动车组牵引供电系统..
动车组牵引供电工作原理

动车组牵引供电工作原理
动车组采用交流异步电动机做牵引动力。
动车组在工作时,受电弓将网压引入动车组变压器降压后送入整流电路,将交流电转换为直流电,经滤波器平滑A处脉动后,送入逆变器,将直流电逆变为电压和频率可调的三相交流电,经平波电抗器,供给三相异步牵引电动机,实现牵引运行。
在这个系统中,动车组先将电网的交流能量转换为直流能量,然后进一步转换成电压和频率可调的交流能量。
交流传动动车组具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。
再生制动电制动时,一方面,通过控制牵引逆变器使牵引电机处于发电状态,牵引逆变器工作于整流状态,牵引电机发出的三相交流电被整定为直流电并对中间直流环节进行充电,使中间直流环节电压上升;另一方面,脉冲整流器工作于逆变状态,中间直流回路直流电源被逆变为单相交流电,该交流电通过真空断路器、受电弓等高压设备反馈给接触网,从而实现能量再生。
高速铁路牵引供电概述

1.1 牵引供电方式
2.BT供电方式
BT供电方式就是在牵引供电系统中加 装吸流变压器(3~4 km安装一台)和 回流线。这种供电方式由于在接触网 同高度的外侧增设了一条回流线,回 流线上的电流与接触网上的电流方向 相反,因此大大减轻了接触网对邻近 通信线路的干扰。采用BT供电方式的 电路是由牵引变电所、接触悬挂、回 流线、轨道及吸上线等组成。牵引变 电所作为电源向接触网供电;动车组 列车运行于接触网与轨道之间;吸
正馈线与轨道之间的电压也是25 kV。自 耦变压器是并联在接触悬挂和正馈线之间 的,其中性点与钢轨(保护线)相连接。 彼此相隔一定距离(一般间距为10~16 km)的自耦变压器将整个供电区段分成 若干个小的区段,叫作AT区段,从而形 成了一个多网孔的复杂供电网络。接触悬 挂是去路,正馈线是回路。接触悬挂上的 电流与正馈线上的电流大小相等、方向相 反,因此其电磁感应影响可以互相抵消, 故对邻近的通信线有很好的防护作用。
高
速 铁
项目
高速铁路牵引供电概述
路
高速铁路牵引供电概述
高速铁路的牵引供电系统,其本身没有发电设备,而是从电力系统获取电能。 目前,牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、 同轴电力电缆(coaxial cable,CC)供电方式、直供加回流线供电方式、单 边供电方式和双边供电方式等。
1.1 牵引供电方式
3.AT供电方式
随着铁路电气化技术的发展及动车组的投 入运行,传统的供电方式已不能适应铁路 发展的需要,各国开始采用AT供电方式。 AT供电方式就是在牵引供电系统中并联 自耦变压器的供电方式。实践证明,AT 供电方式是一种既能有效地减弱接触网对 邻近通信线的电磁感应影响,又能适应高
《高速铁路概论》课件——3-1高速铁路牵引供电系统概述

二、牵引供电系统组成
牵引供电系统的任务是保证质量良好地并不间断地向列车供电,主要 包括牵引变电所和牵引网两部分。
牵引变电所是电气化铁路供电系统的心脏,主要功能是变压和变相。
电气化铁路的电流制经历了由低压直流、三相交流、单相低 频交流到单相工频交流的演变过程。
今后的发展方向主要是采用25kV的单相工频交流制。
高速铁路牵引供电系统概述
高速铁路牵引供电系统概述
教学目标
了解电气化铁路电流制的发展 掌握高速铁路牵引供电系统的供电过程 树立遵守《铁路安全管理条例》的意识
复兴号动车组运行需要几节5号电池?
一、牵引供电过程
《铁路安全管理条例》规定,禁止在铁路电力线路导线两侧各 500米的范围内升放风筝、气球等低空飘浮物体。
高速铁路牵引供电系Байду номын сангаас概述
课堂小结
电气化铁路电流制的发展 高速铁路牵引供电系统的供电过程 遵守《铁路安全管理条例》的意识
高速铁路牵引供电系统(组成)

高速铁路牵引供电系统电气化铁路的组成由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。
牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。
一、电力机车(一)工作原理电力机车靠其顶部升起的受电弓和接触网接触获取电能。
电力机车顶部都有受电弓,由司机控制其升降。
受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。
(二)组成部分电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。
车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。
转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。
它的上部支持着车体,它的下部轮对与铁路轨道接触。
电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。
空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成(三)分类干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。
交流机车又分为单相低频电力机车(25Hz或162/3Hz)和单相工频(50Hz)电力机车。
单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。
二、牵引变电所牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为27.5(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。
电力系统的三相交流电改变为单相,是通过牵引变压器的电气接线来实现的。
牵引变电所通常设置两台变压器,采用双电源供电。
动车组牵引系统的组成原理

动车组牵引系统的组成原理
动车组牵引系统的典型组成和工作原理如下:
1. 牵引变流器- 将电网交流电转换为交流电动机所需的三相交流电。
2. 牵引电动机- 接收牵引变流器的电能,将其转换为机械能输出转矩。
常用鼠笼式异步电动机。
3. 齿轮传动装置- 将电动机输出的高速低扭矩转化为轮对所需的低速高扭矩。
4. 轮对- 将最终驱动力传给轨道,使整列动车运动。
5. 微机控制系统- 控制牵引系统的工作,优化各部件协调运转。
6. 电阻制动系统- 将电动机变为发电机使用,实现制动目的。
7. 电子供电系统- 为牵引系统各组件提供电力供应。
8. 轴挂装置- 将轮对悬挂在转向架构架上。
9. 车钩缓冲装置- 用于连接动车组车厢传递牵引力。
10. 辅助传动系统- 为轮对冷却润滑和通风等辅助工作提供动力。
综上设备和控制系统的配合,实现了动车组的牵引传动功能。
动车组的供电系统设计与优化分析

动车组的供电系统设计与优化分析随着越来越多的人选择高铁出行,动车组作为现代化、高速、快捷的交通工具,其供电系统的设计和优化分析显得尤为重要。
供电系统是动车组运行的基础设施,直接关系到列车运行的稳定性、安全性和能效性。
在本文中,我们将对动车组供电系统的设计和优化进行详细分析与讨论。
首先,动车组的供电系统设计需要考虑以下几个关键因素:电源方式、电压等级和电流容量。
对于电源方式,动车组通常采用分布式供电,即由两端车厢或多个车厢提供供电,并通过电缆进行连接。
分布式供电能够提高供电可靠性,同时减少能源损耗。
对于电压等级,动车组常见的电压等级有3kV、25kV和50kV,根据路线和运行速度的不同进行选择。
而电流容量则需要根据列车的额定功率和最大功率需求来确定。
综合考虑以上因素,动车组供电系统的设计应该是经济、安全、可靠的。
其次,动车组供电系统的优化分析主要包括以下几个方面:能源利用、电能质量和电能回馈。
能源利用是指动车组供电系统通过优化设计,提高能源利用效率,减少能量损耗。
例如,通过使用高效的变频器控制电机的转速,减少能量的浪费。
电能质量则是指供电系统对电能质量进行监测和控制,保证正常运行。
例如,通过使用电能质量监测装置,及时发现并处理供电系统的异常情况,避免对列车运营的不良影响。
电能回馈则是指动车组在制动或运行过程中,将产生的电能通过逆变器回馈到电网中,减少能量的消耗。
通过电能回馈技术,可以有效提高能源利用率,减少环境污染。
此外,动车组供电系统的设计和优化还需要考虑电力设备的选择和配置。
动车组供电系统的关键设备包括牵引变流器、整流器和静止变流器等。
牵引变流器主要是将电网供电的交流电转换为电机驱动所需的直流电,是供电系统中的关键设备。
整流器主要是将电网供电的交流电转换为直流电,为车厢提供正常运行所需的直流电源。
而静止变流器的作用则是将动车组产生的电能通过逆变器回馈到电网中,起到节能减排的效果。
因此,在动车组供电系统的设计和优化中,需要选择合适的电力设备,并进行合理的配置。
动车组主供电、牵引系统及设备-动车组牵引高压设备概述

高速受电弓
一、动车组高压设备组成及作用:
高速受电弓(大功率受电及工作可靠)
滑板与接触 导线之间要 保持恒定的 接触压力
减轻受电弓 运动部分的
重量
垂直工作范 围内始终保 持水平位置
滑板的材 料、性状和 尺寸应适应 高速的要求
升、降弓时 初始动作迅 速,终了动 作较为缓慢
二、高速受电弓的分类: 1.双臂式:双臂式受电弓是最传统的受电弓,也 可称“菱”形受电弓,因其形状为菱形。双臂 式受电弓结构对称,侧向稳定性好,但结构复 杂,调整困难,保养成本较高,加上故障时有 扯断电车线的风险,目前部分新出厂的铁路车 辆已改用单臂式受电弓。
日本的0系高速列车,16 辆编组全部是动力车
日本的100系高速 列车,12M+4T
15
动车组牵引方式
动力分散式、动力集中式
动力分散动车组优点: • 牵引功率大 • 轴重小 • 启动加速性能好 • 可靠性高 • 列车利用率高 • 编组灵活
动力分散动车组是当今世界高速动车组技术发展的方向。
动力集中动车组优点: • 技术成熟 • 编组更为灵活 • 设备集中 • 动力设备数量少成本小 • 车内环境噪声小
本章知识点
4、我国动车组受电弓采用单臂受电弓。 5、动车组受电弓碳滑板分为单碳滑板和双碳滑板。 6、在受电弓碳滑板使用中,接触网结冰情况下可使用除 冰碳滑板。 7、动车组双辆车编组重联运行时,前后各升1架弓,禁止 升弓模式为后弓+前弓,即禁止前车升后弓,后车升前弓的 模式。 8、动车组一个标准编组配备2台受电弓
组,辅助绕组。
主电路采用3电平式 结构(脉冲整流器、 中间直流电路、逆变 器构成),牵引变流 器采用脉宽调制方式
(PWM)。
将电能转变成机械能 的设备,每辆动车设 置2台或者4台牵引电 机,牵引电机为三相 鼠笼式异步电机,通 过弹性齿型联轴节连
牵引供电系统简介

理论上讲,除了机车所在的 AT 段(该 AT 段存在“半段效应”)以外,其余 AT 段内流经接触网中和正馈线中的电流大小相等,方向相反,且电流大小仅为机车 电流之半。在钢轨和保护线之间每隔 3~4km 设有吸上线。
图 2.4 AT 供电方式
2. 城市轨道交通 城市轨道交通接触网一般采用直流供电,接触网为正极,钢轨为负极,机车 从相邻两变电所取电,即采用双边供电方式(交流电气化铁路一般为单边供电)。 如图 2.5 所示,机车所需的电流分别来自两相邻变电所。
牵引供电绪论
我国铁路电气化事业起始于 1956 年。1961 年 8 月宝成铁路(宝鸡至成 都)宝鸡至凤州段电气化通车;1975 年 6 月宝成铁路全线电气化通车,成 为我国第一条电气化铁路。宝成铁路电气化后,该铁路的运能、运量大幅 度的增长,推动了我国铁路电气化事业的发展。目前,电气化铁路已经占 据了我国铁路发展的绝对主导地位。我国的电气化铁路正逐步向高速铁路 发展,以 2007 年动车组的运行为标志,我国的电气化铁路将迈入世界先进 行列。
但是,由于 BT 变压器自身存在较大的阻抗,且安装密度较大,其在牵引网 中引起的电压将也较大。因此,在同等条件下,BT 供电方式变电所间距小于其 它供电方式,且每 3~4km 在接触网内存在断口,断口两端因 BT 自阻抗而存在一 定的电压差,机车通过该断口时可能会产生电火花,导致接触网的使用寿命缩短。
牵引供电电流制
电力牵引采用的电流、电压制式。根据各国的国情不同,主要有如下 几种形式:
一、直流制
世界上最早采用的电流制。截至目前,世界上仍占 43%左右。这种电气 化铁路采用 0.75KV(我国城市地铁)、1.5KV、3KV 或 6KV 的直流电,向直 流电力机车供电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/9/25
动车组牵引变流器技术
10 10
A
B
A
1. 受电弓 2. 接地开关 3. 主电路断路器 4. 电压测量变压器 5. 电涌放电器 6. 电流互感器 7. 线路滤波器 8. 主变压器 9. 主变流器 10. 电动机变流器 11. 辅助变流器 12. 滤波/变压器 13. 切换触点 14. 外部三相电源 15. 牵引电机 16. 受电弓切断开关 20. 电池充电器 21.电池开关 22.电池 23.电池触点
2018/9/25
动车组牵引变流器技术
12 12
CRH2动车组牵引供电系统组成
8 辆车编组
T1c (1)
M2 (2)
M1 (3)
T2 (4)
T1k (5)
M2 (6)
M1s (7)
T2c (8)
T1c, T2c --- Driving Trailer Coach 带驾驶室拖车 M1, M2(2辆), M1s --- Motor Coach 动车 T2 --- Trailer Coach 拖车
13
主电路
14
CRH5动车组牵引传动系统
8 辆车编组,5动3拖,分为2个供电单元
15
CRH5动车组牵引传动系统
第一动力牵引系统电路示意图
16
CRH5动车组牵引传动系统
第二动力牵引系统电路示意图
17
7
CRH1动车组牵引供电系统组成
CRH1动车组组成
5动3拖,分为3个供电单元 。
8
CRH1型动车组整体电路图
9
1. 受电弓 2. 接地开关 3. 主电路断路器 4. 电压测量变压器 5. 电涌放电器 6. 电流互感器 7. 线路滤波器 8. 主变压器 9. 主变流器 10. 电动机变流器 11. 辅助变流器 12. 滤波/变压器 13. 切换触点 14. 外部三相电源 15. 牵引电机 16. 受电弓切断开关 20. 电池充电器 21.电池开关 22.电池 23.电池触点
5
5 矢量变频技术的发展,已经可以用变频电 机模拟成直流电机。 6 相对于直流电机,维护容易、对环境要求 低以及节能和提高生产力等方面具有足够的 优势。 交流电机功率较大,但是交流调速相对比较 麻烦,需要用到PWM技术。 综合上述优点使得交流调速已经广泛运 用于工农业生产、交通运输、国防以及日常 生活之中。
动车组牵引供电系统
1
主要内容
动车组供电牵引系统的组成 CRH1动车组牵引供电系统 CRH2动车组牵引供电系统 CRH5动车组牵引供电系统
2
一、供电牵引系统的组成
1 “交-直”牵引传动方式
பைடு நூலகம்
调速:* 通过对变流器的控制调整直流电机的工作速 度,采用交-直变流器,韶山7,8,9模式。
3
2
“交-直-交”牵引传动方式
6
高速动车的牵引方式有两种:
动力分散式和动力集中式两种。 分散:日本为代表,全车分为若干动力单元, 在每一个动力单元中带牵引电机的驱动轴分 散布置在单元的每一个或部分车轴上。 集中:欧洲为代表,列车头尾各有一台动力 车;随着动车组速度的不断提高,其300km/h 以上的动车也转向分散式牵引。
牵引电流
再生电流 (制动)
直接式:交-交变流器 间接式:交-直-交变流器,现动车组采用的是交-直交变流器供电的异步电动机系统。
4
交流电机与直流电机相比,其优点有: 1 由于没有换向器,因此结构简单,制造方 便,比较便宜,比较牢固; 2 容易做成高转速、高电压、大电流、大容 量的电机。 3 交流电机功率的覆盖范围很大. 4 由于电机工作状态的可逆,同一台电机既 可作发电机又可作电动机。
2018/9/25
动车组牵引变流器技术
9 9
1. 受电弓 2. 接地开关 3. 主电路断路器 4. 电压测量变压器 5. 电涌放电器 6. 电流互感器 7. 线路滤波器 8. 主变压器 9. 主变流器 10. 电动机变流器 11. 辅助变流器 12. 滤波/变压器 13. 切换触点 14. 外部三相电源 15. 牵引电机 16. 受电弓切断开关 20. 电池充电器 21.电池开关 22.电池 23.电池触点
2018/9/25
动车组牵引变流器技术
11 11
A
1. 受电弓 2. 接地开关 3. 主电路断路器 4. 电压测量变压器 5. 电涌放电器 6. 电流互感器 7. 线路滤波器 8. 主变压器 9. 主变流器 10. 电动机变流器 11. 辅助变流器 12. 滤波/变压器 13. 切换触点 14. 外部三相电源 15. 牵引电机 16. 受电弓切断开关 20. 电池充电器 21.电池开关 22.电池 23.电池触点