2013第八章第三节圆的方程
(江苏专用)高考数学总复习 第八章第3课时 圆的方程课件

【解】 设点M的坐标是(x,y),点A 的坐标是(x0,y0),由于点B的坐标是 (4,3)且M是线段AB的中点,
所以 x=x0+2 4,y=y0+2 3, 于是有 x0=2x-4,y0=2y-3. ① 因为点 A 在圆(x+1)2+y2=4 上运动,
所以点 A 的坐标满足方程(x+1)2+y2= 4, 即(x0+1)2+y20=4. ② 把 ①代入 ②, 得(2x- 4+ 1)2+ (2y- 3)2 =4,
(2)求圆的方程有两类方法 ①几何法,即通过研究圆的性质、直 线和圆、圆和圆的位置关系,进而求 得圆的基本量(圆心、半径)和方程;
②代数法,即用“待定系数法”求圆 的方程,其一般步骤是:a.根据题意 选择方程的形式——标准形式或一般 形式(本例题中涉及圆心及切线,故设 标准形式较简单);b.利用条件列出关 于a,b,r或D,E,F的方程组;c.解 出a,b,r或D,E,F,代入所设的标 准方程或一般方程.
第八章 平面解析几何
第3课时 圆的方程
回归教材•夯实双基
基础梳理 1.圆的方程 (1)标准方程:(x-a)2+(y-b)2=r2,其中 (a_,__b_)____为圆心,r为半径.
(2)一般方程:x2+y2+Dx+Ey+F=
0(D2+E2-4F>0)其中圆心为
__-__D2_,__-__E2___,半径为_12__D__2_+__E_2- __4_F_.
d=|2--1-1|= 2.
1+1
又直线y=x-1被圆截得的弦长为2, ∴2=2,即2=2,解得r=2. ∴所求圆的方程为(x-2)2+(y+1)2= 4.
(2)法一:设圆的标准方程为(x-a)2+(y
-b)2=r2,则有
b=-4a,
3-a2+-2-b2=r2, |a+b-1|=r, 2
高考数学 考前最后一轮基础知识巩固之第八章 第3课 圆的方程

第3课 圆的方程【考点导读】1. 掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系,会进行互化。
2. 本节内容主要考查利用待定系数法求圆的方程,利用三角换元或数形结合求最值问题,题型难度以容易题和中档题为主. 【基础练习】1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为(x + 1)2+ (y -1)2= 252.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是(x -1)2+(y-1)2=43.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为0422=-+x y x4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆心为P ,若∠APB=120°,则实数c 值为_-11__5.如果方程220x y Dx Ey F ++++=()2240D E F +->所表示的曲线关于直线y x =对称,那么必有__D=E__ 【范例导析】【例1】 设方程22242(3)2(14)1690x y m x m y m +-++-++=,若该方程表示一个圆,求m 的取值范围及这时圆心的轨迹方程。
分析:配成圆的标准方程再求解解:配方得:[]2222(3)(14)167x m y m m m ⎡⎤-++--=+-⎣⎦ 该方程表示圆,则有21670m m +->,得1(,1)7m ∈-,此时圆心的轨迹方程为2341x m y m =+⎧⎨=-⎩,消去m ,得24(3)1y x =--,由1(,1)7m ∈-得x =m +320,47⎛⎫∈ ⎪⎝⎭∴所求的轨迹方程是24(3)1y x =--,20,47x ⎛⎫∈ ⎪⎝⎭注意:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量的取值范围,如题中20,47x ⎛⎫∈ ⎪⎝⎭变式1:方程224(1)40ax ay a x y +--+=表示圆,求实数a 的取值范围,并求出其中半径最小的圆的方程。
圆的方程 课件 高二 人教A版(精品)

[解析] 设圆心 的坐标为 ,圆的半径为 ,因为圆心 在直线 上,所以 。因为 ,所以 ,解得 , ,所以 。所以方程为 。
二、易错题
4.(错用点与圆的位置关系致误)若点 在圆 的内部,则实数 的取值范围是( )A. B. C. 或 D.
A
[解析] 设圆心为 ,半径为 ,圆 被 轴分成两部分的弧长之比为 ,则其中劣弧所对圆心角为 ,由圆的性质可得 ,又圆被 轴截得的弦长为4,所以 ,所以 。变形为 ,即 在双曲线 上,易知双曲线 上与直线 平行的切线的切点为 ,此点到直线 的距离最小。设切线方程为 ,由
类型二 与圆有关的轨迹问题
【例2】(1) 平面内到两定点 , 的距离之比等于常数 ( 且 )的动点 的轨迹叫做阿波罗尼斯圆。已知 , , ,则点 的轨迹围成的平面图形的面积为( )A. B. C. D.
B
[解析] 设 ,由 ,得 , , , ,则点 的轨迹是以 为圆心,2为半径的圆,所以所求面积 。
2.(微考向2)已知点 为圆 上一点, 为圆心,则 ( 为坐标原点)的取值范围是( )A. B. C. D.
C
[解析] 将圆 的方程 化为 ,所以圆心 的坐标为 。所以 。而 ,所以 。因为 ,所以 ,所以 。因为 ,所以 ,所以 ,即 。因此 ,从而 ( 为坐标原点)的取值范围为 。故选C。
2.点与圆的位置关系 平面上的一点 与圆 之间存在着下列关系:
(1) 在_______,即 在圆外;
(2) 在_______,即 在圆上;
(3) 在_______,即 在圆内。
圆外
圆上
圆内
小题·微演练
一、基础题
1.圆 的圆心坐标是( )A. B. C. D.
[解析] 由题意可设点 的坐标为 ,因为满足 ,由两点间的距离公式可得 ,即 ,所以 即为点 的轨迹方程。故选B。
第8章 第3节 圆的方程

第三节圆的方程一、教材概念·结论·性质重现1.圆的定义及方程定义平面上到定点的距离等于定长的点的集合(轨迹)标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b),半径:r一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心:⎝⎛⎭⎪⎫-D2,-E2,半径:12D2+E2-4F(1)确定圆的方程时,常用到的圆的三个性质.①圆心在过切点且与切线垂直的直线上.②圆心在任一弦的中垂线上.③两圆内切或外切时,切点与两圆圆心共线.(2)方程x2+y2+Dx+Ey+F=0,当D2+E2-4F>0时,表示圆心为⎝⎛⎭⎪⎫-D2,-E2,半径r=D2+E2-4F2的圆;当D2+E2-4F=0时,表示一个点⎝⎛⎭⎪⎫-D2,-E2;当D2+E2-4F<0时,不表示任何图形.00(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.3.常用结论以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)确定圆的几何要素是圆心与半径. (√) (2)方程x 2+2ax +y 2=0一定表示圆. (×) (3)圆x 2+2x +y 2+y =0的圆心是⎝ ⎛⎭⎪⎫1,12.(×)(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0内,则x 20+y 20+Dx 0+Ey 0+F>0. (×)2.若圆(x -1)2+(y -1)2=2关于直线y =kx +3对称,则k 的值是( ) A .2 B .-2 C .1 D .-1B 解析:由题意知直线y =kx +3过圆心(1,1), 即1=k +3,解得k =-2.3.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4C 解析:设圆心C 的坐标为(a ,b ),半径为r .因为圆心C 在直线x +y -2=0上,所以b =2-a .又|CA |2=|CB |2,所以(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2,所以a =1,b =1.所以r =2.所以方程为(x -1)2+(y -1)2=4.4.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .(-1,1) B .(0,1)C .(-∞,-1)∪(1,+∞)D .a =±1A 解析:因为点(1,1)在圆的内部,所以(1-a )2+(1+a )2<4,所以-1<a <1.5.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.(-2,-4)5解析:由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,5为半径的圆.考点1求圆的方程——基础性(1)(2020·北京高三一模)已知圆C与x轴的正半轴相切于点A,圆心在直线y=2x上.若点A在直线x-y-4=0的左上方且到该直线的距离等于2,则圆C的标准方程为()A.(x-2)2+(y+4)2=4B.(x+2)2+(y+4)2=16C.(x-2)2+(y-4)2=4D.(x-2)2+(y-4)2=16D解析:因为圆C的圆心在直线y=2x上,所以可设C(a,2a).因为圆C与x轴正半轴相切于点A,所以a>0且圆C的半径r=2a,A(a,0).因为点A到直线x-y-4=0的距离d=2,所以d=|a-0-4|1+1=2,解得a=6或a=2,所以A(2,0)或A(6,0).因为A在直线x-y-4=0的左上方,所以A(2,0),所以C(2,4),r=4,所以圆C 的标准方程为(x -2)2+(y -4)2=16.(2)古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点A (-a,0),B (a,0),动点P 满足|P A ||PB |=λ(其中a 和λ是正常数,且λ≠1),则P 的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为________.2aλ|1-λ2| 解析:设P (x ,y ),由动点P 满足|P A ||PB |=λ(其中a 和λ是正常数,且λ≠1),所以(x +a )2+y 2=λ(x -a )2+y 2,化简得x 2+2a (1+λ2)1-λ2x +a 2+y 2=0, 即⎣⎢⎢⎡⎦⎥⎥⎤x +a (1+λ2)1-λ22+y 2=a 2(1+λ2)2(1-λ2)2-a 2,所以该圆半径r =a 2(1+λ2)2(1-λ2)2-a 2=2aλ|1-λ2|.求圆的方程的两种方法(1)几何法.通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到圆的三个性质:①圆心在过切点且垂直于切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线.(2)代数法,即设出圆的方程,用待定系数法求解.(2020·重庆育才中学3月月考)圆C 以直线l :(2m +1)x +(m +1)y +2m =0上的定点为圆心,半径r =4,则圆C 的方程为( )A .(x +2)2+(y -2)2=16B .(x -2)2+(y -2)2=16C .(x -2)2+(y +2)2=16D .(x +2)2+(y +2)2=16A 解析:由(2m +1)x +(m +1)y +2m =0,可得(2x +y +2)m +(x +y )=0,所以直线过⎩⎪⎨⎪⎧ 2x +y +2=0,x +y =0的交点,解得⎩⎪⎨⎪⎧x =-2,y =2,即直线过定点(-2,2),则所求圆的方程为(x +2)2+(y -2)2=16.故选A .考点2 与圆有关的轨迹问题——综合性设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解:如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N 在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上时的情况).求与圆有关的轨迹问题的常用方法(1)直接法:由题设直接求出动点坐标所满足的关系式. (2)定义法:利用定义写出动点的轨迹方程.(3)代入法:若动点P (x ,y )随着圆上的另一动点Q (x 1,y 1)运动而运动,且x 1,y 1可用x ,y 表示,可将点Q 的坐标代入已知圆的方程,即得动点P 的轨迹方程.1.若动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16B 解析:设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.2.如图,已知点A (-1,0)与点B (1,0),点C 是圆x 2+y 2=1上的动点,连接BC 并延长至点D ,使得|CD |=|BC |.求AC 与OD 的交点P 的轨迹方程.解:设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),设动点C (x 0,y 0),则D (2x 0-1,2y 0). 由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y ≠0),代入x 2+y 2=1,整理得⎝ ⎛⎭⎪⎫x +132+y 2=49(y ≠0),故所求轨迹方程为⎝ ⎛⎭⎪⎫x +132+y 2=49(y ≠0).考点3 与圆有关的最值问题——综合性考向1 斜率型、截距型、距离型最值问题已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求yx 的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.解:原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率, 所以设yx =k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如图1).所以yx 的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图2).所以y -x 的最大值为-2+6,最小值为-2- 6.(3)x2+y2表示圆上的一点与原点距离的平方.由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).又圆心到原点的距离为2,所以x2+y2的最大值是(2+3)2=7+43,最小值是(2-3)2=7-4 3.与圆有关的最值问题的3种几何转化法(1)形如m=y-bx-a的最值问题,可转化为动直线斜率的最值问题;(2)形如m=ax+by的最值问题,可转化为动直线截距的最值问题;(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.考向2利用对称性求最值已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为() A.52-4 B.17-1 C.6-2 2 D.17A解析:P是x轴上任意一点,则|PM|的最小值为|PC1|-1,同理|PN|的最小值为|PC2|-3,则|PM|+|PN|的最小值为|PC1|+|PC2|-4.作C1关于x轴的对称点C′1(2,-3).所以|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=52,即|PM|+|PN|=|PC1|+|PC2|-4≥52-4.求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:(1)“动化定”,把与圆上动点的距离转化为与圆心的距离;(2)“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.1.设点P是函数y=-4-(x-1)2图象上的任意一点,点Q的坐标为(2a,a-3)(a∈R),则|PQ|的最小值为________.5-2解析:函数y=-4-(x-1)2的图象表示圆(x-1)2+y2=4在x轴及下方的部分.令点Q的坐标为(x,y),则⎩⎪⎨⎪⎧x=2a,y=a-3,得y=x2-3,即x-2y -6=0,作出图象如图所示.由于圆心(1,0)到直线x-2y-6=0的距离d=|1-2×0-6|12+(-2)2=5>2,故直线x -2y-6=0与圆(x-1)2+y2=4相离,因此|PQ|的最小值是5-2.2.已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2-4x-2y =0上,则|P A|+|PQ|的最小值是________.25解析:因为圆C化为标准方程为(x-2)2+(y-1)2=5,所以圆C是以C(2,1)为圆心,r=5为半径的圆.设点A(0,2)关于直线x+y+2=0的对称点为A′(m,n),故⎩⎪⎨⎪⎧m+02+n+22+2=0,n-2m-0=1,解得⎩⎪⎨⎪⎧m=-4,n=-2.故A′(-4,-2).所以|A′C|=(2+4)2+(1+2)2=3 5.连接A′C交圆C于点Q,由对称性可知|P A|+|PQ|=|A′P|+|PQ|≥|A′Q|=|A′C|-r=2 5.。
第8章第3讲 圆的方程

第3讲 圆的方程[考纲解读]1.掌握确定圆的几何要素,圆的标准方程与一般方程,能根据不同的条件,采取标准式或一般式求圆的方程.(重点)2.掌握点与圆的位置关系,能求解与圆有关的轨迹方程.(难点)[考向预测] 从近三年高考情况来看,本讲为高考中的热点.预测2021年将会考查:①求圆的方程;②根据圆的方程求最值;③与圆有关的轨迹问题.试题以客观题的形式呈现,难度不会太大,以中档题型呈现.1.圆的定义及方程 定义 平面内与□01定点的距离等于□02定长的点的集合(轨迹)标准方程□03(x -a )2+(y -b )2=r 2(r >0) 圆心:□04(a ,b ),半径:□05r 一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:□06⎝ ⎛⎭⎪⎫-D 2,-E 2,半径:□0712D 2+E 2-4F 平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: 设d 为点M (x 0,y 0)与圆心(a ,b )的距离(1)d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在□01圆外; (2)d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在□02圆上; (3)d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在□03圆内.1.概念辨析(1)确定圆的几何要素是圆心与半径.( )(2)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12-3a 2-4a +4的圆.( )(3)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( )(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()答案(1)√(2)×(3)√(4)√2.小题热身(1)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2答案 D解析由已知,得所求圆的圆心坐标为(1,1),半径r=12+12=2,所以此圆的方程是(x-1)2+(y-1)2=2.(2)若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是()A.(-∞,-2)∪(2,+∞)B.(-∞,-22)∪(22,+∞)C.(-∞,-3)∪(3,+∞)D.(-∞,-23)∪(23,+∞)答案 B解析若方程x2+y2+mx-2y+3=0表示圆,则m应满足m2+(-2)2-4×3>0,解得m<-22或m>2 2.(3)若原点在圆(x-2m)2+(y-m)2=5的内部,则实数m的取值范围是________.答案(-1,1)解析因为原点在圆(x-2m)2+(y-m)2=5的内部,所以(0-2m)2+(0-m)2<5.解得-1<m<1.(4)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为________.答案x2+(y-2)2=1解析由题意,可设所求圆的方程为x2+(y-b)2=1,因为此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.题型一 求圆的方程1.经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程为________.答案 (x -4)2+(y +3)2=25解析 解法一:(待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧a 2+b 2=r 2,(1-a )2+(1-b )2=r 2,2a +3b +1=0,解得⎩⎪⎨⎪⎧a =4,b =-3,r =5.所以圆的标准方程是(x -4)2+(y +3)2=25.解法二:(直接法)由题意,知OP 是圆的弦,其垂直平分线为x +y -1=0.因为弦的垂直平分线过圆心,所以由⎩⎪⎨⎪⎧2x +3y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =4,y =-3,即圆心坐标为(4,-3),半径为r =42+(-3)2=5,所以圆的标准方程是(x -4)2+(y +3)2=25.2.一圆经过P (-2,4),Q (3,-1)两点,并且在x 轴上截得的弦长等于6,求此圆的方程.解 设圆的方程为x 2+y 2+Dx +Ey +F =0,将P ,Q 两点的坐标分别代入,得⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10. ②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6有D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.见举例说明1解法二.(2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.见举例说明1解法一.②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.见举例说明2.1.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4 答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎨⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.2.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.答案 x 2+y 2-2x =0解析 解法一:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,又因为圆经过三点(0,0),(1,1),(2,0),所以⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,22+02+2D +0E +F =0,解得D =-2,E =0,F =0, 所以圆的方程为x 2+y 2-2x =0.解法二:记O (0,0),A (1,1),B (2,0),线段OB 的垂直平分线方程为x =1,线段OA 的垂直平分线方程为y -12=-⎝ ⎛⎭⎪⎫x -12,即x +y -1=0.解方程⎩⎪⎨⎪⎧x =1,x +y -1=0,得圆心坐标为(1,0).所以半径r =1,圆的方程为(x -1)2+y 2=1.解法三:在平面直角坐标系中,画出圆上的三点,另证这三个点构成直角三角形,显然圆心坐标为(1,0),半径为1,所以圆的标准方程为(x -1)2+y 2=1.题型二 与圆有关的最值问题角度1 建立函数关系求最值1.(2019·厦门模拟)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB→的最大值为________.答案 12解析 ∵P A →=(2-x ,-y ),PB →=(-2-x ,-y ),P (x ,y )在圆上,∴P A →·PB→=x 2-4+y 2=6y -8-4=6y -12,∵2≤y ≤4,∴P A →·PB →≤12.角度2 借助几何性质求最值2.(2019·湖南师大附中模拟)已知点A (-2,0),B (0,1),若点C 是圆x 2-2ax +y 2+a 2-1=0上的动点,△ABC 面积的最小值为3-2,则a 的值为________.答案 1或-5解析 由题意,知圆的标准方程为(x -a )2+y 2=1,则圆心为(a,0),半径r =1,又A (-2,0),B (0,2)可得直线AB 的方程为x -2+y2=1,即x -y +2=0.所以圆心到直线AB 的距离d =|a +2|2,则圆上的点到直线AB 的最短距离为d -r =|a +2|2-1,又|AB |=4+4=22,所以△ABC 面积的最小值为12|AB |·(d -r )=2⎝ ⎛⎭⎪⎫|a +2|2-1=3-2,解得a =1或-5.求解与圆有关的最值问题的两大规律(1)建立函数关系式求最值.如举例说明1.根据题目条件列出关于所求目标式子的函数关系式;然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.(2)借助几何性质求最值.如举例说明2.1.圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22 D .2+2 2答案 A解析 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d=|1-1-2|2=2,故圆上的点到直线x-y=2距离的最大值为d+1=2+1,故选A.2.(2019·兰州模拟)若直线ax+by+1=0(a>0,b>0)把圆(x+4)2+(y+1)2=16分成面积相等的两部分,则12a+2b的最小值为()A.10 B.8C.5 D.4答案 B解析由已知,得圆心C(-4,-1)在直线ax+by+1=0上,所以-4a-b+1=0,即4a+b=1,又因为a>0,b>0,所以12a +2b=⎝⎛⎭⎪⎫12a+2b(4a+b)=b2a+8ab+4≥2b2a·8ab+4=8,当且仅当b2a=8ab时,等号成立,此时b=4a,结合4a+b=1,知a=18,b=12.所以当a=18,b=12时,12a+2b取得最小值8.题型三与圆有关的轨迹问题1.已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求直角顶点C的轨迹方程.解解法一:设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,所以k AC·k BC=-1,又k AC=yx+1,k BC=yx-3,所以yx+1·yx-3=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).解法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).2.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上,所以(x +3)2+(y -4)2=4. 所以点P的轨迹是以(-3,4)为圆心,2为半径的圆⎝ ⎛⎭⎪⎫因为O ,M ,P 三点不共线,所以应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.1.掌握“三方法”2.明确“五步骤”(2019·潍坊调研)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.组 基础关1.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( )A .原点在圆上B .原点在圆外C .原点在圆内D .不确定答案 B解析 将圆的一般方程化成标准方程为(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即(0+a )2+(0+1)2>2a ,所以原点在圆外.2.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) A .x 2+(y -2)2=5 B .(x -2)2+y 2=5 C .x 2+(y +2)2=5 D .(x -1)2+y 2=5答案 B解析 因为所求圆的圆心与圆(x +2)2+y 2=5的圆心(-2,0)关于原点(0,0)对称,所以所求圆的圆心为(2,0),半径为5,故所求圆的方程为(x -2)2+y 2=5.故选B.3.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.4.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43 B .-34 C. 3 D .2答案 A解析 圆的方程可化为(x -1)2+(y -4)2=4,则圆心坐标为(1,4),圆心到直线ax +y -1=0的距离为|a +4-1|a 2+1=1,解得a =-43.故选A.5.(2019·合肥二模)已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( )A .(x -3)2+(y +4)2=100B .(x +3)2+(y -4)2=100C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25 答案 C解析 由圆C 的圆心坐标C (6,8),得OC 的中点坐标为E (3,4),半径|OE |=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.6.(2020·黄冈市高三元月调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,则k 的值为( )A .-1B .1C .±1D .0答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1.则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不符合题意,∴k =-1.故选A.7.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1答案 A解析 设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.故选A.8.(2019·太原二模)若圆x 2+y 2+2x -2y +F =0的半径为1,则F =________. 答案 1解析 由圆x 2+y 2+2x -2y +F =0得(x +1)2+(y -1)2=2-F ,由半径r =2-F =1,解得F =1.9.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以当k =0时圆C 的面积最大,此时圆的方程为x 2+(y +1)2=1,圆心坐标为(0,-1).10.已知实数x ,y 满足(x +2)2+(y -3)2=1,则|3x +4y -26|的最小值为________.答案 15解析 解法一:|3x +4y -26|最小值的几何意义是圆心到直线3x +4y -26=0的距离减去半径后的5倍,|3x +4y -26|min =5⎝ ⎛⎭⎪⎪⎫|3a +4b -26|32+42-r ,(a ,b )是圆心坐标,r 是圆的半径.圆的圆心坐标为(-2,3),半径是1,所以圆心到直线的距离为|3×(-2)+4×3-26|5=4,所以|3x +4y -26|的最小值为5×(4-1)=15.解法二:令x +2=cos θ,y -3=sin θ,则x =cos θ-2,y =sin θ+3,|3x +4y -26|=|3cos θ-6+4sin θ+12-26|=|5sin(θ+φ)-20|,其中tan φ=34,所以其最小值为|5-20|=15.组 能力关1.方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆 D .两个半圆答案 D解析 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心,1为半径的上半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心,1为半径的下半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆.选D.2.(2019·南昌二模)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A.10-1 B .22-1 C .2 2 D.10答案 A解析 设点A 关于直线x +y =3的对称点为A ′(a ,b ),则AA ′的中点为⎝ ⎛⎭⎪⎫a +22,b 2,k AA ′=b a -2, 故⎩⎨⎧b a -2·(-1)=-1,a +22+b2=3,解得⎩⎪⎨⎪⎧a =3,b =1,则从点A 到军营的最短总路程,即为点A ′到军营的距离,则“将军饮马”的最短总路程为32+12-1=10-1.3.(2019·贵阳模拟)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.答案 ⎝ ⎛⎭⎪⎫x -322+(y -2)2=54解析 设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A →⊥PC →.又因为P A →=(2-x,3-y ),PC →=(1-x,1-y ).所以(2-x )·(1-x )+(3-y )·(1-y )=0.所以点P 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+(y -2)2=54.4.(2020·柳州摸底)在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C .(1)求圆C 的方程;(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程.解 (1)设圆C 的方程为x 2+y 2+Dx +Ey +F =0.由f (x )=x 2-x -6得,其图象与两坐标轴的交点为(0,-6),(-2,0),(3,0),将交点坐标代入圆的方程得⎩⎪⎨⎪⎧36-6E +F =0,4-2D +F =0,9+3D +F =0,解得⎩⎪⎨⎪⎧D =-1,E =5,F =-6,所以圆的方程为x 2+y 2-x +5y -6=0.(2)由(1)知,圆心坐标为⎝ ⎛⎭⎪⎫12,-52,若直线经过原点,则直线l 的方程为5x +y =0;若直线不过原点,设直线l 的方程为x +y =a ,则a =12-52=-2,即直线l 的方程为x +y +2=0.综上,直线l 的方程为5x +y =0或x +y +2=0.5.已知圆O :x 2+y 2=1,点A (-1,0),点B (1,0).点P 是圆O 上异于A ,B 的动点.(1)证明:k AP ·k BP 是定值;(2)过点P 作x 轴的垂线,垂足为Q ,点M 满足2PQ →=-PM →,求点M 的轨迹方程C ;(3)证明:k AM ·k BM 是定值.解 (1)证明:由已知,直线AP ,BP 的斜率存在,AB 是圆O 的直径,所以AP ⊥BP ,所以k AP ·k BP =-1是定值.(2)设P (m ,n ),M (x ,y ),则Q (m,0), 则PQ→=(0,-n ),PM →=(x -m ,y -n ), 因为2PQ→=-PM →, 所以2(0,-n )=-(x -m ,y -n ), 得⎩⎪⎨⎪⎧0=-x +m ,-2n =-y +n ,即⎩⎨⎧m =x ,n =13y ,①因为点P 在圆O 上,所以m 2+n 2=1, ② 将①代入②,得x 2+y 29=1,又点P 异于A ,B ,所以x ≠±1,即点M 的轨迹方程C 为x 2+y 29=1(x ≠±1).(3)证明:由已知,直线AM ,BM 的斜率存在, k AM =y x +1,k BM =yx -1,由(2)知,x2-1=-y29,所以k AM·k BM=yx+1·yx-1=y2x2-1=-9,即k AM·k BM是定值.。
【全程复习方略】2013版高中数学 (主干知识+典例精析)8.3圆的方程课件 理 新人教B版

两边作平行四边形MONP,O为坐标原点,求点P的轨迹方程.
【解题指南】可设点P坐标为(x,y),点N坐标为(x0,y0),利用中 点公式,可找到两点坐标之间的关系,利用代入法即可求解.
【规范解答】如图所示,设P(x,y),N(x0,y0), 则线段OP的中点坐标为(
2 2
点坐标为( x 0 3 , y 0 4 ).因为平行四边形的
答案:x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
(2)圆心显然在线段AB的垂直平分线y=6上, 设圆心为(a,6),半径为r,则
(x-a)2+(y-6)2=r2,
得(1-a)2+(10-6)2=r2,而r a 13 ,
5
∴ (a 1) 2 16 (a 13) ,a=3,r=2 5,
(2)直线与圆的方程联立,由 OA· OB =0即可求出a的值.
【规范解答】(1)曲线y=x2-6x+1与坐标轴的交点为 (0,1),(3〒2 2 ,0)……………………………………………2分 故可设圆的圆心坐标为(3,t), 则有32+(t-1)2=( 2 2 )2+t2,解得:t=1.……………………4分 则圆的半径为 32 t 12 3 , 所以圆的方程为:(x-3)2+(y-1)2=9. ………………………6分
离平方的最值问题.
【例2】已知实数x、y满足方程x2+y2-4x+1=0.
(1)求
y 的最大值和最小值; x
(2)求y-x的最大值和最小值; (3)求x2+y2的最大值和最小值. 【解题指南】充分利用所求代数式的几何意义,运用几何法求解. (1)
8-3圆的方程
第19页
与名师对话·系列丛书
高考总复习·数学
已知实数 x、y 满足方程 x2+y2-4x+1=0. (1)求yx的最大值和最小值; (2)求 y-x 的最大值和最小值; (3)求 x2+y2 的最大值和最小值. 【思路启迪】 根据代数式的几何意义,借助于平面几何知 识,数形结合求解.
与名师对话·系列丛书
高考总复习·数学
第
八
解析几何
篇
(必修 2 第三、四章 选修 1-1 第二章)
第1页
与名师对话·系列丛书
第三节
高考总复习·数学
圆的方程
第2页
与名师对话·系列丛书
高考导航
考纲要求 1.掌握确定圆的几何要素. 2.掌握圆的标准方程与一般方程.
高考总复习·数学
第3页
与名师对话·系列丛书
高考总复习·数学
2.点与圆的位置关系
圆的标准方程(x-a)2+(y-b)2=r2,圆心A(a,b),半径r,
若点M(x0,y0)在圆上,则 (x0-a)2+(y0-b)2=r2
;若点
M(x0,y0)在圆外,则 (x0-a)2+(y0-b)2>r2 ;若点M(x0,y0)在圆
内,则 (x0-a)2+(y0-b)2<r2.
高考总复习·数学
考点1 求圆的方程 1.方程选择原则 求圆方程时,如果由已知条件易求得圆心坐标、半径或需要
用圆心坐标列方程,常选用标准方程;如果已知条件与圆心坐标、 半径无直接关系,常选用一般方程.
2.方程求法 求圆的方程,有两种求解方法:一是几何法,通过研究圆的 性质进而求圆的基本量;二是代数法,即设出圆的方程,用待定 系数法求解.
第12页
与名师对话·系列丛书
第3节 圆的方程
创新课堂
7. (2012 届微山一中高三 10 月考试题)直线 y x b 与曲线
x 1 y2 有且仅有一个公共点,
第八单元
则 b 的取值范围是 A. | b |
(
)
2
B. 1 b 1 或 b 2 D. 2 b 1
2
C. 1 b 2 答案:B
解析: y x b 是斜率为 1 的直线,曲线 x 1 y 是以原点为圆心 1 为半径的圆的右半圆,画出他们的图像如右图, 由图可以看出:两种情况两个曲线有且仅有一个公共点, 当 b 2 时相切,当 1 b 1 时,相交且有唯一公共点; 这里考查直线与圆位置关系,数形结合,是中档题.
创新课堂
第八单元
点拨 求圆的方程,主要用待定系数法:一是利用圆的标准方程,求出圆心坐标 和半径,二是利用圆的一般方程求出D、E、F的值. 用待定系数法求圆的方程要注意两点:第一,究竟用标准方程还是用一般方程 要根据题设条件选择,选择得好,解法就简捷,选择得不好,会增加解答的难 度,并注意尽量根据条件少设未知量.第二,要注意适时运用几何知识列方程, 这样可大大减少计算量.
A(a,b)、半径长为 r 的圆. 特例:①圆心在原点:x2+y2=r2;②圆心在 x 轴上:(x-a)2+y2 =r2;③圆心在 y 轴上:x2+(y-b)2=r2;④以点 A(x1,y1)、点 B(x2,y2)
x1+x22 y1+y22 2 为直径两端点的圆的方程:x- +y- 2 =(x1-x2) +(y1- 2
|CA| 3 2 |CB| 3 2 又∵kPA= |PA| = = 2 ,kPB=-|PB| =- =- 2 . 6 6 即 y 2 2 的最大值为 2 ,最小值为- 2 . x+1
2013年高考总复习数学北师(江西版)理教案:第八章8.3 圆的方程
2013年高考第一轮复习数学北师(江西版)理第八章8.3 圆的方程考纲要求掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知识梳理 1.圆的定义在平面内,到____的距离等于____的点的____叫做圆. 确定一个圆最基本的要素是____和____. 2.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中______为圆心,____为半径长. 特别地,当圆心在原点时,圆的方程为________. 3.圆的一般方程对于方程x 2+y 2+Dx +Ey +F =0.(1)当____________时,表示圆心为⎝⎛⎭⎫-D 2,-E 2,半径长为12D 2+E 2-4F 的圆;(2)当____________时,表示一个点⎝⎛⎭⎫-D 2,-E 2; (3)当____________时,它不表示任何图形;(4)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧① ,② ,③ .4.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),点M (x 0,y 0), (1)点在圆上:____________________; (2)点在圆外:____________________; (3)点在圆内:____________________. 基础自测1.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ).A .14<m <1 B .m >1C .m <14D .m <14或m >12.圆心在y 轴上,半径长为1,且过点(1,2)的圆的方程是( ). A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=13.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ). A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±14.圆C :x 2+y 2-2x -4y +4=0的圆心到直线3x +4y +4=0的距离d =__________. 思维拓展1.二元二次方程x 2+y 2+Dx +Ey +F =0是否都表示一个圆?提示:对于该二元二次方程,只有当D 2+E 2-4F >0时,才表示一个圆;当D 2+E 2-4F =0时,表示点⎝⎛⎭⎫-D 2,-E 2;当D 2+E 2-4F <0时,不表示任何图形.2.求圆的方程时,应注意什么?提示:圆的方程由圆心坐标和半径确定.求圆的方程可从确定这两个条件入手,也可先用待定系数法设出其方程,再确定其中的参数.一般地,若利用半径列方程,通常设为标准形式;否则,设成一般式.无论选用哪种形式,最多需要三个独立的条件.一、求圆的方程【例1-1】求经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上的圆的方程. 【例1-2】已知A (0,1),B (2,1),C (3,4),D (-1,2),问这四点能否在同一个圆上?为什么? 方法提炼常见的求圆的方程的方法有两种:一是利用圆的几何特征,求出圆心坐标和半径长,写出圆的标准方程;二是利用待定系数法,它的应用关键是根据已知条件选择标准方程还是一般方程.如果给定的条件易求圆心坐标和半径长,则选用标准方程求解;如果所给条件与圆心、半径关系不密切或涉及圆上多点,常选用一般方程求解.请做[针对训练]3二、与圆有关的最值问题【例2】已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求yx的最大值和最小值;(2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.方法提炼处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见的有以下几种类型:①形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.请做[针对训练]5三、与圆有关的轨迹问题【例3】如下图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2|=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 为切点),使得|PM |=2|PN |.试建立平面直角坐标系,并求动点P 的轨迹方程.方法提炼1.解答与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆的几何性质列方程;代入法,找到所求点与已知点的关系,代入已知点满足的关系式.此外还有交轨法、参数法等.不论哪种方法,充分利用圆的几何性质,找出动点与定点之间的关系是解题关键.2.求与圆的轨迹问题时,题目的设问有两种常见形式,作答也应有不同:若求轨迹方程,把方程求出化简即可;若求轨迹,则必须根据轨迹方程,指出轨迹是什么样的曲线.请做[针对训练]4考情分析通过分析近几年的高考试题可以看出,对于本节内容的考查主要侧重以下两点:(1)利用配方法把圆的一般式方程转化成标准式方程,并能指出圆心坐标及半径长;(2)求圆的方程,方法主要有配方法、待定系数法、数形结合法等.考查的形式以选择题、填空题为主.针对训练1.圆x2+y2-4x+6y=0的圆心坐标是().A.(2,3) B.(-2,3) C.(-2,-3) D.(2,-3)2.(2011安徽高考,文4)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为().A.-1 B.1 C.3 D.-33.求半径为10,圆心在直线y=2x上,被直线x-y=0截得的弦长为42的圆的方程.4.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB 的中点M的轨迹.5.如果实数x,y满足方程(x-3)2+(y-3)2=6,求x+y的最大值与最小值.参考答案基础梳理自测 知识梳理1.定点 定长 集合 圆心 半径 2.(a ,b ) r x 2+y 2=r 23.(1)D 2+E 2-4F >0 (2)D 2+E 2-4F =0 (3)D 2+E 2-4F <0 (4)①A =C ≠0 ②B =0 ③D 2+E 2-4AF >04.(1)(x 0-a )2+(y 0-b )2=r 2 (2)(x 0-a )2+(y 0-b )2>r 2 (3)(x 0-a )2+(y 0-b )2<r 2 基础自测1.D 解析:方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是(4m )2+(-2)2-4×5m>0,即m <14或m >1.2.A 解析:设圆心为(0,a ),则(1-0)2+(2-a )2=1, ∴a =2.故圆的方程为x 2+(y -2)2=1.3.A 解析:∵点(1,1)在圆(x -a )2+(y +a )2=4的内部, ∴(1-a )2+(1+a )2<4,即-1<a <1.4.3 解析:圆C 的标准方程为(x -1)2+(y -2)2=1, ∴其圆心为(1,2).∴圆心C 到直线的距离为|3×1+4×2+4|32+42=3.考点探究突破【例1-1】解:方法一:∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.线段AB 的垂直平分线的方程为y =-12(x -4).设所求圆的圆心坐标为C (a ,b ),则有 ⎩⎪⎨⎪⎧2a -b -3=0,b =-12(a -4).解得⎩⎪⎨⎪⎧a =2,b =1. ∴C (2,1),r =|CA |=(5-2)2+(2-1)2=10. ∴所求圆的方程为(x -2)2+(y -1)2=10.方法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2.解得⎩⎪⎨⎪⎧a =2,b =1,r =10.∴圆的方程为(x -2)2+(y -1)2=10.方法三:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝⎛⎭⎫-D 2+E 2-3=0.解得D =-4,E =-2,F =-5.∴所求圆的标准方程为x 2+y 2-4x -2y -5=0.【例1-2】解:设经过A ,B ,C 三点的圆的方程为(x -a )2+(y -b )2=r 2.则⎩⎪⎨⎪⎧ a 2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,(3-a )2+(4-b )2=r 2,解此方程组,得⎩⎪⎨⎪⎧a =1,b =3,r 2=5.所以,经过A ,B ,C 三点的圆的标准方程是(x -1)2+(y -3)2=5.把点D 的坐标(-1,2)代入上面方程的左边,得(-1-1)2+(2-3)2=5.所以,点D 在经过A ,B ,C 三点的圆上,故A ,B ,C ,D 四点在同一个圆上,圆的方程为(x -1)2+(y -3)2=5.【例2】解:(1)原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径长的圆.yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6.(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线和圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.【例3】解:以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立如图所示的平面直角坐标系,则O 1(-2,0),O 2(2,0).由已知|PM |=2|PN |,得|PM |2=2|PN |2. 因为两圆的半径长均为1, 所以|PO 1|2-1=2(|PO 2|2-1).设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1],化简,得(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33. 演练巩固提升 针对训练1.D 解析:∵x 2+y 2-4x +6y =0可化为(x -2)2+(y +3)2=13, ∴圆心坐标为(2,-3). 2.B 解析:圆x 2+y 2+2x -4y =0化为标准方程:(x +1)2+(y -2)2=5,可得圆心(-1,2). ∵直线过圆心,∴将(-1,2)代入直线3x +y +a =0,可得a =1. 3.解:设圆心C (a,2a ),圆心到直线x -y =0的距离为d ,则d =|a -2a |2=22|a |.∵r =10,由垂径定理知r 2-d 2=22,即10-12a 2=8,∴a 2=4.∴a =±2.故所求圆的方程为(x -2)2+(y -4)2=10,或(x +2)2+(y +4)2=10. 4.解:设M (x ,y ),A (x 0,y 0),则有x =x 0+42,y =y 0+32.∴x 0=2x -4,y 0=2y -3.又A (x 0,y 0)在圆(x +1)2+y 2=4上, ∴(x 0+1)2+20y =4.∴(2x -4+1)2+(2y -3)2=4,即⎝⎛⎭⎫x -322+⎝⎛⎭⎫y -322=1.故AB 的中点M 的轨迹是以⎝⎛⎭⎫32,32为圆心,以1为半径长的圆.5.解:设x +y =b ,则y =-x +b ,由图知,当直线与圆C 相切时,截距b 取最值.而圆心C 到直线y =-x +b 的距离为d =|6-b |2.因为当|6-b |2=6,即b =6±23时,直线y =-x +b 与圆C 相切,所以x +y 的最大值与最小值分别为6+23与6-2 3.。
高考数学(文通用)一轮复习课件:第八章第3讲圆的方程
第3讲第八章平面解析几何圆的方程教材回顾▼夯实基础1.圆的定义及方程平面内与定点的距离等于定长的点的集合(轨迹)课本温故追根求源标准方程(x —a)2+(y —〃)2=以0>0)心:(…),半径:丄_____一般方程x2+j2+£>x+Ey+F=0(D2+E2-4F>0)111半径:|\/z>2+E2-4F心:2•点与圆的位置关系点M(x0,旳)与圆(x—af+(y—b)2=r2的位置关系: (1)若旳)在圆外,贝l|(x0—a)2+(yo—^)2(2)若旳)在圆上,贝!|(xo-a)2+(y o-^)2(3)若为)在圆内,贝!Kx0-«)2+(y0-^)2―\,1.辨明两个易误点⑴求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.(2)对于方程X2+J2+D X+£^+F=0表示圆时易忽视Z)2+ 炉一4尸>0这一条件.2.求解有关圆的问题的转化路径(1)注意二元二次方程表示圆的充要条件,善于利用切割线定理、垂径定理等平面中动点到定点、定直线的距离转化为圆心到它们的距离.(2)在圆中,注意利用半径、半弦长及弦心距组成的直角三角形.双基自测,1•圆心在丿轴上,半径为1,且过点(1,2)的圆的方程为(A ) A. x 2+(y-2)2=l B. x 2+(y+2)2=l C. (x-1)2+ (y~3)2= 1D. x 2+(y-3)2= 1\ (0—1) 2+ (b_2) —I,解得b=2,故圆的方程为x + (y —2)2=1.2.方程^2+j 2+ 4wx —2j + 5w=0(B ) (0 , b ),则由题意知,1A•一 svl4r 1C. m<rD. m>l解析:S(W+4-4XSw>0,得m>l.43.圆心在丿轴上且经过点(3, 1)的方程是(B )A. X2+J2+10J=0B. x2+/-10y = 0C. x2+j2+10x=0 D・ x2+j2—10x=0所以9 +(1—方)2=方「解得方=5.解析:设圆心为(0,b)9半径为八Jl!| r= \b\9x2+(y —bf=b)因为点(3, 1)所以圆的方程为x2+j2—10y=0.4.点(1, 1)在圆(x-a)2+(y+a)2=4内,则实数日的取值范围思’J .解析:因为点(1, 1)在圆的内部,所以(1-a)2+(1+a)2<4, 所以一1<a<1.5.(必修2P124习题4.1 A组T4改编)圆C的圆心在x轴上, 并且过点4(-1, 1)和B(1, 3),则圆C的方程为(X—2)2+j2=10解析:设圆心坐标为C(a, 0),因为点A(-l, 1)和B(l, 3)在圆C所以IC4I= ICBI,即7(a+1)彳+1=7 (a—l) 解得a=2f所以圆心为C(2, 0), 半径IC4I=〈(2+1) 2+1=莎,所以圆C的方程为(X-2)2+/=10.典例剖析▼考点突破*考点一求圆的方程(1)经过卩(一2, 4)、0(3, 一1)两点,并且在兀轴上截得的弦 长等于6;(2)圆心在直线j=-4x±,且与直线Z : x+y-l=0相切于 点 P(3, -2).[解]⑴设圆的方程为X 2+J 2+D X +E J +F=0, 将P 、0点的坐标名师导悟以例说法根据下列条件,求圆的方程:分别代入得2D-4E-F=20,①3D-E+F=-1Q.②又令J=O,得x2+Z)x+F=0e③设帀,兀2是方程③的两根, 由I X!-X2I=6,有Q2_4F=36,④由①②④解得D=—2, E=—4, F=_8 或D = _6, E= —,F=0・故所求x2+j2—2x—4y—8=0或x2+j2—6x—8j=0.(2站^沿^啟»1窘)2+Q—y o )2H >{yoH— 4X0》(3—XO )2+(—2—YO )2H?-IF +y o —一一—— 刍J求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径, 进而写出方程. (2)待定系数法:①若已知条件与(冷方)和半径/有关,则设圆的标准方 程,依据已知条件列出关于“,"厂的方程组,从而求出“,b,厂的值;②若已知条件没有明确给出般方 程,依据已知条件列出关于D, E, F 的方程组,进而求岀D, E, F的值.跟踪训练(2)若不同的四点 4(5, 0)、5(-1, 0)、C(-3, 3)、D(a 9 3) 共圆,求“的值.1.(1)已知圆心为C4(0,-6), 5(1, -5),且|心在直线%兀一丿+1=0上, ;解:(1)法一:设圆的方程为x2+j2+Dx+ Ey+F= 0(^+E2—4F>0),则圆心坐标为(一£,—「(一6) 2_6E+F=0,由题意可得* I2 + (-5) 2+Z>-5E+F=0,— 2=0,D+E-IO=O,— 2=0,解得*二代入求得i 所以圆的方程为x2+j2+ 6x4- 4j—12= 0,标准方程为(x+ 3)2+ (y+ 2)2= 25.丄11 y+y= — 刁'即 x+y+5=0・法二:因为 A(0, —6), B(l, —5), 所以线段4B 的中点D 的坐标为g ,—因此线段AB 的垂直平分线I 的方程是直线AB 的斜率k AB = —5— ( — 6) iPox+j+5=0,圆心C的坐标是方程组, 的解,lx-j+l=Ox=— 3,解得宀b=_2,所以圆心C的坐标是(一3, -2).圆的半径长r= IACI =yj (0+3) 2+ (-6+2) 2= 5,所以,心为C的的标准方程是(x+ 3)2+ (y+ 2f= 25.3(2)设过A 、B. C 三点的圆的方程为x 2 +J 2+D X + Ey+F= 0,分别代入A 、B. C 三点坐标,得25+5D+F=0,< l-D+F=0,5>+9-3D+3E+F=0,F=-5.解得D=-4,所以A、B、C三点确定的圆的方程为x2+j2-4x-p-5 因为ZX 偽3)也在此圆上, 所以/+9—4«— 25—5=0.所以a=7或a= —3(舍去). 即a的值为7.考点二与圆有关的最值问题(高频考点)与圆有关的最值问题,是高考命题的热点,多以选择题、填空题的形式呈现,试题难度不大,多为容易题、中档题.高考中对与圆有关的最值问题的考查主要有以下四个命题角度:(1)半径、面积型最值;⑵斜率型最值;⑶截距型最值;⑷距离型最值.鯉[2 ( 1)(2014-高考江西卷)在平面直角坐标系中分别是兀轴和V轴上的动点,若以AB为直径的圆C与直线2x+y_4= 0相切,则圆C面积的最小值为(A )A 4 口3A•一兀B•一Ji5 4C. (6—2质)兀D.討(2)(2016-河南省豫西五校联考)已知M为圆C:X2+J2-4X 一14丿+45=0上任意一点,且点2(-2, 3).①求IM0的最大值和最小值;②若M(〃,砒,求三|的最大值和最小值.加十2[解]⑴选A.因为ZAOB=90°,所以点O在圆C上. 设直线2x+y-4=0与圆C相切于点D,则点C与点O间的距离等于它到直线2x+j-4=0的距离,所以点C在以O为焦点,以直线2x+j-4=0为准线的抛物线上,所以当且仅当O, C, D共线时,圆的直径最小为IODI.4 2=质,所以圆C的最小半径为恭,所以圆C面积的最小值为兀1114 亏•IIIf 12X0+0-41 又如=—^―(2)由圆C: x2+j2— 4x— 14y+ 45= 0,可得(x-2)2+(y-7)2 =8,所以圆心C的坐标为(2, 7),半径①I0C1= 7 (2+2) ?+ (7-3) j血所以IMei max= 40+20 = 60, IM0lmin= 40 —2\{2 = 2\[i.②可知表示直线MQ的斜率, 加十2设直线MQ的方程为丿一3=饥兀+2),YI — 3即 kx-y-V 2k-\- 3= 0,则—;—=k.m + 2 由直线M0与圆C 有交点,可得 2—书WEW2+V5,所以所以加+ 2的最大值为2+书, 1小值为2—书.与圆有关的最值问题的常见解法(1)形如“=巳形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题.(3)形如(兀一a)2+® —耐?形式的最值问题,可转化为动点到定点的距离的平方的最值问题.通关练习2•已知实数x, y满足方程x2+j2— 4x+1= 0.⑴求j-x的j 【大值和最小值;(2)求x2+j2的最大值和最小值.解:原方程可化为(X—2)2+J2=3,表示以(2, 0)为圆心,\[3为半径的圆.(1)丿一兀可看作是直线丿=兀+方在丿轴上的截距,当直线y= x + b与圆相切时,纵截距b取得最大值或最小值,此时号解得―朋(如图1).所以y—x的最大值为一2+心,图2(2)X 2+J 2表示圆上的一点与原点距离的平方,由平面几何知 识知,在原点和圆心连线与圆的两个交点处取得最大值和最 小值(如图2).又圆心到原点的距离为7 (2-0)牛(0一0) 2= 2, 所以x 2+j 2的最大值是(2+书)2=7+4\伎x 2+j 2的最小值 是(2—厉)2=7—4\月・1=1oyX2考点三与圆有关的轨迹问题已知圆X2+J2=4±一定点A(2, 0), B(l, 1)为圆内一点,P, 0为圆上的动点.(1)求线段4P中点的轨迹方程;(2)若ZPBQ=W ,求线段P0中点的轨迹方程.[解]⑴设AP 的中点为M(x, j),由中点坐标公式可知,P 点坐标为(2x-2, 2y).故线段AP 中点的轨迹方程为(x-l)2+j 2=l.⑵设 P0 的中点为 j),在 RtZ\PB0 中,I PN\ = \BN\, 设O 为坐标原点,连接ON (图略),贝!|ON 丄P0,所以IOP|2 = \ON\2+\PN\2=ION?+\BN\29 所以 x 2+j 2+(x —l)2+(y —1)2=4.故线段中点的轨迹方程为x 2+j 2—X —J —1 = 0.因为P+J 2=4±,所以(2X -2)2+(2J )2=4.求与圆有关的轨迹方程的方法直接法L直接根据题设给定的条件列出方程(组)求解的方法定义法一根据圆(或直线)的定义列方程(组)求解的方法跟踪训练 3•已知直角三角形ABC 的斜边为AB,且A(-l, 0), B(3, 0),求:(1)直角顶点C 的轨迹方程; (2)直角边BC 中点M 的轨迹方程.解:⑴法一:设顶点eg j),因为AC 丄BC,且A 、B 、C 三点不共线,所以兀H3且兀H —1・所以~Z7i =— 1,即 /+丿2— 2x — 3= 0・JL eV因此,直角顶点c 的轨迹方程为x 2-\-y 2— 2x — 3= 0(X7^3且 兀工一1).又 kac=x+1法二设AB的中点为D,由中点坐标公式得n(l, 0),由直角三角形的性质知,ICDI=|lABI = 2,由圆的定义知,动点C的轨迹是以D(l, 0)为圆心,2为半径长的圆(由于4B, C三点不共线,所以应除去与兀轴的交点). 所以直角顶点C的轨迹方程为(x—1)2+/= 4(xH 3且xH —1).⑵设点M(x, j),点C(x 0, jo),因为B(3, 0), M 是线段 BC 的中点,由中点坐标公式得兀=迴兰3工3且xHl), y由(1)知,点C 在圆(x-l)2+/= 4(x^3且兀工一1)上运动,将兀o=2x —3, yo=2y 代入该方程得(2x —4『+(2刃2=4,即 (X -2)2+J 2=1(X #:3且兀Hl).因此动点M 的轨迹方程为(兀 —2)2+J 2= 1(兀工 3 且 x#= 1).=Jo + O—2 ,于是有 x 0 = 2x —3, y 0=2y.拓展升华触类旁通考题溯源一一求圆的方程(2015•高考全国卷II)己知三点4(1, 0),B(0,C(2,厉),则外接圆的圆心到原点的距离为(B.长为2的正三角形,其外接圆的圆心为 [解析]法一:设圆的方程为X 2+J 2+Z)X +£J +F=0, ri+D+F=0, 则5 3+\^E+F=0, 解得 D= — 2, E=_誓法二 在平面直角坐标系兀Oy 中画出△4BG 易知△ABC 是边咼考题溯源 本题源于人教A 版必修2 P122例4 “求过三点M+3+ 2£>+ 应 + F= 0, •因此IODI =0(0, 0), Mi(l, 1), M2(4, 2)的圆的方程,并求这个圆的半径长和圆心坐标”.考题变式〔如果一个三角形的三边所在的直线方程分别为方程为闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能解析:因为三角形三边所在的直线方程分别为x+2y—5=0,y—2= 0, x+j—4= 0,所以可得三角形的三个顶点分别是(1, 2), (2, 2), (3, 1). 设三角形外接圆的方x2+j2+Dx+Ey+F= 0,贝||D+2E+F=-5,< 2D+2E+F=一& 3D+E+F=-10,D= _3, 所以\E=-1, 、F=0,所以该三角形外接圆的方程为x2+j2—3x—y= 0,闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能点击链接本部分内容讲解结束闌1能训练▼轻松闯关* [学生用书单独成册]以练促学强技提能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
(2)y-x可看作是直线y=x+b在y轴上的截距,
D.x2+y2=4
解析:∵A(1,-1),B(-1,1),∴圆心坐标为(0,0),
半径r=12|AB|=12 22+22= 2. ∴圆的方程为x2+y2=2.
答案:A
返回
3.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范
围是
()
A.m<12
B.m<10
C.m>12
D.m≤12
返回
解析:法一:由x2+y2-x+y+m=0,得(x-
返回
返回
[做一题] [例1] 求经过点A(5,2),B(3,-2),且圆心在直线 2x-y-3=0上的圆的方程.
返回
[自主解答] 法一:∵圆过A(5,2),B(3,-2)两点,
∴圆心一定在线段AB的垂直平分线上. 线段AB的垂直平分线方程为
y=-12(x-4). 设所求圆的圆心坐标为C(a,b),则有
a=2, 解得b=1,
r= 10
∴圆的方程为(x-2)2+(y-1)2=10.
返回
法三:设圆的方程为 x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
25+4+5D+2E+F=0, 则9+4+3D-2E+F=0,
2×-D2 +E2-3=0 解得D=-4,E=-2,F=-5. ∴所求圆的方程为x2+y2-4x-2y-5=0.
返回
1.圆的定义 (1)在平面内到 定点 的距离等于 定长 的点的轨迹是圆. (2)确定一个圆的要素是 圆心 和 半径 . 2.圆的标准方程
(x-a)2+(y-b)2=r2(r>0) .
返回
3.圆的一般方程
x2+y2+Dx+Ey+F=0 (其中 D2+E2-4F>0 ).
其中圆心为
(-D2 ,-E2)
,半径
1 r= 2
D2+E2-4F.
4.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系 (1)若M(x0,y0)在圆外,则 (x0-a)2+(y0-b)2>r2 . (2)若M(x0,y0)在圆上,则 (x0-a)2+(y0-b)2=r2 .
(3)若M(x0,y0)在圆内,则 (x0-a)2+(y0-b)2<r2 .
2a-b-3=0, b=-12a-4.
解得ab= =21., ∴C(2,1),
r=|CA|= 5-22+2-12= 10. ∴所求圆的方程为(x-2)2+(y-1)2=10.
返回
法二:设圆的方程为 (x-a)2+(y-b)2=r2,
则25a--ab-2+3=2-0,b2=r2, 3-a2+-2-b2=r2
返回
[悟一法] 1.利用待定系数法确定圆的方程需要三个独立条件,“选
标准,定参数”是解题的基本方法.其中,选标准是根 据已知条件选恰当的圆的方程的形式,进而确定其中三 个参数.一般来讲,条件涉及到圆上的点多,可选择一 般方程,条件涉及用半径列方程,通常选择标准方程.
返回
2.求圆的方程的一般步骤为: ①根据题意选用圆的方 程的两种形式中的一种;②根据所给条件,列出关于 D、E、F或a、b、r的方程组;③解方程组,求出D、 E、F或a、b、r的值,并把它们代入所设的方程中, 得到所求的圆的方程.
返回
[自主解答] (1)原方程可化为(x-2)2+y2=3
表示以(2,0)为圆心,
3
为半径的圆,
y x
的几何意义是圆上一
点与原点连线的斜率,
所以设xy=k,即y=kx. 当直线y=kx与圆相切时,斜率k取最大值或最小值,此时 |2kk2-+01|= 3,解得k= 3或k=- 3.
所以xy的最大值为 3,最小值为- 3.
第
第
八
三
章
节
解
圆
析
的
几
方
何
程
高考成功方案第一步 高考成功方案第二步 高考成功方案第三步 高考成功方案第四步
考纲点击 1.掌握确定圆的几何要素,掌握圆的标准方程
与一般方程. 2.初步了解用代数方法处理x2+y2+4x-6y-3=0的圆心和半径分别为 ( )
A.(4,-6),16
B.(2,-3),4
C.(-2,3),4
D.(2,-3),16
解析:由x2+y2+4x-6y-3=0,得(x+2)2+(y-3)2= 16即圆心为(-2,3),半径为4.
答案:C
返回
2.已知点A(1,-1),B(-1,1),则以线段AB为直径的圆
的方程是
()
A.x2+y2=2
B.x2+y2= 2
C.x2+y2=1
1 2
)2+(y+
1 2
)2
=12-m
∵方程x2+y2-x+y+m=0表示圆,
∴12-m>0,即m<12.
法二:由D2+E2-4F>0得1+1-4m>0即m<12. 答案:A
返回
4.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a 的取值范围是________. 解析:∵点(1,1)在圆(x-a)2+(y+a)2=4的内部, ∴(1-a)2+(1+a)2<4,即2a2+2<4,∴a2 <1. ∴-1<a<1. 答案:(-1,1)
[通一类] 1.若不同的四点 A(5,0),B(-1,0),C(-3,3),D(a,3)共圆,求 a
的值. 解:设经过A,B,C三点的圆的方程为x2+y2+Dx+Ey+F =0(D2+E2-4F>0). 由题意可得5-2+152D-+DF+=F0=,0,
-32+32+-3×D+3E+F=0.
返回
5.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点 C,则以C为圆心, 5为半径的圆的方程为______.
解析:由(a-1)x-y+a+1=0得 a(x+1)-(x+y-1)=0, ∴直线恒过定点(-1,2), ∴圆的方程为(x+1)2+(y-2)2=5, 即x2+y2+2x-4y=0. 答案:x2+y2+2x-4y=0
返回
D=-4, 解得E=-235,
F=-5. ∴A,B,C三点确定的圆的方程为 x2+y2-4x-235y-5=0. ∵D(a,3)也在此圆上,∴a2+9-4a-25-5=0. ∴a=7或a=-3(舍去).
返回
[做一题] [例2] 已知实数x、y满足方程x2+y2-4x+1=0. (1)求xy的最大值和最小值; (2)求y-x的最大值和最小值; (3)求x2+y2的最大值和最小值.