大学概率论总复习-.ppt
概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
概率论与数理统计期末复习课件

置信水平
用于确定样本统计量的不 确定性范围。
置信区间
根据置信水平和抽样分布, 估计未知参数的可能值范 围。
点估计与最优性
点估计
用单一的数值估计未知参数的值。
无偏估计
样本统计量的期望值等于真实参数 值。
最小方差估计
选择一个点估计,使得预测误差的 方差最小。
假设检验与p值
假设检验
根据样本数据对未知参数 提出假设,并进行检验。
详细描述
一元线性回归是一种最简单的回归分析方 法,用于研究一个因变量和一个自变量之 间的线性关系。
一元线性回归模型通常表示为`Y = β0 + β1*X + ε`,其中Y是因变量,X是自变量, ε是误差项。β0和β1是需要估计的参数。
重要概念
适用范围
一元线性回归模型假设因变量Y和自变量X 之间存在线性关系,即Y的变化可以由X的 变化来解释。
02
置信区间
根据自助法计算的统计量的置信区间,可以用来估计总体参数的区间范
围。
03
应用
在社会科学和医学研究中,自助法和置信区间被广泛应用于估计样本参
数的可靠性和精度。例如,在估计人口平均年龄的置信区间时,自助法
可以用来确定样本大小和置信水平之间的关系。
CHAPTER 06
实验设计初步
完全随机设计
描述 马尔科夫链通常用状态转移图来表示,其中每个状态通过 箭头连接到其他状态,箭头上标记了从一个状态转移到另 一个状态的概率。
实例 例如天气预报、股票价格等都可以被视为马尔科夫链。
平稳过程与遍历性
定义
平稳过程是一类特殊的随机过程,它具有“时间齐次性”和“空 间齐次性”的性质。
描述
概率论与数理统计完整ppt课件

在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计复习

一般正态分布的标准化
定理 设 X ~ N(, 2), 则 Y ~ N(0, 1).
Y X ,
结论:
若 X ~ N(, 2),
则
F(x)
x
例
设 X ~ N(10, 4),
求 P(10<X<13), P(|X10|<2).
解: P(10<X<13) = (1.5)(0) = 0.9332 0.5 = 0.4332
第一章 随机事件与概率
1、随机事件的表示, 由简单事件的运算表达复杂事件; 2、概率的运算性质,如加法公式,减 法公式,乘法公式等; 3、条件概率公式,全概率公式,贝叶 斯公式; 4、事件独立性定义
例. 试用A、B、C 表示下列事件:
① A 出现; A ② 仅 A 出现;ABC ③ 恰有一个出现;ABC ABC ABC
条件概率 乘法公式
全概率公式的例题
• 甲口袋有a只白球、b只黑球;乙口袋有n只白球、 m只黑球. 从甲口袋任取一球放入乙口袋,然后 从乙口袋中任取一球,求从乙口袋中取出的是白 球的概率.
• 概率为:
a n1 b n ab nm1 ab nm1
已知“结果” ,求“原 因”
第二章 随机变量及其分布
1、会由随机变量的已知分布律或密度函数求出 其分布函数; 2、六种重要分布的分布律和密度函数; 3、有关正态分布的概率计算; 4、会求随机变量函数的分布;
一、分布函数、分布律、密度函数、概率之间关系
例 已知 X 的分布列如下:
X0 1 2 P 1/3 1/6 1/2
求 X 的分布函数.
f
X
(h(
y)) | 0,
概率论高等院校概率论课件

应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的
。
随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布
概率论与数理统计ppt课件(完整版)

( 1)
n 1
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率:
(1) P ( A B ); (2) P ( A B); (3) P ( A B); (4)P( A B ).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑 在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
概率论与数理统计
第一章 概率论的基本概念 前 言
1. 确定性现象和不确定性现象.
2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况.
B A 类似地, 事件 S 为可列个事件A1, A2, ...的积事件.
k 1 K
(2) A B A B
S
(3)A B
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
(一) 频率 1. 在相同的条件下, 共进行了n次试验,事件A发生的次 数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为 fn(A).
2. 频率的基本性质: (1) 0 f( 1; (非负性) n A) (2) f n ( S ) 1; (规范性) (3)若A1,A 2, , Ak 两两互不相容 ,则 f n ( A1 A2 Ak ) f n ( A1 ) f n ( A2 ) f n ( Ak ).(有限可加性)
概率论与数理统计期末复习

概率论与数理统计期末复习《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算(1)包含关系与相等:“事件发⽣必导致发⽣”,记为或;且.(2)互不相容性:;互为对⽴事件且.(3)独⽴性:(1)设为事件,若有,则称事件与相互独⽴. 等价于:若().(2)多个事件的独⽴:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独⽴.3、事件的运算(1)和事件(并):“事件与⾄少有⼀个发⽣”,记为.(2)积事件(交):“事件与同时发⽣”,记为或.(3)差事件、对⽴事件(余事件):“事件发⽣⽽不发⽣”,记为称为与的差事件;称为的对⽴事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推⼴5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则⽐值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很⼤时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件发⽣的概率为:.(5)⼏何概率:若试验基本结果数⽆限,随机点落在某区域g的概率与区域g的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域中随机地取⼀点落在区域中”这⼀事件发⽣的概率为:.(6)主观概率:⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推⼴到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发⽣的条件下事件发⽣的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的⼀个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的⼀个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为.也叫做“成功—失败”试验,“成功”的概率常⽤表⽰,其中=“成功”.(2)把重复独⽴地进⾏次,所得的试验称为重贝努⾥试验,记为.(3)把重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为.以上三种贝努⾥试验统称为贝努⾥概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则、为互逆事件;如果两个事件与不能同时发⽣,则、为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个.3、两事件独⽴与两事件互斥两事件、独⽴,则与中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时;⽽两事件互斥,则其中任⼀个事件的发⽣必然导致另⼀个事件不发⽣,这两事件的发⽣是有影响的,这时.可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,图1.1,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,,表⽰样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,⽽是在试验增加了新条件发⽣后的缩减的样本空间中计算事件的概率.虽然、都发⽣,但两者是不同的,⼀般说来,当、同时发⽣时,常⽤,⽽在有包含关系或明确的主从关系时,⽤.如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每⼀个可能结果,都有唯⼀的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常⽤⼤写字母等表⽰.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的⼀切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)⼆项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是⼀常数,是任意正整数,设,则对于任⼀固定的⾮负整数,有.当很⼤且很⼩时,⼆项分布可以⽤泊松分布近似代替,即,其中(4)超⼏何分布:记为,概率函数,其中为正整数,且.当很⼤,且较⼩时,有(5)⼏何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在⾮负函数,使对于任⼀实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常⽤连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别⽤和表⽰的密度函数和分布函数,即具有性质:①.②⼀般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2则任为离散型随机变量,其分布列为(表2-3):表2-3……有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种⽅法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每⼀个可能结果,都有唯⼀的实数与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数左连续,但⼤多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数⼆维联合分布函数具有以下基本性质:(1)单调性是变量或的⾮减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)⾮负性对任意点,若,则.上式表⽰随机点落在区域内的概率为:.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量所有可能取值是有限对或可列对,则称为⼆维离散型随机变量.设为⼆维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.………………联合分布列具有下列性质:(1);(2).3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数,使得⼆维随机变量的分布函数对任意实数有,则称是⼆维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数,有;(2)规范性;(3)在任意平⾯域上,取值的概率;(4)如果在处连续,则.4、⼆维随机变量的边缘分布设为⼆维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、⼆维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为⼆维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为⼆维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独⽴性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独⽴.设为⼆维离散型随机变量,与相互独⽴的充要条件是.设为⼆维连续型随机变量,与相互独⽴的充要条件是对⼏乎⼀切实数,有.7、两个随机变量函数的分布设⼆维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最⼤值与最⼩值的分布则9.数理统计中常⽤的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表⽰事件与的积事件,为什么不⼀定等于?如同仅当事件相互独⽴时,才有⼀样,这⾥依乘法原理.只有事件与相互独⽴时,才有,因为.2、⼆维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果相互独⽴,则,即.说明当独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量相互独⽴,是指组成⼆维随机变量的两个分量中⼀个分量的取值不受另⼀个分量取值的影响,满⾜.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有.两者可以说不是⼀个问题.但是,组成⼆维随机变量的两个分量是同⼀试验的样本空间上的两个⼀维随机变量,⽽也是⼀个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果⼴义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独⽴,则;对任意个相互独⽴的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的⽅差设是⼀个随机变量,则称为的⽅差.称为的标准差或均⽅差.。
概率论与数理统计_知识点总复习

随机事件和概率第一节基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m −=从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m−=从m 个人中挑出n 个人进行组合的可能数。
(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(4)一些常见排列1特殊排列相邻彼此隔开顺序一定和不可分辨2重复排列和非重复排列(有序)3对立事件4顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有B A ⊂,A B ⊃,则称事件A 与事件B 等价,或称A 等于B :A=B 。
A、B 中至少有一个发生的事件:A ∪B ,或者A +B 。
属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者B A ,它表示A 发生而B 不发生的事件。
A、B 同时发生:A ∩B ,或者AB 。
A ∩B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。
基本事件是互不相容的。
Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:∪∩∞=∞==11i ii i AA B A B A ∩∪=,BA B A ∪∩=3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,2°P(Ω)=13°对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P ∪常称为可列(完全)可加性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给定一个随机试验,设Ω为其样本空间,则:
随机事件A,B,... 随机事件间的关系
Ω的子集A,B,...
各种集合间的关系
概率论与集合论之间的关系
概率论
集合论
样本空间 必然事件
不可能事件
子事件 A B 并事件 A B 交事件 A B 差事件 A B 对立事件 A
全集
全集
空集
子集 A B
4. 随机事件
在随机试验中,可能出现也可能不出现,而在大 量的重复试验中具有某种规律性的事件叫做随机 事件,简称事件.
5. 样本点
随机试验中的每一个可能出现的试验结果称为
这个试验的一个样本点,记作 i (i 1,.2,L )
6. 样本空间
全体样本点组成的集合称为这个试验的样本空间, 记作Ω.即
1,2,L ,n,L
并集 A B
交集 A B
差集 A B
补集
A
第二章 事件的概率
第一节 概率的概念 第二节 古典概型 第三节 几何概型 第四节 概率的公理化定义
第二章 基本知识点
1. 随机事件的频率
设随机事件A在n次随机试验中出现了r次, 则称这n次试验中事件A出现的频率为:
fn ( A)
r n
事件A出现的次数r 试验的总次数n
P( A) r n
事件A包含的基本事件r 的基本事件n
6. 几何概型
古典概型中的有限性推广到无限性,而保留等可能性
1. 基本特征:
(1) 有一个可度量的几何图形Ω
(2) 试验E看成在Ω中随机的一点ω
事件A=“随机点落在Ω中的子区域SA中”
P( A)
SA ||
S
的几何度量
A
的几何度量
长度、面积或体积
1
P( A1 ) P( A2 ) L
P( An )
, n
Ai {i }
5. 概率的古典定义 对于古典概型:
(1) 设所有可能的试验结果构成的样本空间为:
1,2,L ,n
(2) 事件 A k1 ,k2 ,L ,kr
其中k1, k2,L , kr为1, 2, …, n中的r个不同的数 则定义事件A的概率为:
概率论 总复习
第一章 随机事件
第一节 样本空间和随机事件 第二节 事件关系和运算
第一章 基本知识点 1. 概率论
概率论就是研究随机现象的统计规律性的数学学科
2. 确定性现象与随机现象
3. 随机试验
(1) 试验在相同的条件下可重复进行 (2) 每次试验的结果具有多种可能性,而且在试验之前
可以确定试验的所有可能结果 (3) 每次试验前不能准确预言试验后会出现哪种结果.
7. 概率的公理化定义 设随机试验的样本空间为Ω,若对任一 事件A,有且只有一个实数P(A)与之对应, 满足如下公理:
(1) 非负性: 0 P( A) 1
(2) 规范性: P() 1
(3) 完全可加性:对任意一列两两互斥事件A1,
n1 n1
2. 频率的稳定性
随机事件A在相同条件下重复多次时,事件 A 发生的频率在一个固定的数值p附近摆动, 随着试验次数的增加更加明显.
3. 概率的统计定义
对任意事件A,在相同的条件下重复进行 n 次试验,事件A 发生的频率随着试验次 数的增大而稳定地在某个常数p附近摆动, 那么称p为事件A的概率,记为
概率 事件A的概率
频率的稳定值 P( A) p
事件A
准确的数值
当试验次数足够大时
事件A的频率
事件A的概率
近似地代替
4. 古典概型:
古典概型的基本特征:
(1) 有限性:试验的可能结果只有有限个;
样本空间Ω是个有限集
1,2,L ,n
(2) 等可能性:各个可能结果出现是等可能的.
基本事件的概率均相同
P( Ai )P(B | Ai )
i 1
5. 事件独立的定义
P(B|A) = P(B)
A与B相互独立的 充要条件
P( AB) P( A)P(B)
第三章 基本知识点
1. 条件概率的定义
设A,B为同一随机试验中的两个随机事件 , 且 P(A) > 0, 则称已知A发生条件下B发生 的概率为B的条件概率,记为
P(B | A) P( AB)
2. 乘法定理
P( A)
P( AB) P( A)P(B | A) P(B | A) P( AB)
P( A)
7. 随机事件
仅含一个样本点的随机事件称为基本事件. 含有多个样本点的随机事件称为复合事件.
8. 必然事件Ω
一次随机试验中,必然会发生的随机事件.
9. 不可能事件Φ
一次随机试验中,不可能会发生的随机事件.
10. 事件关系和运算 概率论 事件 事件之间的关系 事件的运算
集合论 集合 集合之间的关系 集合的运算
则称P(A)为事件A的概率
8. 概率的性质
性质1 P() 0 不可能事件的概率为零 性质2 P( A) 1 P( A) 逆事件的概率
性质3 性质4
互不相容事件概率的有限可加性
对任意有限个互斥事件A1,A2,… An ,
U 有:P
n
Ak
n
P( Ak )
k1 k1
P( A B) P( A) P(B) P( AB) 加法定理
P( AB) P(B)P( A | B)
P( A | B) P( AB) P(B)
3. 全概率公式
设A1 ,A2 ,...,An 构成一个完备事件组, 且P(Ai )>0 (i=1,2,...,n),则对任一随机 事件B,有:
n
P(B) P( Ai )P(B | Ai ) i 1
A1 P( A1 ) P(B | A1 )
A2 P( A2 ) P(B | A2 )
P(B)
A3 P( A3 ) P(B | A3 )
4. 贝叶斯公式
设A1,A2,…, An构成完备事件组,且每个
P(Ai)>0,B为样本空间的任意事件且P(B) >0 ,
则有:
P( Ak | B)
P( Ak )P(B | Ak )
n
(k 1, 2,L , n)
性质5 若A B,则:P(B A) P(B) P( A) 且 P( A) P(B) 差事件的概率
性质6 加法定理的推广形式
P(A B C) P( A) P(B) P(C )
P( AB) P(BC ) P( AC ) P( ABC )
A
B
C
第三章 条件概率与事件的独立性
第一节 条件概率 第二节 全概率公式 第三节 贝叶斯公式 第四节 事件的独立性 第五节 伯努利试验和二项概率 第六节 主观概率