hydrostatic siphon system theory. Often used steady flow energy equation. While this approach ignores the small amount of energy loss at the entrance, but after the experiment showed that there are still conducive to practical use.However, steady-state design methods in the siphon system is exposed to rain when the system does not meet the standard requirements or changes in rainfall intensity is large is not applied. In the first case, there will be some mixing of air quality, annular flow occurs. These problems are not integrated in the system when more serious. Because usually designed rains are common, it is clear now design methodology over time may not apply to siphon system. This is a major disadvantage, because the design of the main problem isthe noise and vibration problems.Despite the disadvantages of the prior design approach, but a lot of the world's very few engineering failure reports. When a failure occurs, most likely for the following reasons:An incorrect understanding of the operation pointsSubstandard materials listInstallation defectsMaintenance mismanagementTo overcome these disadvantages, we have recently launched aseries of research projects, to discuss the siphon system, and the development of digital models. From this work we learn a lot.In contrast with conventional design methods of some assumptions, siphon system mainly has the following aspects:1) non-flow system of full flow2) levels of certain pipe-flowing full pipe flow3) full pipe flow downstream propagation through a vertical pipe, riser, etc.4) the inner tube flow occurs over the vertical section, the system to reduce the pressure5) downward tube is full pipe flow, there will be air lock6) appears completely siphon action until well into the air system is lower than a certain levelTable 4a column data indicate that below the design point, the system will siphon unstable flow, depth of the water collecting tank is insufficient to maintain the siphon action. Table 4b show that the unsteady flow in siphon system when it will appear.Table 5 lists the data output of a digital model. It can be seen that the model can accurately describe the siphon action, siphon and steady state, the data also show that the model can accurately describe the complex siphon action.5 ConclusionThis article has illustrated the critical roof drainage systems, but these are often overlooked in the urban drainage system design. This article also shows that the design process is a complex process, rely mainly on the performance of exports. The following conclusions are based on the design summed up:1) Run depend on three interacting parts: the roof, sump, water pipes2) Green roofs can reduce traffic and beautify the city3) the export performance of the system is essential4) siphon drainage system have a greater advantage in large-scale projects, but must be considered high maintenance costs5) Design siphon drainage system should consider additional capacity and operational issuesAlthough the green roof is a more attractive option, but the traditional roof of a building in the country will continue to dominate. Green roofs will be gradually developed, and gradually been widely accepted. Similarly, the roof drainage system shown effective that it will continue to play a huge role in the commercial building drainage systems.Roof drainage system of the greatest threats from climate change, existing systems tend to be not simply aging; rainfall patterns of change will result in inefficient operation, self-cleaning rate will be reduced. Changes in wind speed and the roof will also accelerate the aging of the roof, it is necessary to carry out maintenance. Taking into account the climate change, the increase in materials, roof collected rainwater will be more extensive. Currently, the amount of rain around the globe per person per day 7-300 liters in the UK, with an average consumption of 145L / h / d, of which onlyabout one liter is used by people, about 30 per cent of the toilet, study shows If water shortage, rainwater collected on the roof of developed and developing countries are recommended approach.屋顶排水设计性能的近期与远期优势最近十年见证了屋顶排水系统设计方面的巨大变化,特别的是,虹吸雨水排水系统已经得到逐步改善,并且有可能得到重点应用。

给排水专业英语课文翻译

给排水专业英语课文翻译

There are several species of bacteria that are widely found in the aquatic environment but so not normally cause illness in the immuno-competent. They are not therefore particularly associated with health problems from drinking-water. It is important to be aware of them nevertheless, as they have occasionally been associated with disease where people may already be ill with other conditions or their immune system is reduced and unable to cope (Dufour 1990).They are usually known as environmental bacteria, but I have also come across the terms adventitious or heterotrophic in this context (although heterotrophic strictly means they get their source of energy and cellular carbon from the oxidation of organic material, that is, by feeding on plants or animals-rather than photosvnchesis). Where laboratories carry out plare counts, it is often these bacteria that are cultured. There will be many different types of environmental bacturia but the imporiant ones for drinking-water safety are listed here.AeromonasAeromonas are commonly found in both fresh and salt waters. There are several species, each one favouring a particular environmental niche. Aeromonas bydropbila is found mainly in clean river water, Aeromonas sobria in stagnant water and Aeromonas caviae in marine water. They are so common that people have tried to use them in rivers as indicators of pollution. They are known to cause diarrhoea and infection in soft tissue where damaged skin comes into contact with contaminated river or lake water.Aeromonas caviae is the one most commonly associated with diarrhoea. Diarrhoeal infection is usually mild, although more severe symptoms have occasionally been known, including bloody diarrhoea and chronic colitis (inflammation of the colon).Aeromonas have been found in treated chlorinated water and sometimes, there is re-growth in the distribution pipes. Chlorine only appears to have a temporary effect on them and this may mean that it stops them from reproducing but does not kill them. If left (presumably so they can get their breath back and have a bit of a rest after the chlorine attack) they can continue as normal.有一些种类的细菌在水生环境中被发现,但通常不引起疾病immuno-competent。

建筑给排水文献毕设翻译

建筑给排水文献毕设翻译

英文翻译院(系)环境与市政工程专业班级给水排水工程1001班姓名李倩昱学号100320115指导教师王俊萍2014年 04月 18日The effect of rainwater storage tanks on design stormsFrom Urban WaterG. Vaes *, J. Berlamont AbstractThe effect of source control measures on the design of combined sewer systems can in most cases only be correctly assessed using the intrinsic temporal rainfall variability, because long antecedent periods can have an important influence. A conceptual model was built to assess the effect of rainwater tanks on the rainfall runoff using long term historical rainfall series. The outflow of the rainwater tank model is converted to equivalent rainfall series. Based on intensity/duration /frequency-relationships (IDF-relationships) for this equivalent flattened rainfall, modified design storms are developed. ○C2001 Elsevier Science Ltd. All rights reserved.Keywords: Design storm; Intensity/duration/frequency-relationships; Rainwater;Source control; Storage tanks1. IntroductionThe driving force behind the behaviour of many hydraulic structures and systems is the rainfall input. In order to simplify design calculations and limit simulation time, representative single storm events are often used. In Flanders, standard design storms are used for the design of combined sewer systems, based on intensity/duration/frequency-relationships (IDF-relationships) (Vaes, 1999). These design storms are called `composite' storms (Fig. 1), because for one return period all storm durations are included in one storm [comparable with the well-known Chicago-storms (Keifer & Chu, 1957)].However, the variability of the rainfall is high. A comparison between the simulation results (flow, water depth, etc. in hydrologic/hydraulic systems) obtained with continuous simulations and simulations with design storms indicate that significant differences may be found for the probability of an event when the intrinsic variability of the rainfall is neglected (Dahl, Harremoes, & Jacobsen, 1996; Vaes, 1999). The differences will be small for systems, which behave linearly, because the immediate rainfall determines the peak flow and maximum water levels. When the systems behaves more as `capacitive' systems (i.e., where the storage becomes an important parameter), the differences will be larger. A capacitive system has a `memory' that is influenced by the antecedent rainfall. Often combined sewer systems have an emptying time, which tends towards 12 h. For source control structures, the emptying time is even larger (weeks or months). If a severe storm occurs within a short period after an earlier storm, the antecedent rainfall may still occupy a large amount of the storage capacity in the combined sewer system or retention structure. The larger the influence of the memory is, the larger the intrinsic variability of the rainfall will influence the simulation results. For example, for a combined sewer system in a flat region with one pump at the downstream end, the throughflow is almost independent of the storage volume. The stored volume in the system is therefore mainly dependent on the inflow. This is also the case for infiltration structures, where the infiltration capacity is only slightly determined bythe storage in the structure and the remaining storage capacity in the structure is therefore mainly a function of the input history.More and more `capacitive' systems have been built in the last years and will still be built in future. Large storage volumes are necessary to retain the rainfall and to attenuate the flow. These storage volumes can be built in the sewer system (on-line storage) or at the combined sewer overflow (off-line storage). However, more and more attention is now going to `source control'. This means that storage is provided in rainwater tanks, infiltration trenches, etc. upstream of the drainage system. For these source control implementations the influencing antecedent rainfall period is even larger than for storage in the combined sewer system. It has been found that source control requires larger storage volumes (relative to the contributing area) than for down-stream storage (Vaes & Berlamont, 1998, 1999); as well found by Herrmann and Schmida (1999). Due to the longer emptying times for upstream storage, the available storage for retention is much smaller. This all amplifies the need to take into account the intrinsic variability of the rainfall for specific design calculations.2. Effect of retention facilities on downstream drainage systemsThe effect of source control on the design of combined sewer systems can in most cases only be correctly assessed using the intrinsic temporal variability, because long antecedent periods can have an important influence. When storage is built in upstream of the combined sewer system (i.e., before the rainwater enters into the sewer pipes), the rainfall input used to simulate the runoff to the sewer system can be preprocessed in order to take into account the effect of the upstream storage.These local source control implementations are easy to model with a simple reservoir model, which can handle continuous long term simulations in a very short computation time. This preprocessed rainfall can then be used to design the downstream drainage systems. This approach can for example be used for rainwater tanks and infiltration trenches. For rainwater tanks the antecedent rainfall up to one month before may have an effect.With the same simple models the optimal design parameters for rainwater tanks can be determined (e.g.,Herrmann& Schmida,1999; Mikkelsen, Adeler, Albrechtsen, & Henze, 1999), which has led to a design graph for rainwater tanks in Flanders asshown in Fig. 2 (Vaes & Berlamont, 1998, 1999). Furthermore, using simple models for the upstream retention structure as well as for the sewer system (Vaes, 1999), the impact of the upstream retention on the combined sewer overflows can be investigated (Herrmann & Schmida, 1999; Vaes,1999; Vaes & Berlamont, 1998, 1999).3. MethodologyTo incorporate the effect of rainwater tanks on the sewer system design, a model was built to assess the effect of a rainwater tank on the historical rainfall series and to incorporate this effect into a modified composite storm.For this, a simple reservoir model is used with a constant outflow equal to the mean rainwater use in the household (Fig. 3). The fraction α of the rainfall that falls on the roof will flow to the rainwater tank. The rest of the rainfall (1-α) that falls on the other impervious areas is drained directly to the combined sewer system. A small rainwater reuse discharge is slowly emptying the rainwater tank as long as there is water available in the tank. This rainwater will flow to the combined sewer system after it has been used. If the tank is full, all the extra water will flow to the combined sewer system.In Fig. 4 an overview of the implemented methodology is shown. The outflowof the rainwater tank model is converted to equivalent rainfall. A reduction coefficient is determined as the ratio of the IDF-relationship for this equivalent flattened rainfall over the corresponding IDF-relationship for the original rainfall series. The original composite storms are corrected with this reduction coefficient, which is (approximately) a linear function of the storm duration. The reason for the use of a reduction coefficient on the original composite storm is that a more elaborate extreme value analysis was performed to create these original composite storms.4. Extreme value estimationAs the rainfall data have a large intrinsic variability, certainly for high return periods, a specific regression is needed, corresponding to the extreme value estimation for the original IDF-relationships. However, the rain-water tank appears to change the type of the extreme value distribution. The very extreme rainfall events are rarely affected by the storage in the rainwater tanks and thus still fit to the original exponential distribution (Willems, 1998). The more frequent rainfall events are affected more by the smoothing caused by the storage in the rainwater tank and evolve to another exponential distribution. The resulting distribution thus containstwo exponential distributions, which gradually fade into each other. This compound exponential distribution can be approximated by a Pareto distribution, at least for interpolation purpose as in this case. A Pareto distribution has a more heavy tail, which means that there is a larger probability for the extreme events. This Pareto distribution leads to a linear relationship between rain-fall intensity i and return period T in a double logarithmic co-ordinate system (a1 and a2are regression constants):log i =a1+a2 log T.The influence of this smoothing is more pronounced for small storm durations and for rainwater tanks with a large retention function. Depending on which regression will give the best correlation, the exponential distribution will be kept or the Pareto distribution will be used. The application of a simple regression will be sufficient in this case, because no extrapolation will be made for return periods higher than the total length of the original rainfall series. In the end, a linear regression will be used on the reduction coefficients as a function of the storm duration, to obtain a monotonous modified composite storm.5. Practical applicationAs many parameters are involved, this methodology has been implemented in a software program, which was called `Rewaput' (`REgenWAterPUT' is the Dutch word for `rainwater storage tank'). The same methodology can be used to incorporate the effect of rainfall runoff models or upstream infiltration trenches into the designstorms. As more and more source control is applied, this approach will certainly lead to better rainfall input for design calculations in the future.Infiltration and retention facilities often behave non-linearly, because the outflow is often very strictly limited. Continuous long term simulations are thus necessary. The implementation of a simple conceptual model for the upstream retention facilities is simple and the simulation of long time series in this conceptual model does not require long calculation times. In this model 27 years of rainfall is incorporated, which is the same series of rainfall that has been used to determine the Flemish composite design storms (period 1967-1993). One set of parameters for the Rewaput model requires only about five seconds of calculation time on a Pentium III 733 MHz computer. If the parameters vary over a specific catchment, the parameter distributions can be discretised and several sets of parameters can be taken into account. In this case the discretisation step, the deviation on the parameters and the number of varying parameters determine the number of calculations, which have to be performed. In the model Rewaput, a triangular distribution is implemented to approximate the stochastic character of the storage volume and the water consumption (i.e., variation over a catchment) (Fig. 5). For each variation within this triangular distribution the effect is multiplied by the weight corresponding to the parameter distribution in order to calculate the global effect. Using two stochastic parameters the calculation time quadratically increases. To reduce the calculation time the discretisation step has to be chosen taking into account the deviation on the parameters.6. ResultsAlthough the storage in rainwater tanks and infiltration facilities is not always completely available during severe rainfall (i.e. because the facility is already filled with the antecedent rainfall), this kind of upstream retention facility still can have a large influence on the rainfall runoff to the sewer system. It has been shown that well-designed rainwater tanks can even significantly reduce the peak flow in sewer systems, if they are installed on a sufficiently large scale. In Fig. 6, an example is shown of what the possible effect of rainwater tanks on a design storm can be. In this case, it is assumed that rainwater tanks of 5000 l per 100 m2 roof area are built for 30% of the total impervious area and that 100 l per day and per 100 m2roof arearainwater is consumed. This almost reduces the peak of the composite storm for 5 years to the value of the composite storm for 1 year. It is impossible to predict this effect using a single storm design approach.7. ConclusionsThis methodology shows the large impact of source control facilities on design rainfall for the downstream drainage systems. Furthermore, it shows that it is important to incorporate the real variability of the rainfall in order to obtain an accurate estimation of the effect of upstream retention. In order to limit the calculation times this can be successfully applied using simple models.This methodology can also be used to incorporate the effect of a non-linear surface runoff model or to simulate the effect of infiltration facilities, even when they are influenced by the ground water table. Currently, in Flanders, for sewer system design a fixed runoff coefficient of 0.8 is used for the impervious area. When (long term) measurements are available, a more realistic runoff model (i.e., a more capacitive (depression storage based) runoff model) can be calibrated. This can then be included in the design calculations by routing long rainfall series through the simple conceptual runoff model and incorporate the effect in the design storms. The same is valid for infiltration facilities and runoff from pervious areas. Simple conceptual models can be used to reshape the design storms, so that simple design storms are obtained without neglecting the effect of the rainfall variability on theupstream retention facilities.AcknowledgementsThe authors are grateful to the Belgian Royal Meteorological Institute that made the rainfall series available in digitised form for research purposes and to the Flemish water company Aquafin for their support to this research.References[1] Herrmann, T., & Schmida, U. (1999). Rainwater utilisation in Germany:efficiency, dimensioning, hydraulic and environmental aspects. Urban Water, 1(4), 307-316.[2] Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design.Journal of Hydraulic Div., 83(4).[3] Mikkelsen, P. S., Adeler, O. F., Albrechtsen, H.-J., & Henze, M. (1999).Collected rainfall as a water source in Danish households -what is the potential and what are the costs? Water Science Technology, 39(5), 49-56.[4] Vaes, G. (1999). The influence of rainfall and model simplification on the designof combined sewer systems. Ph.D thesis. University of Leuven, Belgium.[5] Vaes, G., & Berlamont, J. (1998). Optimization of the reuse of rainwater. InProceedings of the international WIMEK congress on options for closed water systems, Wageningen, Netherlands.[6] Vaes, G., & Berlamont, J. (1999). The impact of rainwater reuse on CSOemissions. Water Science Technology, 39(5), 57-64.[7] Willems, P. (1998). Hydrological applications of extreme value analysis. InInternational conference on hydrology in a changing environment, Exeter, UK.雨水储存槽对暴雨设计的影响选自《城镇水网》作者:乔.沃思;简.伯夏娜摘要在大多数情况下设计联合排水系统,水量控制影响能正确评估天然的暂时性降雨,因为长时间的前期降雨会产生极大的影响,建立一个概念性的模型能够评估雨水储存槽系统能在长期历史降水时期的降雨量,雨水槽系统模型将水流量变为平均流出量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北建筑工程学院毕业设计(论文)外文资料翻译系别:城建系专业:给水排水工程班级:姓名:学号:外文出处:Wan Fang foreign languages(用外文写)literature datebase附件:1、外文原文;2、外文资料翻译译文。

1、外文原文(复印件)Supplying and draining waterin hospital construction With the fact that modern medicine science promptness develops,new technique , the new armamentarium are continuing without end , modernized medical treatment thereby consonant with that is building a hospital , are also are confronted with new design idea and new technology applying. Disregarding secondary hospital building function , what whose gets along environment, still , finclause the hospital builds equipment and is equipped with system, the request is without exception higher and higher. Because of it is to ensure daily work living not only need the rapid and intense life relevance recovering from the illness , avoiding crippling , rescuing, and promote with giving treatment to a patient. Not only the design accomplishing to the special field draining away water need to satisfy the request being unlike a function in hospital building on equipment , but also safety is be obliged to reliable. Following is built according to the hospital.一HOSPITAL GIVES A SEWERAGE1) Modernized hospital equipment and equipment system content is numerous , the function is peculiar , the request is very high. Except demanding to swear to continue supplying with the use water according with quality level sufficiently, need more according to demand of different medical treatment instrument and different administrative or tehcnical office to water quality , water pressure , the water temperature, classify setting up water treatment system and be in progress to system to increase pressure reduction.2) The hospital operating rooms , the delivery room operation the water hygiene, saliva washing hands by shower bath water , the dentistry dentistry chair ought to adopt the water purifying degassing. In the homeland few are large-scale , the high rank hospital centre supplies a room, the centre disinfecting has also adopted to purify the water disinfecting, now that swear to there be no dust , the sterility , to remove the pathopoiesia source , to avoid the blockage infecting , cutting down equipment microtubule.3) Hospital preparation rooms preparation uses water to adopt distilled water, and sets up in making distilled water system to have part pressure boost facilities. The handicraft responds to according to different hospital preparation handicraft but fixes concrete system distilled water, should satisfy demand of whose handicraft to water quality , water yield , water pressure act in close coordination that the preparation handicraft reserves corresponding to drain-pipe andallocation chilled water circulatory system by the special field draining away water.4) Hospital operating rooms , delivery rooms , baby rooms , supply rooms , medical treatment of the dermatological department wards, door emergency call, cures skill every administrative or tehcnical office and the request difference that the staff and worker logistics branch supplies to hot water need to set up hot water respectively supplying system more. Ordinary circumstances door emergency call, cures skill administrative or tehcnical office , centre supply a room , the staff and worker logistics branch supplies hot water to water supply the regular time, the comparison supplying time is consistent. The hospital is based on major part at present financial resources, ward building hot water supplies basic to the regular time , ought to be that 24 hs supply hot water judging from long-term angle but. Operating room , the delivery room operation wash hands, the hygiene h by the fact that the shower bath ought to be 24 supplies hot water, moreover the block of wood5) Considers beautification to the environment , is inadvisable to adopt the steam boiled water stove , completely eradicates occurrence aroused the ward building pantry inner floor moistness , avoided interior wall mustiness phenomenon by leak or sparse steam water implement aerofluxus thereby. The hospital disregards size , boiled water supplies to should adopt automation volume or the electricity boiled water stove, a general disease area considers one , volume ascertains that according to using condition. The first easy to protect labor is managed, two is supplying ensuring that to the patient , improves the internal environment of ward at the same time.6)Especially infecting the section ward every door emergency call administrative or tehcnical office, every consulting room , the hand movement water curing a room , washing a basin should set up mistake chew , may adopt elbow style , knee style or dyadic switch of pedal. If using the dyadic switch of pedal to must use the product guarding against leakage, the floor is to avoid using a place often damp , makes the patient , the medical personnel slip down , an accident happened. Operation waits for the operating room , the delivery room to wash hands should adopt the constant temperature muddy water valve , the constant temperature to produce water, taking as an example infrared ray induced electromagnetic valve control mode for fine. Cure skill part control laboratory , laboratory of administrative or tehcnical office have the peculiar request , water chews the form should ascertain whose water according to every administrative or tehcnical office coming functional request chewing.7)Many administrative or tehcnical office, especially downstream pipelines such as picklingbath , the pool disinfecting , develop pool in administrative or tehcnical office such as checking the room , the control laboratory , emitting section responds to of hospitals are adopt to be able to bear the rotten PVC2U draining off silent stock tube.8) Pair of filth , waste water of all kinds must classify strictly according to the country in connection with the effluent standard , the field carrying out a pertinency with different treatment handicraft deals with and handles.9) Uses a function to need since the modern hospital needs to be satisfied with not only , wants to think that the interior outside environment is beautiful too at the same time. The building needs especially door emergency call, cures skill sometimes because of medical treatment function , give the horizontal stroke draining away water , erect a tube arrange to lie scattered comparatively, more bright dew is in interior, warm the pipeline exchanging special field up in addition sometimes , make the pipeline that the room inner clearly shows more than the correct or required number , both inelegant, and affect hygiene. This demands right away in the process of engineering design , the rational arrangement the structure form should fully utilize not being the same as is carried out, needs to make the various pipeline conceal arrangement to the full according to the function , pays attention to beautiful befitting one's position or suited to the occasion under not affecting the premise being put into use. Certainly, these require that building structure special field is dense. Tier of furred ceilings and the basement top sometimes are every special field pipeline aggregation field , every special field norm and request having every special field , each sometimes arranges if the building designs middle in the ward,whose result either increase building storey height, or cannot attend to one thing without neglecting another. For overcoming this one abuse, should think in general that bigger flue pipe arrangement be in the most superjacent, it's on the down part is that several special field arrangement props up the public space being in charge of , down part is to arrange to give draining off , driving force , strong , weak electricity every system to do a tube again. Such is arranged than form arrangement is other comparatively economical , pragmatic.10) Exchangers forms choice. In the system the tradition hospital hot water is supplied, people adopt volume mainly dyadic exchanger. Have been to think that what be provided steam amounts and hot water supplies the adjustment amounts dispatching value between maximum value mainly , have diminished a steam boiler designing amounts , have decreased by boiler room Zhan field area , have saved one time investment. People demands but more highly, and morehighly, especially the example discovering army group bacterium pathopoiesia in life hot water to water quality now , the altitude arousing people takes seriously. Be a bacterium mainly because of in the water 55 ~C is the easiest to breed an army group in 30 ~C ~, WHO (WHO) is recommended by for this purpose: "Hot water responds to in 60 ~C use And cycle at least above 50 ~C. Come if some users, need to fall to 40 ~C or 50 ~C or so with the faucet water temperature, to come true being able to use a thermoregulation to blend a valve at this time. The growth being a temperature Bu Li Yu pneumonia diplococcus swear to store water, is a regulating valve's turn to should set up the place closing down and suspending operation of point in drawing near". This be especially important to the hospital. Because of being in hospital the weak having disease,if bacterium of army group happened within the hospital is to be harmful for patient to treat and recover from the illness,the hospital has a grave responsibility. At present small hospital within the hospital especially a little condition is relatively poor , include the part area level hospital, 24 unable hs supply hot water, and volume the dyadic converter inner water temperature is to use echelon in inside of exchanger, the water temperature very difficult to make keeps in 60 ~C or so. Thereby, lead to volume produce the bacterium of army group in the pipeline supplying hot water system within dyadic exchanger , change a hospital using the exchanger form to respond to be a task of top priority. Adopt half to be to heat up style or be a dyadic hot exchanger , make whose hot water supply the system water temperature keeping the water supply being in progress in all above 60 ~C area all the time, occurrence propagating , completely eradicating the bacterium of army group in order to avoiding the bacterium of army group.二MULTILAYER WATER SUPPL Y SYSTEMAt present, great majority cities municipal administration pipe network pressure can maintain above 2 kilograms in the homeland , take place individual small town water pressure can reach 4 kilograms even. The pressure therefore, building the municipal administration pipe network's to the same multilayer has been already sufficient , has been in a small town especially since but municipal administration pipe network water yield supplying water , water pressure fluctuation are bigger. Have several kinds the following types mainly for overcome these shortcomings , multilayer water supply system design.1) Direct water supply type is that pressure , direct water supply , sort making use of municipal administration pipe network directly apply to slightly high area of municipal administration pipe network pressure or higher range of water works vicinity pressure inner. Theshortcoming it is water yield , water pressure to be able to not ensure that. This water supply scheme economy function is very good but, to less pipe network of scale , does not need any other equipment or measure.2) Water box water supply types have led municipal administration pipe network water to roof water box , discrepancy in elevation , gravity depending on a water box and using the water appliance have supplied water , have overcome water pressure water yield block of wood stability and then. Since but, secondary pollution, moreover, water box volume that the water box there exists in possibility is bigger,this way does not encourage therefore.3) Water boxes , pipe networks ally self with a type when the ordinary time water yield water pressure is sufficient , unnecessary water enters the roof water box when covering water supply , overpressure as with a net directly from municipal administration, think that the water box supplies water to the consumer by gravity automation when pressure or the water yield is insufficient. The main force who is that regular directness supplies water on physics structure stretches the top cut-over water box , sets up and one exhalent siphon from the water box. Owe a scheme the volume having diminished a water box, and make water not need to enter a water box staying this one step , hygiene reliability increase by. The problem is (that the municipal administration now pipe network can accomplish) but if longtime stabilivolt supplies water , the water sojourn time in water box is on the contrary greatly increase by , easier to be contaminated. And, the water box all must readjust oneself to a certain extent in the building in all usage water boxes system most higher place, attractive looks being able to affect a building in some occasion , the physical design building even.4) Pressure jars supply water since insecure water box factor , reason why use the jar sealing off reliable pressure to replace, and the pressure jar does not need, high position lay down, attractive looks and structure not affecting a building bearing , go down well very much over the past few years. Pressure jar system requires that the water pump and autocontrol system have to fit but , feasible cost increases by to some extent. However, in the late years whose market price already lets many consumers be able to choose.Systematic pressure jar principle is to make use of a water pump water compression to be sent to receive the pipe network building the inside , thinks that water enters the pressure jar , reaches certain pressure time , water pump motor stoppage or reduces the speed when pressure is too big,While pressure is smaller than regulation value, the pressure jar conveys water to the outside and starts the water pump or acceleration at the sametime (frequency conversion water pump).5) Two time of compression types can make do for to small-scale consumer ,if the building , the pressure jar are only systematic. The direction that the dwelling house spends at present to housing estate develops but, shows for the cluster arrangement that multilayer builds , concentrates stabilivolt mainly. The ability can not satisfy a request with pressure jar volume , the water pump concentrates compression therefore having appeared give first place to, pressure jar stabilivolt (remove the system water hammer) is subsidiary way. Economy cost rises only , also needs the specially-assigned person upkeep. Besides, pipe network system belongs to low pressure since tier of numbers are not many, pipeline, the direct cut-over without exception with layers consumer is be OK , comparatively simple. The steel tube prepares pipeline material with low pressure low pressure PPR silent stock tube give first place to.2、外文资料翻译译文医院建筑给水排水随着现代医学科学的迅速发展,新技术、新医疗设备层出不穷,从而与之相符的现代化医疗建筑———医院,也面临着新的设计理念和新技术的运用。

相关文档
最新文档